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Abstract

The use of rotating machinery is prevalent in the aerospace industry. For example, rotating shafts are very
common in turbines, compressors, and engines. Rotor imbalance is one of the most common faults that
occurs in rotating machinery. It may lead to excessive vibrations and ultimately to the failure of components.
Imbalance of a rotor is typically estimated by measuring vibration in conjuction with a physics-based model.
This includes some point estimation methods to determine imbalance parameters to best match observed data.
Bayesian methods have also been employed to approximate distributions of imbalance parameters to aid in
uncertainty quantification. However, the aforementioned methods do not account for model discrepancy, which
quantifies the missing or incorrect physics within the finite element model used to model the rotating system.
Accounting for model discrepancy will result in an improved uncertainty quantification of imbalance parameters.
To demonstrate this benefit, this paper proposes the application of a Bayesian method that accounts for model
discrepancy to the rotor imbalance estimation problem. Compared to Bayesian approaches that do not account
for discrepancy, the methodology in this paper results in imbalance estimates of similar accuracy but with more
useful measures of uncertainty.

Keywords: Rotating Systems, Imbalance, Bayesian Inference, Uncertainty Quantification, Discrepancy Mod-
eling

1. Introduction

Rotating machinery is very prevalent in the aerospace industry. For example, rotating shafts are very
common in turbines, compressors, and engines. Rotor imbalance is one of the most common faults
that occur in rotating machinery [1]. It alters the vibration profile of the shaft that it affects, which
ultimately can cause damage or the failure of components. Due to the advent of sensor technol-
ogy, such as accelerometers and proximity sensors, many research efforts have been focusing on
outfitting rotating shafts with sensors, collecting data, and utilizing this data to estimate imbalance,
including estimating the eccentricity and phase of the imbalance. It is expected that the proper es-
timation of rotor imbalance can then be used for condition-based maintenance purposes, resulting
in time and cost savings. The following sections briefly discuss some of the common approaches to
rotor imbalance estimation and their limitations.

1.1 Machine Learning Approaches

A number of supervised machine learning approaches have been proposed to estimate imbalance.
For example, Reddy et al. [2] used neural networks to estimate rotor imbalance. Similarly, Singh et al.
tested neural networks and support vector machines to estimate rotor imbalance. However, these
approaches have a number of issues and limitations . First, they both solve the problem of classifying
vibration data into predetermined imbalance classes, which means they cannot extrapolate to unseen
imbalance states. In addition, they require labeled data, which may not be available or may be difficult
to obtain. There have been approaches that use a simulated system to train classifiers [4], which help
with the data problem but not the extrapolation problem.
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1.2 Signal Processing Approaches

Another class of methods used for imbalance estimation includes signal processing methods.In [5],
Kral et al. detect imbalance using signal processing methods on power measurements of rotating
systems. In [6], Caccicola et. al detect imbalance using a harmonic analysis on sensor measure-
ments. In [7], Yamamoto et al. use an fast Fourier transform (FFT) on a time domain vibration signal
along with an FPGA setup to detect and correct rotor imbalance. Unlike the supervised learning ap-
proaches, the signal processing approaches perform well when detecting the presence of imbalance
without the need for labels. However, compared to model-based approaches, they perform poorly
when estimating the imbalance eccentricity and phase [8].

1.3 Model-based Approaches

Multiple model-based methods have been proposed and leveraged for imbalance estimation that
make use of both vibration measurements and physics-based models. Market et al. [9], Sudhakar
et al. [8], Shrivastava et al. [10], and Abbasi et al. [11], for example, describe approaches that es-
timate rotor imbalance by utilizing physics-based rotor models and vibration measurements using
least-squares approaches. In [12], Zou et al., estimate imbalance parameters using a Kalman fil-
tering approach. In [13], Yao et al. utilize a model-based inverse problem approach to solve the
imbalance estimation problem. In [14], Wang et al. use a model-based method to estimate imbal-
ance parameters using equations derived in the frequency domain. The aforementioned approaches
allow for both accurate detection of imbalance along with more accurate estimation of the eccentricity
and phase of the imbalance. However, these approaches tend to provide only point estimates of
imbalance parameters, and do not inform about the uncertainty of the estimates. However, multiple
sources of uncertainty exist when estimating imbalance in rotating systems that need to be captured
and estimated.

1.4 Bayesian Approaches

In rotating systems, uncertainty exists both in the measurements and in the model parameters. In
addition, when rotor models are used, there exists uncertainty in the model form, which represents
the difference between the model and the true process it is representing. Due to these various
sources of uncertainty, when estimating imbalance parameters, it is more appropriate to quantify
the uncertainty of the parameters rather than provide point estimates. Often times, prior knowledge,
either weak or specific, is known about the parameters of interest. Consequently, it is common to
use Bayesian inference to learn posterior distributions of parameters given prior information in the
form of prior distributions, and data in the form of a likelihood distribution. From there, the posterior
distribution can be analyzed to obtain the expected value of the imbalance parameters along with
uncertainty. In [1,15], Garoli et al. use a method involving polynomial chaos expansion to efficiently
approximate the posterior distributions of imbalance parameters. In [16], Tyminski et al. use a Markov
Chain Monte Carlo (MCMC) algorithm to approximate the distributions. In [17], Taherkhani et al. also
uses MCMC to infer imbalance parameters among others selected through sensitivity analysis for a
rotating system. In [18], Corbalan et. al use MCMC along with current measurements to estimate
imbalance parameters. While these approaches account for the uncertainty in both model parameters
and measurements, they do not account for uncertainty of the model form, also known as the model
discrepancy.

Model discrepancy arises because a model can never perfectly replicate a physical process. For this
reason, model discrepancy is often learned along-side model parameters [19,[20]. Vankov et al. [21]
shows that learning model discrepancy along with model parameters will improve the uncertainty
quantification of parameters in the context of Bayesian parameter estimation. The scale of the im-
provement depends on the quality of the prior information for both the parameters to be estimated
and the discrepancy model. With no discrepancy modeling and weak prior information, the parameter
estimates are likely to be biased and have a low variance. This combination is undesirable because it
can be interpreted as extremely high confidence about incorrect parameter values. With discrepancy
modeling included and weak prior information, the parameter estimates are likely to be biased, but
with a high variance. This result is more desirable than the case where discrepancy is not modeled.
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The reason is that even though the expectation is still biased, the high variance will reflect low con-
fidence on the expected parameter values. Finally, with discrepancy modeling combined with more
informative prior information, the parameter estimates are likely to have low bias and low variance,
which is the most desirable outcome.

This paper proposes to improve upon the aforementioned attempts at the rotor imbalance estimation
problem. Similar to the work discussed in [1] and [16], the present research employs a model-based
approach that uses Bayesian inference to provide posterior distributions of imbalance parameters
given vibration data. However, when compared to existing approaches, this research accounts for
model discrepancy as a means to improve the accuracy of the imbalance estimates.

The remaining of the paper is organized as follows. Section Il presents some background on rotor
modeling and imbalance estimation. Section IIl introduces the proposed methodology and Section
IV discusses its implementation and results on a simulated test case. Finally, Section V summarizes
the benefits of the proposed approach and discusses avenues for future work.

2. Background

This section provide relevant background on rotor modeling as well as different model-based imbal-
ance estimation techniques.

2.1 Rotor Modeling

Equation [1] relates the vibrations of the rotor system to the force induced by an imbalance and is
therefore commonly used to model rotating systems with imbalance [9].

Mi(t) + Bi(t) + Kr(t) = Fy(t) + F(B,1) (1)

where, ¥(t), 7(t), and r(t) are the accelerations, velocities, and displacements of the rotor system,
respectively. The M, B, and K matrices are the mass, damping/gyroscopic, and stiffness matrices
respectively. Fy(z) is the load acting on the rotor during nominal operation (without imbalance), and
F(B,t) is the operational load induced by imbalance in the rotor. This equation is then commonly
solved using finite element methods [8].

A commonly used imbalance fault model is shown in Equations[2|and[3]

AFy(B.t) = usin (ot + ¢) 2)

AF,(B,t) = ucos(wt+ ¢) 3)

where, B = [u, ¢] is the vector containing the imbalance parameters that we wish to estimate, u is the
magnitude of the force induced by the imbalance in Newtons, and ¢ is the phase of the force induced
by the imbalance in radians.

While Equations and [3] are in the time domain, vibration signals are often analyzed in the
frequency domain. The methods employed in this paper use the frequency response of vibration
signals of the rotor system. The vibration signal r(¢) has the frequency response, ¢(o).

2.2 Imbalance Estimation

This section discusses a number of model-based imbalance estimation techniques. All the tech-
niques described in this section make use of rotor models of the form in Equation [f]along with vibra-
tion measurements. First, least-squares approaches are presented. Second, Bayesian methods are
presented.

2.2.1 Least-Squares Methods

Many implementations formulate the imbalance estimation problem as a least-squares problem. For
example, [8,9] optimize imbalance parameters by choosing 8 to minimize Equation[d], which quantifies
the difference between the force calculated by the fault model and the force calculated using the
measured vibrations.
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Z|F(BJ:’) — Fu(1)? (4)

Another least-squares approach consists in choosing  to minimize the difference between the vibra-
tions calculated by the rotor model and the measured vibrations. This can also be done by minimizing
the difference between the frequency responses of both the measured and calculated vibrations, as
shown in Equation 5 In Equations [4and 5] i represents the i-th measured observation.

Z|Cl(l3,wi) —CIM(COi)|2 (5)

However, as mentioned in the introduction, the result of these least-squares methods are point es-
timates of imbalance, which do not account for uncertainty in measurements, model parameters, or
model form.

2.2.2 Bayesian Methods

As discussed, Bayesian methods have also been implemented to estimate rotor imbalance [1,(15-18].
The two methods presented in the previous sections result in point estimates of B that minimize
Equations |4/ and |5 In a Bayesian approach, the result is either a computation or approximation of
the posterior distributions of imbalance parameters given vibration data. Unlike a point estimate, a
distribution allows for the natural quantification and propagation of uncertainty. The posterior distri-
butions are either computed or approximated using Bayes theorem, which is shown in Equation [6]
This process is known as Bayesian inference.

7(Blqons) = W

where, g.ps = (q(®1),q(@),...,q.(®,)) is the frequency response of the rotor system computed from
the measured vibration signals, 7(B|q.»s) is the posterior distribution of the imbalance parameters
given the frequency response of the system, L(q.»|B) is the likelihood function, which is the joint
density of the frequency response given the imbalance parameters and =(f3) is the prior distribution
of the imbalance parameters.

Estimating rotor imbalance using a Bayesian approach can be accomplished by assuming the follow-
ing statistical formulation.

(6)

qobs(®) = q(B", @) + & (7)

where, B* = [u*, ¢*] is the vector of true imbalance parameters, and ¢ is the measurement error. In
addition, if we assume that € ~ N(0, 6?), then we can form the following likelihood function.

Lagol) < exp{ 30" —alB)IE} ®

where, ¢(B) = (¢(B,01),9(B,@),...,q(B,®,)) is the frequency response of the vibrations calculated
using Equation [1| given . Then assuming some prior distribution, Bayes theorem can be used to
obtain an expression for the posterior distribution. This expression is shown in Equation [9}

(Blan) < Lt )7(8) = exp{ — 50% s~ (BB | 7(8) ©)

Because the posterior distribution in Equation [9] often cannot be determined analytically, Markov
Chain Monte Carlo (MCMC) methods are commonly used to sample from the posterior distribution,
as discussed in [1,/16]. The expected value of the posterior can be used to represent the imbalance
parameter estimates, with the uncertainty represented by the variance of the posterior.

When compared to least-squares methods, Bayesian approaches have the added benefit of uncer-
tainty quantification and the inclusion of prior knowledge through specification of prior distributions.
However, the implementations referenced in this section do not account for model discrepancy. This
shortcoming is addressed in the following section.

4
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3. Proposed Methodology

As discussed in the introduction, the main contribution of this work is to improve upon Bayesian ap-
proaches to imbalance estimation and uncertainty quantification by accounting for model discrepancy.
Many efforts in fields other than rotor imbalance modeling have implemented Bayesian parameter
estimation, while accounting for model discrepancy [19-23]. Inspired by these works, a statistical
model that represents a rotating system with imbalance is shown in Equation[10] This Equation can
be understood as Equation[7]with the addition of a discrepancy term, 6(w).

QObs(w>ZQ(B*7w)+5<w)+£ (10)

A common method to model the discrepancy function is to use a Gaussian Process (GP) as shown
in Equations (11| and The Bayesian framework can then be used to estimate both 8 and the
hyper-parameters of the GP.

8(®) ~ GP(0,k(w,®)) (11)

, o —'|?
k(a),w)—exp{—zlz} (12)
In Equation the hyperparameter to be estimated is . [ is the length scale of the model, which
determines how quickly the discrepancy can change with respect to frequency, o.

Given the statistical formulation in Equation[10]and that 6(w) is a GP with zero mean and covariance
function of the form in Equation [12| an expression for the likelihood function, L(g.ss|B,!), can be
derived, as shown in equation[13]

LlaonlB.1) = exp{ — 3 (0o —a(B)) Elans —a(B) | (19)

Y=Y+2X5 (14)

In Equation Y5 is the matrix formed by applying Equation to all the frequency values con-
sidered, and X is assumed to be known. Next, given the likelihood function and prior distributions,
Equation [15]can be used to represent the posterior distribution of the imbalance parameters and the
discrepancy model hyperparameter given the frequency response of the vibration measurements.

(B llaun) = Llaun|B.D(B)2() = exp{ 5 (@ —a(B) Ela —a(B) (B} 1) (15)

In Equation n(B) and =(I) are the prior distributions of the imbalance parameters and discrep-
ancy model hyperparameter. As described earlier, MCMC can be used to sample from the posterior
distributions of these parameters, and the expected value of the posterior can be used to represent
the imbalance parameter estimates, with the uncertainty represented by the variance of the posterior.

4. Implementation and Results
4.1 Rotor Models

The rotor models used in this paper were implemented using the ROSS python library [24]. This
library allows the user to define a rotor system consisting of various components such as shaft ele-
ments, bearings, and disks. Then the system is discretized into nodes via the finite element method,
which results in Equation|[i]

Two different rotor models were configured. Both rotor models consist of one disk and two support
bearings on a shaft, as shown in Figure [1L The first rotor model represents a real system. It is of
interest to estimate the imbalance of the disk for this model. Throughout the rest of the paper, this
model will be referred to as the real model. The second model represents a simulation model used
to estimate the imbalance of the real model. Throughout the rest of the paper, this model will be
referred to as the simulation model. The shaft and disk properties are summarized in Table [1], and
the bearing properties are summarized in Table [2|

5
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Rotor Model
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Figure 1 — Rotor Diagram

As shown in Table [2, to simulate model discrepancy through missing physics, the bearings on the
real model impart damping into the system, while the bearings on the simulated model impart no
damping into the system. The shaft properties are identical for both real and simulation models.

component Length (m) inner diameter (m) outer diameter (m) material

shaft 0.5 0.0 0.05 Steel
disk 0.07 0.05 0.28 Steel

Table 1 — Shaft and Disk Characteristics

component x stiffness (N/m) vy stiffness (N/m) x damping (Ns/m) y damping (Ns/m)
real bearings 1e6 0.8e6 3e3 3e3
simulation bearings 1e6 0.8e6 0 0

Table 2 — Bearing Characteristics

The imbalance force applied to the disk was of magnitude 0.08 Newton and phase 0 radian. The
frequency response of this imbalance applied to the real model is shown in Figure [2, and for the
simulation model in Figure[3] The frequency response displayed in both of the figures is the frequency
response of the imbalanced system in the x direction.

The differences between the frequency responses of the real and simulation models are due to the
damping effects present in the real model, but not present in the simulation model. Only the x compo-
nent frequency responses are shown because they are good enough to show the effect of the missing
physics. However, both x and y directions of the frequency response are considered when estimating
the imbalance parameters. The frequency range considered was 61 evenly spaced discrete frequen-
cies between 315 and 1155 radians per second. Due to time constraints, 61 was chosen as the
number of sample points. While more points could have been generated, this would have consider-
ably increased the computational time due to the increased dimensionality of the Gaussian Process

6
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covariance matrices. Also, since the purpose of this paper is to study the effect of model discrepancy
and not measurement error, the measurement error was chosen to be negligible.

4.2 Estimation Methods

Two Bayesian imbalance estimation methods are compared as part of this research. The first calcu-
lates the posterior distribution of the disk imbalance using Bayesian inference without accounting for
model discrepancy, as shown in Equation[9] This method will be referred to as the baseline method.
The second calculates the posterior distribution of the disk imbalance using Bayesian inference while
accounting for model discrepancy in the form of a GP, as shown in Equation This method will be
referred to as the discrepancy method. Prior distributions were chosen for the imbalance parameters
to represent a realistic scenario in which imbalance parameters are to be estimated. This means
having a general idea about the magnitude and range of the imbalance parameters, but not knowing
the values to a high degree of certainty. The prior distributions for relevant parameters are shown in
Table 3l

parameter prior distribution

u HalfNormal(u = 0,0 = 0.05)
¢ Uniform(lower = 0,upper = 1)
l Gamma(o. =5, = 5) (bounded above by 4)

Table 3 — Prior Distributions

The half-normal prior was chosen for the imbalance magnitude, «, because it has non-negative sup-
port. Zero mean and a small variance were chosen to represent a situation in which it is known
that the imbalance magnitude is likely small. A uniform prior was chosen for the imbalance phase to
represent a situation where no prior knowledge is known about the imbalance phase except for the
obvious fact that it is an angle. Finally a bounded Gamma distribution was chosen for the lengthscale
of the GP, . A gamma distribution was chosen because we may be interested in large positive values.
However, it is bounded at 4, to not allow lengthscales that are too large.

For both the baseline and discrepancy methods, the Metropolis Hastings MCMC algorithm was cho-
sen to approximate the posterior distributions [25]. The MCMC algorithm was implemented using the
PyMC3 Python library [26].

4.3 Results

The baseline and discrepancy methods were employed to estimate the imbalance of the real model.
The posterior distributions of the imbalance parameters from the baseline method are shown in Figure
The posterior distributions of the imbalance parameters and discrepancy GP length-scale from the
discrepancy method are shown in Figure[5] For both approaches, four separate chains were sampled
with 2000 tuning samples and 1000 draw samples for each chain.

In the figures above, each plot shows the posterior samples resulting from the MCMC sampling for
each parameter. The magnitude plots indicate that the expectation of the half-normal prior shifts from
zero to a value closer to the ground-truth magnitude for both baseline and discrepancy methods.
Similarly, for the phase plots, the expectation of the uniform prior shifts from 7 to a value much
closer to the true phase for both the baseline and discrepancy approaches. The posterior plot of the
length-scale does not provide direct information about the imbalance parameters, but the fact that the
length-scale samples have converged indicates that the number of MCMC iterations are sufficient.
The mean and variance of the posterior distributions for both methods are summarized in Table [4]
To quantify the effectiveness of both imbalance estimation methods, the absolute value of the true
errors of the posterior means with respect to the ground truth imbalance parameters are calculated.
These results are shown in Table 5

From the results in Table 5], it seems that both methods appear very comparable in terms of estimation
error. However, the advantage of accounting for model discrepancy is more apparent when consider-
ing uncertainty quantification. As shown in Table 4], while the means of the posterior distributions are

8
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Figure 5 — Posterior Distributions, with Discrepancy

similar for both approaches, the standard deviation of the posterior distributions are quite different.
Specifically, the standard deviations of the posteriors from the discrepancy method are quite larger.
This can be seen in posterior plots in Figures[4]and 5] especially for the phase. The conclusion from
this is that, while both methods produce estimates with some bias, the discrepancy method is not
overconfident about the biased estimates, unlike the baseline method, which is extremely confident
about the biased estimates due to the uncertainty resulting from model discrepancy not being in-
cluded. Being extremely confident about incorrect estimates is not desirable when making potentially
costly maintenance decisions. On the contrary, due to accounting for model discrepancy alongside
the forms of uncertainty already considered, then a practitioner can make a better judgement call on
whether or not to enact maintenance when using the discrepancy method.

5. Concluding Remarks

In this paper, two Bayesian approaches were tested on the Rotor Imbalance Estimation problem.
The first method calculated posterior distributions of the imbalance parameters without accounting
for model discrepancy. This was the baseline method. The second method calculated posterior
distributions of the imbalance parameters, while accounting for model discrepancy. Both methods
exhibited similar levels of bias when comparing the expected value of the posteriors to the true im-
balance parameters. However, the variance of the posteriors from the baseline method signified
extreme confidence about these biased estimates. The discrepancy method did not posses this un-
desirable quality. In conclusion, these results motivate further exploration of discrepancy modeling
in Bayesian imbalance estimation. In particular, future work could include investigating more specific
prior information for the discrepancy models to lower the bias of imbalance estimates. This could
include adding constraints to the Gaussian Process discrepancy model based on prior knowledge of
characteristics specific to rotor systems.
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Method Parameter Mean Standard Deviation

0.0216 0.0171
0.2642 0.0008
0.0396 0.0306
0.2662 0.0895
1.0083 0.4547

baseline
baseline
discrepancy
discrepancy
discrepancy

~S ¥ S T

Table 4 — Posterior Distribution Statistics

Method magnitude error phase error
baseline 0.0084 0.2642
discrepancy 0.0096 0.2662

Table 5 — Method Benchmarking
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