33RD CONGRESS
OF THE INTERNATIONAL COUNCIL

OF THE AERONAUTICAL SCIENCES

HIGH-ORDER ACCURATE EMBEDDED-BOUNDARY DISCONTINUOUS
GALERKIN METHODS FOR INVISCID GAS DYNAMICS

Vincenzo Gulizzi!-?

IDepartment of Engineering, Universita degli Studi di Palermo, Palermo, 90128, ltaly
2Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

Abstract

This work presents a computational framework for solving the equations of inviscid gas dynamics over em-
bedded geometries based on the discontinuous Galerkin (DG) method. The novelty of the framework is the
ability to achieve high-order accuracy in the regions of smooth flow and to handle the presence of solution
discontinuities via suitably-introduced damping terms, which allow controlling spurious oscillations that are typ-
ical of high-order methods for first-order hyperbolic PDEs. The framework employs block-structured Cartesian
grids where a level set function defines implicitly the considered geometry. The domain is partitioned by in-
tersecting the grid and the level set function, such that the resulting mesh consists of a collection of standard
d-dimensional rectangular cells and a relatively smaller number of irregular cut cells in proximity of the bound-
ary of the embedded geometry, with a simple cell merging strategy handling the presence of overly small cut
cells. The DG formulation is used to discretize the governing equations in space and to introduce the damping
terms. Runge-Kutta algorithms are then employed to integrate the resulting semi-discrete equations in time.
Numerical tests are presented to show the high-order accuracy and the shock-capturing capabilities of the
proposed approach.
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1. Introduction

In computational sciences, embedded-boundary (EB) methods, which include cut-cell, immersed-
boundary and fictitious-domain methods, denote a class of numerical techniques where the domain of
analysis is represented as a separate entity in a background grid, and the boundaries and interfaces
of one or multiple considered phases do not need to conform to the boundaries of the grid’s cells.
With respect to alternative domain-partition strategies, such as unstructured body-fitted meshes, EB
methods allow simpler approaches to mesh generation, data storage and adaptive mesh refinement,
and benefit from the high regularity of the mesh elements in most of the domain [1]. Nevertheless, to
resolve the boundaries and interfaces of the embedded geometries, special treatments are required,
especially when high-order accuracy is desired.

In general, EB methods may be designed following two different approaches, namely diffused-interface
methods, see e.g. [2, 3], and sharp-interface methods, see e.g. [4, 5, 6, [7]. In diffused-interface
methods, the transition between the different phases is assumed to occur smoothly through a finite-
thickness region; these methods allow the use of purely Cartesian meshes but typically require a
highly refined mesh in the transition region. On the other hand, in sharp-interface methods, the em-
bedded boundaries and interfaces are represented in sharp sense as lower-dimensional curves (in
2D) or surfaces (in 3D); these methods allow retaining the information of the geometry but introduce
the so-called small cells, i.e. those cells that are cut by the embedded geometry and have overly
small volume fractions. To remedy the small-cell problem, several techniques have been proposed
in the literature, such as the cell-merging strategy [8, 9], the flux-redistribution method [10] and the
state-redistribution method [11], among others. These methods have been successfully employed in
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combination with Finite Volume (FV) schemes, which are generally second-order accurate in space.
However, if higher order accuracy is desired, their development become more convoluted.

As an alternative to FV schemes, discontinuous Galerkin (DG) methods [12] have proved to be pow-
erful and versatile techniques, that offer high-order accuracy with compact stencil and generally-
shaped mesh elements, block-structured mass matrices, and a natural way to handle hp adaptive
mesh refinement, which are highly desirable features in high-performance computing applications.
In the context of compressible flow, various DG approaches have successfully been proposed in the
literature, typically in combination with the cell-merging strategy, see for example [4} 13} 14}, [15, [7].
However, in these studies, one of the long-standing problem is the treatment of spurious oscillations
of the DG solution in the presence of discontinuities, which may lead to numerical instabilities and
blowup. In this work, following the approach proposed in Refs.[17, 18] for oscillation-free DG methods
defined over triangular meshes, a novel oscillation-free DG formulation for inviscid gas dynamics over
embedded geometries is presented.

The paper is organized as follows: Sec.(d. introduces the governing equations that are considered
to model inviscid gas dynamics problems; Sec.(3. describes the geometry representation and mesh
generation strategy; Sec.(9. presents the proposed oscillation-free embedded-boundary DG formu-
lation; Sec.(®. describes the results of the performed numerical tests on two sets of tests aimed at
verifying the high-order accuracy as well as the shock-capturing capabilities of the proposed formu-
lation; Sec.(®. concludes the paper.

2. Governing equations

We consider a domain 2 C R? and a time interval .7 = [0,T], where d is the spatial dimension and T
is the final time of the analysis. We also consider a hyperbolic set of first-order conservation laws of
the form

U JF;

—+—=—=0, for(t T 1

8t+8xk , for(t,x)e I x 7, (1)
where r denotes the time, x; denotes the k-th component of the d-dimensional space location vector
x = (x1,...,x4), U is the Ny-dimensional vector of the conserved variables, F; = F;(U) is the Ny-

dimensional vector of the fluxes along the & direction, and Ny denotes the number of conserved
variables. In Eq.(T) and in the remainder of this paper, the subscript k takes value in {1,...,d} and
implies summation when repeated.

To model inviscid gas dynamics in R¢, the number of conserved variables is Ny =d +2, and U and

F;, are defined as follows
p PVi
U=| pv and F,=| pwv+pd |, (2)
pE (PE +p)vi

where p is the density, v = (vy,...,v4)T is the vector of the velocity components, p is the pressure and
E is the total energy. The governing equations are closed upon considering an ideal gas characterized
by the ratio y of specific heats such that

p=(r-1) (PE - ;kaVk) : (3)

3. Geometry representation and mesh generation

The governing equations given in are solved over a mesh of the domain Z. In this work, the
implicitly-defined mesh technique [5, 6, [7, [16] is employed; its main steps are as follows:

(i) The domain 2 is enclosed within a background rectangle %, where it is implicitly defined by a
level set function ¢ : Z - Ras Z={xc Z: ¢(x) <0};

(i) The rectangle is partitioned via an easy-to-generate background grid G" = |J; €%, where h de-
notes a characteristic mesh size of the grid and € is a generic d-dimensional rectangular cell
whose location inside the grid is identified the d-tuple i = (iy,...,is);
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(iii) The cells are characterized by their volume fraction and those cells having an overly small vol-
ume fraction are suitably merged with their neighbors according to the procedure described in
Refs.[7, [16];

(iv) The mesh elements are eventually obtained by intersecting the merged and non-merged cells
with the domain 2.

The resulting mesh of the domain is denoted by 2" =) 2¢, where 2¢ is a generic mesh element. The
meshing procedure is illustrated in Fig.(T): Fig.(Tr) shows a two-dimensional domain embedded in a
4x4 background grid where Z = {x € 0% : ¢(x) <0} and ¥ = {x € Z : p(x) = 0}; Fig.(Tp) shows
the corresponding classification of the grid’s cells based on their volume fraction; Fig.(fk) shows the
resulting mesh and highlights a generic e-th element 2¢ along with the associated outer boundary
28¢, outer unit normal n° = (n5,...,n%) and the internal boundary .7 that the element shares with
its neighbor 2¢. The interested reader is referred to Refs.[5, 6, 7, [16] for a detailed description of the
present meshing technique.

Oz [ [] Entire

336
Z — 0% [ Large
LN ] S — B smal _____’___,____.ﬁ/L’ /

\ O Empty gef - D¢ _-ﬁ, e

/7

B 7 I
ye,e“
(a) (b) (c)

Figure 1 — (a) Sample two-dimensional domain 2 embedded in a 4 x4 background grid. (b) Cell
classification based on their volume fraction. (c) Resulting implicitly-defined mesh.

4. Discontinuous Galerkin formulation

Once the mesh 2" is introduced, the governing equations (1) are numerically solved over 2" by using
the Runge-Kutta (RK) discontinuous Galerkin approach developed by Cockburn and coworkers, see
e.g. [12], whereby the DG method is utilized to discretize the spatial derivatives and the RK method
is subsequently employed to advance the resulting semi-discrete equations in time.

In particular, let V" be the space of discontinuous polynomial basis functions defined over 2" as

VE={v: 9" SR | v|ge € PH(P°), Ye=1,....N,}, (4)

where PI’; denotes the space of tensor-product polynomials of degree at most p defined for the ele-
ment 2¢. Accordingly, the space of discontinuous N-dimensional polynomial vector fields is defined
as V"N = (V)N. Then, the DG formulation associated with the considered set of governing equations
is derived from multiplying Eq. by the test functions V € Vv integrating over a generic element
2°¢ and performing integration by parts, to obtain:

aU* aVT

\7a dv =
e ot g¢ Ox

F¢dv— | VTE,dS, vV evi, (5)
d7¢

In Eq.(5), U* denotes the approximation of the vector U of conserved variables over 2¢, F¢ denotes
the fluxes evaluated using U*, i.e. F¢ = F;(U¢), and ﬁn denotes the so-called numerical flux, which
is a function of U¢ and the boundary conditions at %<, or a function of U¢ and U¢ at .#< . It is worth
noting that F, is the only terms responsible for linking neighboring mesh elements.

It is well known that Eq.(5) allows obtaining a high-order solution of the governing equations when the
solution is smooth but leads to spurious oscillations in presence of discontinuities. As a consequence,
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Eq.(B) may not be straightforwardly employed for modelling certain classes of non-linear first-order
hyperbolic PDEs, such as those of inviscid gas dynamics, which may develop discontinuities even for
smooth initial and boundary conditions. Here, following the approach recently proposed in Refs.[17,
18] for triangular meshes, the weak form given in Eq.(5) is suitably modified to read

VTaUe aVT

dv = Ffdv— | VTE,dS— Z Gq/ V(U -P!_ | (U%))dV, VYV V"™ (6)
e ot 9e an k e ) h Jge q-1 ’ ’

where P4(U) is defined using the standard L, projection of a vector function U such that

V(U -PiU))dV =0, VYV €PHP), (7)
@e

and P" [ (U)=P}(U). In Eq.@), the terms o, are damping factors, which are defined here as follows

1/2
2(2q+1) e /
0. = ————>—max (02C—9>C)%ds | . 8
a 2p—1 q! s (],ﬂelaz’qe J e ? (®)

In Eq., |.7¢| denotes the measure of the internal boundaries of the e-th elements, i.e. #¢=J, .7,
lal =0 +---+ oy, d%e is defined as
ot
)% = _ 9%e (9)

T 0%xy...0%x,’
and d2C is the derivative of the vector of the characteristic variables obtained as
9*C=R"'9°U, (10)
where is the matrix of the characteristic decomposition
mF(U)= RAR™! (11)

and U is the Roe average at the element interface. The expression given in Eq. is introduced such
that the terms o, are small in regions of smooth flow and large in proximity of the discontinuity.
Upon letting V' range over the test functions and expressing U* in terms of polynomial basis func-
tions multiplied by time-dependent coefficients, i.e. U¢(t,x) = B¢(x)X*(¢), it is possible to obtain the
following semi-discrete form

MX¢ = A(r,X°), (12)

where A(r,X¢) stems from the evaluation of the right-hand side of either Eq. or Eq.@ and M€ is
the mass matrix of the element e.

Eventually, Eq.(12) is integrated in time using time-explicit Runge-Kutta algorithms, whose order
match the order of the spatial discretization. Time-explicit integration schemes are conditionally sta-
ble and, as such, are subjected to the CFL condition [12]. Due to the presence of the damping terms
ogin Eq.@, the time-step restriction to be used in combination with the Runge-Kutta algorithms de-
pends on whether Eq.(12) is derived from Eq.(5) or Eq.(€). In particular, if Eq.(12) stems from Eq.(5),
the CFL condition reads

T f
h<ChTapn (13)

whereas if Eq.(12) stems from Eq.(6), the CFL condition is

T f

U e) (4)
In Egs.(13) and (14), = denotes the maximum time step, 1 is the volume fraction threshold that triggers
the cell merging, see [7,[16], C is a constant smaller than 1 that does not depend on the mesh size
h or the order p of the basis functions, o = max,, oy, and A is the maximum wave speed on Z; in
inviscid gas dynamics, A4 is A = maxg(y/vivk +a), Where /vy is the velocity magnitude and « is the
speed of sound.
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5. Results

Results are presented for two sets of tests, namely the supersonic vortex problem, see e.g. [19], and
the embedded Sod’s shock tube, see e.g. [7]. The former is a classic test in inviscid gas dynamics
that is characterized by an analytical smooth solution and thus allows testing the high-order accuracy
of numerical schemes. The latter reproduces a well-known mono-dimensional analytical solution
of Eq.(1) characterized by a shock, a contact discontinuity and a rarefaction wave, in an inclined
channel embedded in Cartesian grid, and thus allows testing the shock-capturing capabilities of the
formulation for embedded geometries. In the remainder of this section, y= 1.4 and all quantities are
assumed non-dimensional.
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Figure 2 — (a) Geometry and boundary conditions of the supersonic vortex problem. (b) Error
distribution obtained with a 16 x16 background grid and a DG scheme with p = 3. (c)
hp-convergence in the L., norm of the density error.

Inflow

The geometry and the boundary conditions of the supersonic vortex problem are sketched in Fig.(2a),
where r; = 1 and r, = 1.384, and the geometry is embedded in a background square Z = [0,1.43]%.
The problem consists of an isentropic flow in the annular region and its exact solution is described by
the fields

2

_1
eX — . ’}/—1 2 _riz' ! ex — —sin6 X __ (HEX\Y
b _pl[1+2M,~ (1 2>] . v _(msG)vG and p==(p%)/y, (1)

where vg = a;M;ri/r, > =x3 +x3,and p; = 1, a; = 1 and M; = 2.25.

This problem setup does not lead to discontinuities; therefore, Eq.(5) may be used. The domain is
meshed according to the procedure described in Sec.(3. using a n x n background grid such that the
characteristic mesh size is defined as 4 = 1.43/n. The exact solution is used as initial conditions for
the discrete problem, which is evolved in time up to T = 5. The computed solution is the compared
with the exact solution given in Eq.(15) and the following error measure is introduced

10" = Pl

: (16)
o leo

er.(p",p™) =

where ||-||.. is the L.. norm defined over 2" (by considering the maximum value among the quadrature
points) and p” denotes the density field computed using the present DG formulation. Figure )
shows the error in the density field when a 16 x16 background grid and a DG scheme with p =3 are
employed. By changing the polynomial order and the grid resolution, one obtains the ap-convergence
plot reported in Fig.(2c), which confirms the high-order accuracy of the scheme.

The geometry and the boundary conditions of the embedded Sod’s shock tube problem are sketched
in Fig.(3p), where 2r = 0.25, ¢ = (1/2,1/2) and the geometry is embedded in a background square
Z% = [0,1]%. The orientation of the geometry is determined by the angle 6, which allows introducing
the rotated coordinate system £7 whose unit vectors have components € = (cos8,sin8) and 7 =
(—sin@,cos0). This facilitates the definition of the geometry via the level set function ¢ = n? — r?

5
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Figure 3 — (a) Geometry and boundary conditions of the embedded shock Sod’s tube problem. (b)
Density and (c) pressure distribution for 6 = 30° at the final time ¢ = 0.2 computed using a 64 x64
background grid and a DG scheme with p = 2.

where & and n are the components of « in the rotated reference system. The initial conditions of the
embedded Sod’s shock tube problem are given by

. £ 1 0.125
Uoz{UL %f(xk—ck)éAkSO where Up = ( 0 ) and Upg = ( 0 ), (17)
Uk if (=)o > 0 1/(y=1) 0.1/(y—1)

and the solution is evolved until T =0.2.
In the rotated reference system, the solution of the considered problem is simply the solution of the
mono-dimensional Riemann problem [20] between the two adjacent states defined in the initial condi-
tions. More specifically, the analytical solution consists of a rarefaction wave, a contact discontinuity
and a shock wave propagating normal to the tube’s centerline. Figures (3p) and (3c) show the distri-
bution of the density and the pressure fields, respectively, computed at the final time T using using a
64 x64 background grid and a DG scheme with p = 2. A shown in the figure, the mono-dimensional
character of the solution and the related waves, including the shock, are well-captured by the present
formulation.
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Figure 4 — Distribution of (a) density and (b) pressure along the embedded tube as functions of the
employed DG scheme for 6 = 30°. (c) Distribution of the density along the embedded tube as a
function of the tube orientation computed using a DG scheme with p = 2.

The wave structure is clearer in Fig.(4), which displays the distribution of the density and the pressure
fields along the centerline of the tube. In particular, Figs.(dg) and (4p) show the comparison between
the exact solution and the computed values of the density field and pressure field, respectively, us-
ing different DG schemes; from the figures, it is possible to notice that, even though the damping
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terms introduce some expected dissipation, all the considered DG schemes are able to reproduce
the analytical solution with the DG3; scheme featuring the least amount of dissipation. Eventually,
Fig.(4R) shows the distribution of the density field as a function of the angle 6 and demonstrates the
robustness of the present formulation.

6. Conclusions

A novel formulation for solving the problem of inviscid gas-dynamics over embedded geometries has
been presented. The formulation is based on discontinuous Galerkin schemes, which enable a high-
order accurate solution of the governing equations in the regions of smooth flow, and on the use of
suitably-defined damping terms, which allow resolving the presence of solution discontinuities without
introducing non-physical oscillations that are typical of high-order methods for first-order hyperbolic
PDEs. The formulation is also high-order accurate in time as it employs high-order Runge Kutta time-
integration algorithms that match the order of the spatial discretization. Numerical tests have been
performed on two-dimensional embedded geometries and have confirmed the high-order accuracy
and the shock-capturing capabilities of the methodology. The proposed approach is currently being
tested in combination with adaptive mesh refinement strategies and for three-dimensional problems,
which will be presented in future studies.
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