
CONVEX PROGRAMMING-BASED OPTIMAL THREE-DIMENSIONAL MID-COURSE GUIDANCE WITH LOSSLESS 
CONVEXIFICATION 

1 

 

 

 

CONVEX PROGRAMMING-BASED OPTIMAL THREE-DIMENSIONAL 
MID-COURSE GUIDANCE WITH LOSSLESS CONVEXIFICATION 

Cheol-Goo Jung1, Chang-Hun Lee2 & Min-Jea Tahk3
 

1,2,3Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea 

 
Abstract 

The problem of optimal mid-course guidance of boost-glide missiles is studied. The final velocity is maximized 

with sequential second-order cone programming (SOCP). First, the missile flight phase is divided into boost 

and glide phases. Since the flight time of the glide phase is not fixed, this phase is reformulated using a new 

independent variable and the original problem is converted to a fixed final time problem. Then, dynamics is 

converted to input-affine form and partially linearized. To reduce an oscillation of input profiles, lossless 

convexification is performed to input terms consisting of a total angle-of-attack and bank angle. And the 

modified trust-region method is applied for robust convergence of solution with a roughly guessed initial 

trajectory. 

Keywords: convex programming, lossless convexification, modified trust-region method 

 

1. Introduction 
Guidance law is one of the crucial parts of the missile GNC (Guidance, Navigation, and Control) 

loop. Guidance law determines the overall performance of the missile and a well-designed guidance 

law ensures that missiles accomplish the objective of the mission. Homing guidance or short-range 

missile guidance assumes that the current state of the missile is close to the collision course. Then, 

missile velocity change and aerodynamic forces are neglected. With these assumptions, dynamics 

are linearized around the collision triangle and linear optimal control theory is applied to derive a 

closed-form guidance law. This simple and effective method is used in deriving many guidance 

laws[1-4]. However, these assumptions are not reasonable for the mid-course guidance of medium- 

and long-range missiles. Velocity significantly changes in the mid-course phase because of thrust 

and aerodynamic drag. This time-varying velocity results in highly nonlinear dynamics. The 

linearization cannot reflect the original dynamics in guidance law and performance becomes 

degraded. Also, the assumption of collision course proximity cannot be used because deviation from 

the collision course can happen to maximize the ultimate objective. For example, a missile 

intentionally surges to a high altitude or low-density region to minimize the velocity loss. Because of 

these reasons, the previously mentioned guidance law cannot be applied to mid-course guidance 

even though they show good performance in a short-range scenario. As a result, a new methodology 

of deriving the guidance law is needed to satisfy many realistic constraints and nonlinear dynamics 

of medium- or long-range missiles. 

To solve the obstacles to existing guidance, studies of trajectory optimization-based guidance are 

being attempted. The original optimal control problem is transcribed to the parameter optimization 

problem. This optimization problem is solved by the optimization algorithm such as interior-point 

optimizer (IPOPT) [5] or sparse nonlinear optimizer (SNOPT) [6]. And the obtained solution is used 

as a guidance law. This methodology can directly reflect the nonlinear dynamics and many realistic 

constraints. Because this methodology is an open-loop, the optimization solution should be obtained 

iteratively to compensate for the model uncertainty and disturbances. However, many nonlinear 

programming (NLP) algorithms are time-consuming to find a solution. Unpredictable computational 

time and lack of assured convergence are the main challenges in the application of optimization-

based guidance in real-time [7]. The optimization solution should be rapidly obtained to be 
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implemented in aerospace applications that generally have fast dynamics.  

Convex programming is an appropriate alternative for solving computational time and convergence 

problems. Since convex programming problem has polynomial complexity, calculation time is 

predictable and bounded. Convex programming was applied to many aerospace applications such 

as landing problems [8,9], planetary entry [10], multiagent path planning [11], reentry of a rocket [12], 

missile trajectory optimization [13,14], and so on. this paper studies the convex programming-based 

optimal mid-course guidance of boost-glide missiles. Three-dimensional nonlinear missile dynamics 

are completely considered in problem formulation including thrust and aerodynamic forces. Control 

inputs are the total angle-of-attack and bank angle. First, the missile flight phase is divided into boost 

and glide phases. Thrust is only active in the boost phase and the thrust profile is fixed. Dynamics 

are converted to input-affine form and partially linearized. Then, lossless convexification is performed 

to input terms consisting of total angle-of-attack and bank angle. Input-affine form dynamics are 

partially linearized around the solution of the previous step except for the input term since the input 

term is already convexified. These dynamics are discretized with a pseudo-spectral method and the 

final velocity is maximized with second-order cone programming (SOCP).  

The main contributions of this paper are two things. One is that the proposed convexification method 
speeds up the convergence rate with a minimal approximation. The main cause of slow convergence 
is the sequential linearization of dynamics. Because the SOCP algorithm can only solve a linear 
equality constraint, linearization of dynamics is inevitable. However, rapid convergence can be 
accomplished if the dynamics are partially linearized with the help of input affine form and input 
convexification. Secondly, the robustness of convergence is enhanced by a modified trust-region 
method. Auxiliary variables are used as a bound of trust-region and augmented to the original 
performance index. Numerical simulation shows that the proposed method can rapidly and robustly 
find the solution despite a roughly guessed initial trajectory compared to the constant trust-region 
method. 

The remainder of the paper is organized as follows. In Section 2, a mathematical model of the missile 
is provided and the optimal control problem is formulated. The optimal control problem is reformulated 
into a convex programming problem in Section 3. Section 4 presents numerical simulation results, 
and conclusions are given in Section 5. 

2. Problem Formulation 

2.1 Missile Dynamic Model 

Before providing missile dynamics, three assumptions are given. First, the control input immediately 
follows the command with an infinitely large bandwidth. Generally, the rotational dynamics of missiles 
is faster than translational dynamics. Since this paper aims to develop guidance law, attitude 
dynamics of total angle-of-attack and bank angle are neglected. Secondly, the missile is guided to the 
predicted impact point (PIP). With the help of station radar and data links, missiles can acquire the 
states of a target during the mid-course phase and calculate the PIP. Target can be treated as a fixed 
PIP point. Figure 1 presents a missile model in an inertial coordinate frame over the flat Earth. x , y , 

and h  are downrange, crossrange, and altitude, respectively. V is the velocity of the missile,   is a 

flight-path angle, and   is a heading angle. Input variables   and   are total angle-of-attack and 

bank angle. D  and L  are aerodynamic drag and lift. Finally, m  and T  are mass of the missile and 

thrust that is aligned with body longitudinal axis of the missile body. 

 

Figure 1 – Missile dynamic model. 
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Referring to the definition of variables, three-dimensional missile dynamics is as follows: 

cos sinx V  =  (1a) 

cos sinVy  =  (1b) 

sinh V =  (1c) 

cos
sin

T D
V g

m




−
= −  (1d) 

( sin )cos cosT L g
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Aerodynamic drag D  and lift L  are modeled using typical drag polar as (2-3). 0DC  is the zero-lift drag 

coefficient, K  is induced drag and LC   is lift slope. refS  is reference area, and q  is dynamic pressure. 

Air density is approximated with an exponential function of altitude as (6). 

2

0( )ref D LD qS C KC= +  (2) 
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L LC C =  (4) 
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Thrust is turned on in the boost phase with predetermined burn time and turned off in the glide phase. 
The thrust profile and mass of the missile are modeled as (7-8).  

0
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where m  is fuel consumption rate, burnt  is burn time of thrust, and ft  is terminal time. 

2.2 Constraints and Performance Index 

In this subsection, constraints and performance index are provided. Since an excessive total angle-

of-attack may cause the missile to stall or become unstable, the total angle-of-attack is bounded by 

the maximum value during the flight time. Furthermore, the total angle-of-attack is defined as a 

positive sign. This constraint is presented as 

max0     (9) 

To nullify the miss distance, the terminal constraint of position(PIP) should be imposed. 

( ) , ( ) , ( )f f f f f fx t x y t y h t h= = =  (10) 
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Furthermore, a specific impact angle(flight-path angle and heading angle) is required to increase the 
effectiveness of the warhead and mitigate the ground clutter effect. 

( ) , ( )f f f ft t   = =  (11) 

For sufficient maneuverability in homing phase, terminal velocity is maximized. The performance 
index is set as 

( )fJ V t=−  (12) 

Now, missile dynamics, constraints, and performance index yield the optimal control problem: 

Problem A :  

minimize   ( )fV t−   

subject to   (1), (9), (10-11)  

Problem A has highly nonlinear dynamics and input constraints. With suitable reformulation, this 
optimal control problem can be handled with parameter optimization such as convex programming. 
In parameter optimization, original continuous-time domain dynamics is discretized and solved by the 
optimization algorithm. The detailed procedure is explained in the next section. 

3. Problem Reformulation into Convex Programming Form 

3.1 New Independent Variable 

In this section, Problem A is reformulated into a suitable form that can be solved by convex 

programming. Firstly, missile dynamics is reformulated using a change of independent variable. 

Dynamics (1) can be separated into two phases: boost and glide phase. The time interval of the 

boost phase is defined and that of the glide phase is not. For the discretization of dynamics, the 

independent variable must be monotonically increasing(or decreasing) and have a fixed boundary. 

However, the terminal time of the glide phase is not fixed. To address this problem, a new 

independent variable  [0,1]  and time scale variable ( )f burnt t = −  is introduced. The time t  of the 

glide phase is parameterized with   and   as 

burnt t = + , (0 1) 
 (13) 

and the independent variable of the boost phase is still the same. The relationship between t  and   

is graphically presented in Figure 2. It may seem unnatural to use a differently scaled independent 
variable for each phase. However, separated dynamics can be handled using a linkage condition 
between two phases. The utility of this method becomes clear in the following subsections. 

 

 

Figure 2 – Relationship between time and new independent variable. 

 

Now, reformulated dynamics for the glide phase can be derived using the differential relationship 

between t  and  , i.e. -dt d = , as follows:  
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Original missile dynamics is separated into two dynamics, (1) for the boost phase and (14) for the 
glide phase. The original free terminal time problem can be converted to an equivalent fixed terminal 

time problem using (14) with an additional optimization variable  . The terminal condition and 

performance index are reformulated using   as 

( 1) , ( 1) , ( 1)f f fx x y y h h  = = = = = =  (15) 

( 1) , ( 1)f f     = = = =
 (16) 

( 1)J V = − =
 (17) 

3.2 Partial Linearization 

Second-order cone programming can only solve the specific form of problems: 1) performance index 

of a linear function, 2) linear equality constraints, and 3) second-order cone inequality constraints. 

Since missile dynamics correspond to equality constraints, linearization of nonlinear dynamics is 

necessary. Before performing linearization, the dynamics is converted to input-affine form. To factor 

out input variable from dynamics, total angle-of-attack terms are approximated with second-order 

Tayler series as 

2sin , cos 1 0.5     −
 (18) 

This approximation is reasonable since the missile generally uses a small total angle-of-attack during 
the mid-course phase to reduce induced drag and conserve energy. Furthermore, the total angle-of-
attack is bounded by the maximum value from (9). Then, input terms are replaced by  

1 cosu  =  (19) 

2 sinu  =  (20) 

2

3u =
 (21) 

Since these new input variables 
1u ,

2u , and 
3u  are not independent, the following constraint should 

be added 

2 2

1 2 3u u u+ =
 (22) 
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Then, nonlinear dynamics (1) and (14) are converted into the following input-affine form: 

( ) ( ) ,
d

dt
= +

z
f z b z u  ( 0, burnt t   (23a) 

( )( ) ( ) ,
d

d

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= +
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f z b z u  ( 0,1   (23b) 
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(23a) and (23b) are partially linearized along k
z  and k  which are the optimal solution at k th iteration.  

( ) ( ) ( ),k k kd

dt
= + +

z
a z z b z u c z  ( 0, burnt t  (24a) 

( ) ( ) ( ) ( , ),k k k k k k kd
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   
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
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(24) shows that linearization is not performed in the input term ( )b z u  and ( )b z u . This method can 

reduce the oscillating profile of the input solution and results in fast convergence[15]. To confine the 

change of states k
z  at each iteration, a trust-region constraint is imposed. 

k− z z δ
 (25) 

where δ  defines the radius of the trust-region of each component of states. 

3.3 Lossless Convexification 

Even though the nonlinear missile dynamics is linearized, the admissible input set is not convex 
because of constraint (22). From (9) and (22), the admissible input set is presented as follows 

 2 2 2

1 2 3 1 2 3 3 max( , , ) ,0u u u u u u u  = + =    (26) 

Figure 3a graphically shows the admissible input set of 
1u ,

2u  and 
3u . This nonconvex admissible 

input set can be easily convexified using convex relaxation[7] as 

 2 2 2

1 2 3 1 2 3 3 max( , , ) ,0u u u u u u u  =  = +   conv  (27) 

where conv  denotes the convex hull. Convex hall of S  is defined by the smallest convex set 

including S . 
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a) Nonconvex admissible set 
 

b) Convexified admissible set 

Figure 3 – Nonconvex and convexified admissible input sets. 

 

Now, Problem B is presented as 

Problem B :  

minimize   ( 1)V − =   

subject to   (15-16), (24), (25), (27)  

Solution space for Problem B widens by applying convex relaxation (27). However, it can be proved 
that the optimal solution to Problem B always satisfies equality (26), which means lossless 
convexification. This fact can be shown using optimal control theory. Moreover, it can be intuitively 

explained. The third column of ( )b z  in (23) multiplied by 3u  influences the velocity rate. Because the 

sign of this term is negative, it is obvious that 3u  should be minimized at all times to maximize the 

terminal velocity. 

3.4 Discretization and Modified Trust-Region Method 

The continuous-time domain Problem B is discretized to a finite-dimensional parameter optimization 
problem. Linear dynamics of (24) is transcribed using the pseudo-spectral method. The pseudo-
spectral method is one of the discretization methods such as the trapezoidal and Hermite-Simpson 
methods. The characteristic of this method is that states and inputs are approximated with a global 
interpolation function using orthogonal collocation points. In this paper, Legendre-Gauss-Radau (LGR) 
collocation points are used as nodes. A detailed description of the pseudo-spectral method can be 
found in many papers[16-19]. In this paper, only the result is presented. 

1, 1 1 1, 1, 1, 1, 1,( ) ( ) ( ) ,k k k

i i i i i ik   = + + D Z a z z b z u c z 10,1,...,i N=  (28a) 

2, 1 2 2, 2, 2, 2, 2, 2,( ) ( ) ( ) ( , ) ,k k k k k k k

i i i i i i ik      = + + + D Z a z z b z u f z d z 20,1,...,i N=  (28b) 

where  ,0 ,1 , ,
j

T
T T T

j j j j N
 = 
 

Z z z z  ,0 ,1 , ,
j

T
T T T

j j j j N
 = 
 

U u u u 1 ,
2

bunrt
k = 2

1

2
k =  
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In (28), 1 and 2 denote the boost and glide phases, respectively. 
iN  is the number of collocation points. 

,j iZ  and 
,j iU  denotes the state and input values of j the node. 

,j iD  is a differentiation matrix that can 

be derived using Lagrange polynomial and collocation points[16].   

(28) only provides the state/input relationship within each phase. For connecting two phases, linkage 
conditions are added. This condition connects the terminal value of the boost phase and the initial 
value of the glide phase. 

 
11, 2,0N =z z

 (29) 

The size of the trust-region (25) should be properly selected. Otherwise, the problem becomes 
infeasible or the solution diverges with a roughly estimated initial trajectory. To alleviate this difficulty, 
the constant trust-region is replaced by following quadratic trust-region constraint using an auxiliary 
variable 

,j is  

, , , , , ,
T

k k

j i j i j i j i j is   − −    z z z z  1,2 0,1,..., jj and i N= =  (30) 

The total sum of 
,j is  is multiplied by 

tw  and augmented to the original performance index. 

2

,

1 0

( 1)
jN

t j i

j i

J V w s
= =

= − = +   (29) 

tw  should be selected as a sufficiently small value not to disturb the original objective of maximizing 

terminal velocity. This modified trust-region method prevents the problem from being infeasible. 
Furthermore, proper 

tw  can be easily found after a little trial and error. Finally, a second-order cone 

programming problem is presented. 

Problem C :  

minimize 
2

,

1 0

( 1)
jN

t j i

j i

J V w s
= =

= − = +    

subject to   (15-16), (27), (28), (30)  

An optimal solution can be obtained by sequentially solving Problem C until the convergence condition 
is satisfied. A sequential convex programming algorithm is consists of the following steps: 

 

Step 1) Initial guess: Initial guess of states 0

,j iZ  at every node and time scale variable 0  are selected. 

And set 1k = . 

Step 2) Solving convex programming problem: For 1k  , a new optimal solution  , ,k k kz u  is 

obtained by solving Problem C using the previous solution  1 1 1, ,k k k− − −
z u . 

 

Step 3) Terminal condition: If the following convergence condition is satisfied,  

1

, ,
,

max k k

j i j i
i j

−− z z ε   

finish the iteration and the optimal solution is  , ,k k kz u . Otherwise, go to step2. ε  can be selected 

as an appropriate small value.  
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States and time scale variable should be initialized to start the sequential convex programming. Here 
we use a simple way to select the initial values. A line connecting the initial and terminal position is 
selected as an initial trajectory of 

0x ,
0y , and 

0h . Initial velocity 
0V , flight-path angle 

0  , and heading 

angle 
0  are set as 

02V , zero, and arctan( /f fy x ) at every node, respectively. The time scale variable 

0  is initialized with 
0/ (2 )l V , where l  is the length of the line connecting the initial and terminal position.  

4. Numerical Simulation 

In this section, the proposed method is applied to the mid-course guidance of the boost-glide missile. 
Used parameters are summarized in Table 1. 

 
Table 1 – Simulation parameters 

 

Parameter Value 

Thrust, 0T  8 kN 

Fuel consumption rate, m  3.5 kg/s 

Burn time, burnt  10 sec 

Maximum angle-of-attack, max  15° 

Weight of performance index, trustw  0.025 

Number of nodes, 1 2,N N  20 

Convergence condition parameter, ε  [30m, 30m, 30m, 3m/s, 0.5°, 0.5°] 

 

To verify the validity of the proposed method, three different engagement scenarios are considered. 
The initial and terminal conditions of each scenario are shown in Table 2. Firstly, the convergence 
characteristics of the proposed method are discussed. Figure 4 shows the convergence process of 
the first scenario. Even though the states and time scale variables are roughly initialized, the solution 
rapidly converges to a steady value with 6 iterations. It only takes 0.13 ~ 0.15 sec to solve the Problem 
C at each iteration with Intel Core i5-12500 at 3.00 GHz. Even though the optimality of the converged 
solution cannot be proved in sequential convex programming, we can intuitively verify the optimality 
by graphically observing the convergence process. Figure 4a presents the flight trajectory at each 
iteration. After a large movement at the first iteration, the trajectory gradually converges to a specific 
profile. Figure 4d shows the maximum change of state out of all node points. Change of every state 
converges to zero which means states do not need to vary any longer for minimizing the performance 
index. As a result, the augmented term of (29) becomes a negligibly small value compared to the 
original performance index of terminal velocity. Furthermore, Figures 4b and 4c show the stable 
convergence of the performance index and time scale variable. And Figure 5 visually shows the 
lossless convexification: inequality constraint of (27) is active for all node points. 

 
Table 2 – Initial and terminal conditions 

 

Scenario 

Initial conditions 

( 0 0 0 0 0 0, , , , ,x y h V   ), 

(km, km, km, m/s, °, °) 

Terminal conditions 

( , , , , ,f f f f f fx y h V   ), 

(km, km, km, m/s, °, °) 

1 (0, 0, 5, 350, 0, 0) (40, 5, 5, free, -10, free) 

2 (0, 0, 5, 350, 0, 0) (45, 7, 5, free, -10, free) 

3 (0, 0, 5, 350, 0, 0) (50, 9, 5, free, -10, free) 



CONVEX PROGRAMMING-BASED OPTIMAL THREE-DIMENSIONAL MID-COURSE GUIDANCE WITH LOSSLESS 
CONVEXIFICATION 

10 

 

 

 

(a) Flight trajectory 

 

(b) Performance index 

 

(c) Time scale variable 

 

(d) Change of states 

Figure 4 – Convergence of the proposed method. 

 

Figure 5 – Lossless convexification. 

 

The converged trajectories of each scenario are plotted in Figure 6 and the red circle denotes the 
launch point. This figure shows a smooth flight trajectory for all scenarios, and the missile impacts the 
targeted terminal positions. It can be seen that the longer the range, the higher the altitude. Figure 7 
presents the missile velocity which shows a similar profile during the boost phase. However, scenario 
3 shows the smallest velocity during the glide time to reach the highest altitude and the longest range 
except for the terminal phase. Figures 8 and 9 show the flight-path angle and heding angle. These 
figures indicate that the specified terminal flight-path angle is satisfied for all scenarios. And heading 
angle shows the high change rate at the beginning and gradually converges to the terminal heading 
angle which is not specified. Finally, Figures 10 and 11 present the total angle-of-attack and bank 
angle, which show the smooth control input profiles. The original input value can be obtained by 
inversely solving (19-21) for the total angle-of-attack and bank angle after the solution converges. The 
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missile uses a small total angle-of-attack less than 7 deg during its entire flight. The bank angle rapidly 
changes after the boost phase. Then, it decreases after reaching the peak and asymptotically 
converges to zero. 

 

 

Figure 6 – Three-dimensional flight trajectories. 

 

Figure 7 – Velocity profiles. 

 

Figure 8 – Flight-path angle profiles. 

 

Figure 9 – Heading angle profiles. 

 

Figure 10 – Total angle-of-attack profiles. 

 

Figure 11 – Bank angle profiles. 
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Finally, an additional simulation is performed with the same initial and terminal condition as Table 2 
except for the terminal constraint of a heading angle of 20°. Figure 13 shows the heading angle profile. 
A terminal heading angle of 20° is satisfied for all scenarios. Figure 14 and 15 present a similar total 
angle-of-attack profile to Figure 10. However, the bank angle is larger than Figure 11 and does not 
converge to zero to satisfy the terminal heading angle constraint. This result indicates that more input 
is needed to satisfy more constraints. 

 

 

Figure 12 – Total angle-of-attack profiles with 
terminal heading angle. 

 

Figure 13 – Flight-path angle with terminal 
heading angle. 

  

Figure 14 – Total angle-of-attack profiles with 
terminal heading angle. 

 

Figure 15 – Bank angle profiles with terminal 
heading angle. 

 

5. Conclusion 

This paper presents a convex programming-based method to solve the mid-course guidance problem 
of the boost-glide missile. The original nonlinear optimal control problem is reformulated using a new 
independent variable and time scale variable. Then, this reformulated problem is converted to a 
sequential convex programming problem with the help of lossless convexification. To ensure robust 
and fast convergence even under roughly given initial trajectories, a modified trust-region method is 
proposed. The proposed method effectively solves the guidance problem without infeasibility and slow 
convergence problems. Numerical simulation applied to the mid-course guidance problem of various 
scenarios provides obvious effectiveness of the proposed method. 
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