
PILOT’S ATTENTION DISTRIBUTION MODELING USING HIDDEN
MARKOV MODELS

Jiri Hanak1, Jan Vlk1 & Peter Chudy1

1Faculty of Information Technology, Brno University of Technology, tel: +420541141476, fax: +420541141290

Abstract

The attention distribution over an instrument panel serves as a significant indicator of a pilot’s cognitive state.
Estimation of the attention itself can be performed based on pilot’s visual scanning patterns obtained through
an eye tracking device. Estimated attention distribution models contribute to the pilot behavior modeling and
may also serve the purpose of pilot skill classification. The presented work introduces a pilot study on flight
maneuvers classification from pilot gaze fixations, that was investigated on a Light Sport Aircraft flight simulator
SimStar, at the Faculty of Information Technology, Brno University of Technology on a focus group of certified
pilots.
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Nomenclature

ai j Transition probability from state i to state j
Ai j Absolute count of transitions from state i to state j
ei(b) Emission probability of output b while Hidden Markov Model is in state i
Ei(b) Absolute count of outputs b while Hidden Markov Model is in state i
M Number of observed outputs within Hidden Markov Model
N Number of hidden states within Hidden Markov Model
O Observed output
st Hidden Markov Model state in time t
α Forward variable in Forward-Backward algorithm
β Backward variable in Forward-Backward algorithm
δ Highest probability for given observed output sequence in Viterbi algorithm
λ Hidden Markov Model set of parameters
πi Probability that hidden state i is the initial state
ψ Pointer to state which reaches the highest probability in Viterbi algorithm
ξt Transition probability update in Baum-Welch algorithm
AI Attitude Indicator
ASI Airspeed Indicator
ALT Altimeter
DG Directional Gyro
HMM Hidden Markov Model
ILS Instrument Landing System
LSA Light Sport Aircraft
VSI Vertical Speed Indicator
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1. Introduction
Cognitive pilot models are usually validated through physiological observations such as gaze fixation
pattern collections captured by an eye tracking device. The actual gaze tracking is a process of
estimating the position of respective gaze fixations in space and mapping them onto elements of
the surrounding scene, providing data regarding the participant’s fixation locations, screen fixation
durations, and the scan path structure in response to a presented stimulus [1]. This information can
then be used to study respective task solution strategies and cognitive workload. Therefore, it is not
surprising that gaze tracking and its respective parameters have been extensively researched in the
military aviation domain in an effort to unobtrusively estimate pilot cognitive workload [2].
Building on the state-of-the-art research, this paper investigates pilot’s visual scanning sequences
of flight instruments under simulated maneuvering conditions, considering her/his piloting skills and
aeronautical knowledge. Common eye movement patterns can be interpreted as similar cognitive
strategies in performing a given flight task, moreover, hidden cognitive patterns of respective flight
tasks facilitate a plausible model that has a potential to explain the processes and phenomena of
Human-Machine Interaction (HMI) [3].

2. Hidden Markov Models
For the purpose of investigating the relation between respective flight maneuvers and associated
visual scanning patterns, a Hidden Markov Model (HMM) structure was proposed as the pilot’s at-
tention distribution representation. A Markov model is per definition a stochastic model describing
randomly changing systems with its current state depending only on the previous state [4]. The
state-of-the-art and the most frequent utilization of Markov models is in the area of pattern recog-
nition, i.e. computer science, chemistry, biology, speech or face recognition [5]. The HMMs, as an
extended form of Markov models, are composed of two mutually connected groups of states. The
hidden states, which are in the presented case the respective flight maneuvers and the observations,
which refer to the respective flight instrument the pilot is currently looking at. Hidden states are tied
together with a matrix of transition probabilities while the outputs are associated to the hidden states
through observation probabilities. Both, transition and observation probabilities are determined from
the data acquired during the simulated flight experiment.
As the main use case for the application of the HMM algorithm is the prediction of the pilot’s flight
maneuver from a sequence of visual scans of the instrument panel, the model structure (hidden
states and observations) were carefully selected during the process of pilot modeling to optimally
represent a human pilot behavior. The HMM structure and its content can differ with respect to the
pilot level of experience or the type of maneuver performed [3]. As stated above, a HMM represents
a stochastic model for the description of randomly changing systems. The states of a HMM are, in
contrast to Markov chains, by default not directly observable, and are estimated from the observed
outputs.
The dependency between the current and previous state can be expressed by the probability of
transition from state i to state j as shown in equation (1).

ai j = P(st = j|st−1 = i) (1)

As mentioned above, the current state of HMM can be determined based on a sequence of observed
outputs. From different point of view, the HMM produces observed outputs with a certain probability,
which depends on the current hidden state. This probability is known as an emission and it is defined
by equation (2), that expresses the probability of observing output b if the HMM is currently in the
state i.

ei(b) = P(Ot = b|st = i) (2)
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Figure 1 – General structure of a Hidden Markov Model.

Figure 1 shows a general HMM structure with two hidden states and six possible observed outputs.
The arrows between states A and B represent the transition probabilities described by equation
(1) and the arrows pointing from states to observed outputs represent the emission probabilities
described by equation (2).
The HMM’s structure is conveniently described using a matrix formulation, that forms the transition
probabilities into a square matrix N×N, where N represents the number of hidden states. Probability
that HMM generates specific output while it is in a certain state, i.e. the emission probability is
described by matrix N×M, where M represents the number of all possible outputs [6].

2.1 Forward Backward Algorithm
The observed output sequence probability calculation of HMM is solved by employing the Forward-
Backward Algorithm, which can be divided into forward and backward parts. For expressing the
algorithm’s forward part it is necessary to define a forward variable α describing the probability of
observed output sequence until the time t and hidden state occurrence in the same time, which can
be expressed by equation (3).

αt(i) = P(O1O2 . . .Ot ,st = i|λ ) (3)

The forward variable calculation is performed iteratively in following steps:

1. Initialization

α1(i) = πiei(O1), 1≤ i≤ N (4)

2. Iteration

αt+1( j) =

[
N

∑
i=1

αt(i)ai j

]
e j(Ot+1), 1≤ t ≤ T −1, 1≤ j ≤ N (5)

3. Termination

P(O|λ ) =
N

∑
i=1

αT (i) (6)

Expressing the sequence of observed outputs is performed by extending the forward algorithm de-
scribed by equations (4 - 6) by a complete set of observations O1,O2, . . . ,OT . The same target but
reverted approach for probability of observed output sequence calculation is solved by a backward al-
gorithm. Using the backward algorithm involves the definition of backward variable, which expresses
the probability that part of the observed output sequence occurs from time t + 1 to the end of se-
quence at time T .

βt(i) = P(Ot+1Ot+2 . . .OT ,st = i|λ ) (7)
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The process of the backward variable β calculation is described in a two step iterative approach:

1. Initialization

βT (i) = 1, 1≤ i≤ N (8)

2. Iteration

βt(i) =
N

∑
j=1

ai je j(Ot+1)βt+1( j), t = T −1,T −2, . . . ,1, 1≤ i≤ N (9)

Forward and backward variables are mostly used for the recalculation of HMM parameters within the
Baum-Welch algorithm [5].

2.2 Viterbi Algorithm
A method for determination of the most probable hidden state sequence within the HMM is the well
known Viterbi algorithm. In other words, it finds the optimal sequence of hidden states, which cor-
responds to a certain sequence of observed outputs. The approach of Viterbi algorithm can be
summarized in following steps:

1. Initialization

δ1(i) = πiei(O1), 1≤ i≤ N (10)

ψ1 = 0 (11)

2. Recursion

δt( j) = ei(Ot) max
1≤i≤N

[δt−1(i)ai j] , 2≤ t ≤ T, 1≤ j ≤ N (12)

ψt( j) = argmax
1≤i≤N

[δt−1(i)ai j] , 2≤ t ≤ T, 1≤ j ≤ N (13)

3. Termination

P∗ = max
1≤i≤N

δT (i) (14)

s∗T = argmax
1≤i≤N

[δT (i)] (15)

4. Backward state sequence determination

s∗t = ψt+1(s∗t+1), t = T −1,T −2, . . . ,1 (16)

The variable δ expresses the highest probability for given observed output sequence and defined
HMM, while the variable ψ defines a pointer to the state, which reaches the highest probability. The
sequence of pointers ψ is used in the terminal phase of the Viterbi algorithm for backward deter-
mination of most probable hidden state sequence assuming given sequence of observed outputs
[7].
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2.3 HMM Parameter Estimation
Two basic situations can occur during the HMM parameter estimation process, i.e. estimation of
transition and emission probability matrices. In the first case the training dataset contains a sequence
of observed outputs as well as respective sequence of hidden states. In this case the HMM parameter
estimation is performed by expressing the relative counts of transitions between states and observed
outputs. Equations (17 - 18) define the estimates of transition and emission probabilities resulting
from maximum likelihood algorithm [8].

ai j =
Ai j

∑ j′ Ai j
(17)

ei(b) =
Ei(b)

∑b′ Ei(b′)
(18)

The probability of transition from the state i to state j expressed by the equation 17 is defined as a
ratio between the number of transitions from the state i to the state j and the number of all transitions
from the state i in the training dataset. Probability of emitting an observed output b while the HMM
remains in the state i expressed by equation 18 is defined as a ratio between the number of observed
output b emissions from the state i and the number of all observed emissions from the state i.
When the training dataset contains only the sequence of observed outputs, the parameter estima-
tion is not performed directly, instead a re-estimation of a’priori probabilities is executed, which em-
ploys the iterative Baum-Welch algorithm [8]. This method estimates the new transition and emission
probabilities based on observed output sequences and calculations performed by Forward-Backward
algorithm described in the previous subsection. The first step is expressing the transition probabil-
ity from the state i to the state j for specific sequence of observed outputs and a’priori given HMM
parameters, which can be described by equation (19).

ξt(i, j) = P(st = i,st+1 = j|O,λ ) (19)

Utilizing the forward and backward variables allows us to redefine the equation (19) to following
expression.

ξt(i, j) =
αt(i)ai je j(Ot+1)βt+1( j)

∑
N
i=1 ∑

N
j=1 αt(i)ai je j(Ot+1)βt+1( j)

(20)

The equation (20) enables to express the probability that the HMM is in a hidden state i at time t and
transits to a state j in time t +1 assuming certain observed output sequence and a’priori knowledge
of the HMM parameters.

γt(i) =
N

∑
j=1

ξt(i, j) (21)

The re-estimation of HMM parameters, by employing equations (20-21), is expressed in equation
(22) that describes the probability of transition between states and equation (23), which defines the
probability of emitting certain observed output while the HMM is in a specific state [9].

āi j =
∑

T−1
t=1 ξt(i, j)

∑
T−1
t=1 γt(i)

(22)

ē j(b) =

∑
T−1
t=1

Ot=b
γt( j)

∑
T−1
t=1 γt( j)

(23)

5



PILOT’S ATTENTION DISTRIBUTION MODELING USING HIDDEN MARKOV MODELS

3. Maneuver Classification Using HMM
A convenient utilization of the HMM in pilot behavior modeling is the classification of flight maneuvers
based on visual attention distribution over the aircraft’s instrument panel, i.e. scanning patterns.
The identification of a flight maneuver is performed using measured gaze fixations in the pilot’s work
space. The measurement itself is executed using a device for the eye movement tracking, the gaze
tracker. The HMM-based pilot model contains following hidden states and observed outputs:

• Hidden states — representation of a specific flight maneuver (steady level flight; climb or de-
scent; level, climbing or descending turn; ILS approach).

• Observed output — representation of a specific flight instrument, at which the pilot is fixing
her/his attention (Airspeed Indicator, Attitude Indicator, Altimeter, Directional Gyro, Vertical
Speed Indicator, ILS instrument, Timer).

The estimation of HMM parameters is performed using a set of measured data containing gaze
fixation sequences in respective flight maneuvers. Figure 2 illustrates a HMM structure with seven
hidden states and seven possible observation outputs for the pilot attention distribution model.
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Figure 2 – Pilot’s behavior modeled using HMM.
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4. Simulator Flight Experiment
The simulated flight experiment has been performed on a fixed base Light Sport Aircraft (LSA) sim-
ulator SimStar equipped with an analog instrument panel containing an Airspeed Indicator (ASI),
Attitude Indicator (AI), Altimeter (ALT), Instrument Landing System (ILS) indicator, Directional Gyro
(DG), Vertical Speed Indicator (VSI) and a Timer. Figure 3 shows the SimStar’s simulation environ-
ment utilized in the simulated flight experiments.

(a) Simulator cockpit. (b) Instrument panel.

Figure 3 – Simulation environment.

A focus group of qualified pilots has been instructed to perform series of simulated flights composed
of flight maneuvers described in Table 1 and defined by respective target Airspeed, Altitude and
Heading quantities. These pilots have been instructed to perform turns with a limited turn rate of
3°·s-1 , while all climb and descent maneuvers had their vertical speed limit set to 500 ft·min-1 and
-500 ft·min-1 , respectively. The level flights with ID numbers # 3 and # 9 were pre-planned to take two
and one minute of flight time, respectively. Pilots were also instructed to deploy flaps to 15° during
the phase # 11 before the LOC capture.

Table 1 – Flight maneuvers specification.

ID Maneuver IAS [kts] ALT [ft] HDG [°]

# 1 Take-Off 75 800→ 1000 93
# 2 Climb 75 1000→ 3000 90
# 3 Level flight 100 3000 90
# 4 Descending turn 90 3000→ 2500 90→ 270
# 5 Climb 75 2500→ 3000 270
# 6 Horizontal turn 100 3000 270→ 90
# 7 Descent 100→ 90 3000→ 2500 90
# 8 Horizontal turn 90 2500 90→ 135
# 9 Level flight 100 2500 135
# 10 Climb turn 90 2500→ 3000 135→ 315
# 11 LOC capture 90→ 75 3000 315→ 273
# 12 GS capture 75 3000 273
# 13 ILS approach 75 3000→ 1080 273
# 14 Decision altitude 75 1080 273

Flight maneuvers described in Table 1 are shown in the reference trajectory introduced in Figure
4. The reference trajectory contains color-coded sequences of respective flight maneuvers with an
associated legend to emphasize a clear understanding of the trajectory. The blue segments indicate
change in Altitude, while the green segments represent horizontal maneuvering. The initial and final
parts of the trajectory, i.e landing and touchdown, are marked in red color.
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Figure 4 – Reference trajectory with marked flight phases.

Pilots taking part in the experiment were asked to wear a gaze tracking headset composed of two eye
cameras and one world camera, which recorded their gaze fixations over the instrument panel during
the simulated flight in SimStar flight simulator. The video recording frequency was set to 60 Hz and
the resolution to 720p. Figure 5 shows the gaze tracking device used for gaze fixation recordings.

Figure 5 – Gaze tracking device [10].

Another type of data recorded during the flight experiment on the SimStar were flight variables as-
sociated to basic aircraft kinematics: translational and rotational accelerations and velocities, aircraft
attitude and position. These kinematic data were recorded at a sampling rate of 30 Hz and used in
flight maneuver labeling, which is an inevitable asset in the HMM training phase. Figure 6 shows a
recorded trajectory of the experimental flight near Brno’s LKTB airport in Czechia, Europe.

Figure 6 – Flight experiment trajectory.
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5. Results
As the main task of the pilot’s attention distribution model is the flight maneuver classification based
on gaze fixation sequences over an instrument panel, the measured data had to be pre-processed
and labeled to match the simulated flight trajectory description introduced in the previous section.
The maneuvers to be determined by the HMM were the climb, steady level flight, descent, climbing
turn, horizontal turn, descending turn and an ILS approach. The take-off and landing phases were
not considered in the HMM design as they mostly contain gaze fixations “outside of the aircraft”
which add a high uncertainty into the attention distribution model. Figure 7 shows the main flight
quantities, Airspeed, Altitude and Heading, segmented using differently colored labels for respective
flight maneuvers. The HMM’s hidden states are in our case represented by the flight maneuver
labels, thus the time series of flight maneuver labels were used as the output in the HMM parameter
estimation. The input data used for pilot’s attention distribution model training were the gaze fixations
over the SimStar’s instrument panel.

Figure 7 – Flight segmented into maneuvers.

The gaze fixation time threshold was set to 200 ms, while shorter fixations were considered saccade
points, i.e. rapid eye movement, and were not considered. Fixations longer than 500 ms were di-
vided into multiple subsequent fixations to match the purpose of model training. In order to assign
each fixation to a specific instrument on the instrument panel, the K-means clustering / segmentation
algorithm was employed [11]. In the presented case, fixations were mapped into 7 clusters corre-
sponding to SimStar’s flight instruments mentioned in the previous section. Figure 8 shows the gaze
fixations segmented into respective colored clusters. In other words, valid fixation points get their
labels based on the respective “looked at” instrument (ASI, AI, ALT, etc.). Time series of instrument
labels represent the observed HMM outputs.
The dataset for pilot’s attention distribution model training is a combination of the data recorded in
six simulated flights performed by a focus group of two qualified pilots, both of which were male
participants with an average age of 21 years, average flight time of 240 hours and total flight time in
last 30 days averaging at 9 hours. One participant had experience in instrument flying while the other
one did not.
The time sequence of gaze fixations represents observed outputs and corresponding sequence of
flight maneuver labels is considered to represent hidden states. The results of the training process,
described by equations (17-23) in Section 2.3, are the estimated HMM parameters representing the
pilot’s attention distribution model, i.e. the HMM transition and emission matrices.
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Figure 8 – Pilot’s clustered gaze fixations.

The trained HMM was evaluated using labeled data, i.e. fixations and flight maneuvers, from another
flight. Figure 9 shows an example of fixation label time series (first graph) and flight maneuver labels
(second graph). Signal in the first graph shows the pilot switching gaze fixations between instruments
in time. The second graph contains time series of ground truth flight maneuver labels (blue) as well as
the HMM outputs generated by the Viterbi algorithm (red). The trained model was able to successfully
determine 92 % of flight phases based on measured gaze fixations.

Figure 9 – Pilot HMM evaluation.

Figure 10 shows a relative ratio of gaze fixations over different instruments with respect to the specific
flight maneuver. Graphs are based on the training dataset and in fact represent a graphical interpre-
tation of the HMM’s emission matrix. The attention distribution in Figure 10 shows, for example, that
the most used instrument during the whole flight is the AI, with a quite similar attention distribution
through all investigated flight maneuvers. However, some differences can be observed, e.g. higher
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fixation counts at VSI during the descent or utilization of an ILS instrument in the final approach phase
of the flight.

Figure 10 – Attention distribution over instrument panel.

6. Conclusion
This paper introduces an HMM representation of pilot’s attention distribution over an aircraft instru-
ment panel with respect to a specific flight maneuver. It discusses an experimental study on flight
maneuver classification from pilot’s gaze fixations. The data for the HMM model training were col-
lected in series of simulated flight experiments performed on a realistic LSA simulator, SimStar, at
the Faculty of Information Technology, Brno University of Technology, with a focus group of qualified
pilots. Results presented in Section 5 show the capability of the trained HMM to classify current flight
maneuver based on pilot’s measured gaze fixations. Findings obtained through the HMM models
will further help to refine cognitive pilot model designs using modern cognitive architectures. Such
models could be useful in the process of future cockpit design or as an objective measure during a
pilot training evaluation.
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