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Abstract

The range of multirotor Unmanned Aerial Vehicle (UAV) applications has grown significantly over the last
decade. This is to be attributed to their simple mechanical design, along with hovering and maneuvering
capabilities, making them a popular choice in applications such as surveillance, aerial photography, cargo
transport or infrastructure inspection. Varying mission requirements with respect to UAV target location, pay-
load capacity, speed or time of flight combined with environmental constraints such as no-fly zones can be
hard to satisfy without the use of modern trajectory optimization techniques. Trajectory optimization problems
are often formulated using optimal control theory. An Optimal Control Problem (OCP) for generalized multirotor
UAV introducing environmental constraints has been formulated and solved by a direct transcription approach.
Furthermore, a Gauss pseudospectral method has been implemented, enabling to design a framework for UAV
trajectory optimization problems in constrained environments.

Keywords: Gauss pseudospectral method, nonlinear programming, optimal control, trajectory optimization,
unmanned aerial vehicle

Nomenclature

AD m2 = Drag area BEMT = Blade Element Momentum Theory
bm N ·m · s · rad−1 = Viscous friction constant BFF = Body-Fixed Frame
Bpr – = Propeller blades BVP = Boundary Value Problem
CD – = Drag coefficient CoM = Center of Mass
CP – = Power coefficient DC = Direct Current
CT – = Thrust coefficient DCM = Direction Cosine Matrix
g m · s−2 = Gravitational acceleration EoM = Equations of Motion
h m = Altitude ESA = European Space Agency
Ib kg ·m2 = Inertia tensor GNC = Guidance, Navigation, Control
Jm kg ·m2 = Motor moment of inertia IDW = Inverse Distance Weighting
ke V · s · rad−1 = EM force constant IPOPT = Interior Point OPTimizer
km N ·m ·A−1 = Motor torque constant IVP = Initial Value Problem
L H = Inductance LG = Legendre-Gauss
m kg = vehicle mass LGL = Legendre-Gauss-Lobatto
O – = Motor rotation orientation LGR = Legendre-Gauss-Radau
R Ω = Resistance NED = North, East, Down
Rpr m = Propeller radius NLP = Non-Linear Programming
SoC % = State of charge OCP = Optimal Control Problem
Va m · s−1 = Airflow magnitude ODE = Ordinary Differential Equation
W m · s−1 = Nominal wind speed SQP = Sequential Quadratic Programming
ρ kg ·m−3 = Air density UAV = Unmanned Aerial Vehicle
µ – = Advance ratio 6-DoF = 6-Degrees-of-Freedom



Unmanned aerial vehicle’s trajectory optimization in constrained environments

1. Introduction
An increasing demand for the UAV autonomy drive the advancement in Guidance, Navigation and
Control (GNC) solutions. The primary task of a Guidance unit is the construction of a feasible trajec-
tory accounting for the vehicle dynamics while achieving respective mission objectives. The focus of
presented work has been on the formulation of optimal control problems for multirotor UAV vehicles
in variety of configurations such as shown in Figure 1 while posing operational and environmental
constraints.
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Figure 1 – Multirotor UAV range of configurations.

A trajectory optimization problem is typically solved by utilization of direct or indirect methods. Indi-
rect methods consist of construction of the necessary and sufficient optimality conditions, discretizing
these conditions and solving the own optimization problem. The direct method’s approach in the OCP
assumes a direct discretization of the trajectory, converting the problem to a parameter optimization
task. Although the indirect approach yields an accuracy metric for the solution, construction of the ad-
joint equations is for many applications infeasible. The direct approach was selected due to it’s easier
formulation and availability of increasingly efficient algorithms for solving them. A generalized frame-
work utilizing Gauss-pseudospectral transcription method for UAV trajectory optimization concerning
operational and environmental constraints was implemented under the European Commission funded
COMP4DRONES project. The paper provides an example of utilizing simplified kinematic model with
no-fly zone constraints as well as full nonlinear 6-Degrees-of-Freedom (6-DoF) Equations of Motion
(EoM) driven trajectory optimization problem with operational and environmental constraints.

2. Theoretical background and architecture
Let us consider a general OCP. The goal is to find a control vector u(t) ∈ Rm, that minimizes the
functional

J = Φ(x(t0), t0,x(t f ), t f )+
∫ t f

t0
g(x(t),u(t), t)dt. (1)

The running cost g : Rn×Rm×R→ R (Lagrange problem) involves the state vector x(t) ∈ Rn and
the control vector along the trajectory. The terminal cost Φ : Rn×R×Rn×R→ R (Mayer problem)
involves the state vector at initial t0 ∈ R and final t f ∈ R time. Equation (1) is usually referred to as
the Bolza form [2]. The state vector is subjected to dynamic constraints characterized by Ordinary
Differential Equation (ODE)

ẋ = f(x(t),u(t), t), t ∈ [t0, t f ] (2)

boundary constraints Ψ : Rn×R×Rn×R→Rq and path constraints C : Rn×Rm×R→Rc of the form

Ψ(x(t0), t0,x(t f ), t f ) = 0
C(x(t),u(t),p, t)≤ 0

(3)

with algebraic parameters p ∈ Rl. In contrast to Initial Value Problem (IVP) where the dependent
variable is imposed at initial time, the Boundary Value Problem (BVP) requires the state vector to be
determined at both points t0 and t f . It is assumed, that the dynamic constraints (2) involve continuous
and differentiable functions. In practice, solving OCP requires iterative Newton-based algorithms on
a finite set of variables. The process of converting an OCP to a finite-dimensional general Non-Linear
Programming (NLP) problem is referred to as a transcription method [1]. Generally, the transcription
method uses the domain discretization to convert the dynamic constraints to a problem with a finite
set of variables. For the presented case, the Gauss pseudospectral transcription method [10] was
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used to transcribe the OCP. The state and control variables are approximated using global interpo-
lating polynomials on a nonuniform mesh of collocation points to prevent numerical issues such as
Runge’s phenomenon.

In context of a UAV trajectory optimization, the architecture shown in Figure 2 displays required steps
taken to formulate the NLP problem and to find it’s solution. In terms of inputs, the dynamic model and
it’s parameters (such as vehicle mass, moments of inertia or propeller radius) have to be specified.
The second set of inputs concerns environment parameters definition. This includes specification of
wind field, terrain and parameters such as air density or gravitational acceleration. The third set of
inputs provides the required settings to construct the OCP. The objective function being minimized
is usually constructed to find the minimum flight time trajectory or a minimum energy/fuel trajectory.
The constraints and bounds of the problem as written in equation (3) may specify a range of dif-
ferent requirements on the optimized trajectory. The simplest are the boundary constraints defining
requirements such as the initial and final position. Respective variable bounds may be set to respect
operational limits of the vehicle such as maximum angular speed of the propellers. Path constraints in
the form of inequality constraints are optionally specified to restrict some state or control dependent
quantities. Path constraints can be used to define cylindrical no-fly zones or terrain constraints among
others. Finally, the solver and its options, such as maximum number of iterations or stopping criteria
including tolerances for constraints violation, can be specified by the user. In the transcription phase,
the defined inputs are used to compose the OCP problem and check that it is correctly formulated.
This is referred to by a preprocessing block (*) in Figure 2. In order to find the solution, the inbuilt
gradient based solver has to be provided with functions which are twice continuously differentiable.
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m, Ixx, . . . , Izz, R
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environment definition
- wind field ~W (x, y, z)

- terrain s(x, y)

- gravitational acc.

ρ(h)- air density
g

minz∈RwJ(z)

s.t. cL ≤ c(z) ≤ cU

zL ≤ z ≤ zU

NLP solver

objective function J

solver options
- max. iter.

- tolerances
...

INPUTS

constraints and bounds

path and boundary constraints

Ψ(x(t0), t0,x(tf), tf) = 0

C(x(t),u(t),p, t) ≤ 0

preprocessing (*)

TRANSCRIPTION

{x∗(t),u∗(t)} z∗

J J(z)

J(z∗)

solution trajectory

h
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ψ

t

t

t

PARAMETER OPTIMIZATION

Figure 2 – Trajectory optimization framework block diagram.
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For example, using traditional absolute value function may lead to convergence failures. Where non-
differentiable functions are critical, these can be usually approximated and substituted so to have the
desired properties. Once those cases are handled, an orthogonal collocation is performed to convert
the dynamics to a set of equality constraints at the set of time points. An objective function is also
discretized so that the running cost is computed by a quadrature. It is important to note that the final
time is not fixed, so that it becomes a variable in the optimization problem. In some cases, we might
be interested to optimize for other parameters such as battery mass. These remain constant over the
entire time domain. The problem can then be solved by algorithms such as Interior Point OPTimizer
(IPOPT) [11], sparse Sequential Quadratic Programming (SQP) solver SNOPT [13] or the European
Space Agency (ESA) developed nonlinear optimization solver WORHP [14], among others. Once
the NLP solver converges with the required tolerances, the trajectory is then easily retrieved from the
optimal solution point along with the associated objective function value.

3. Generalized multirotor UAV modeling
Let us assume a rigid-body UAV. Its dynamic quantities are defined in either inertial reference frame
Fe = (xe,ye,ze,Oe) respecting North, East, Down (NED) convention or a Body-Fixed Frame (BFF)
Fb = (xb,yb,zb,Ob). The origins Oe and Ob are located at the vehicle Center of Mass (CoM). The
Newton’s second law of motion has been used for the derivation of the 6-DoF EoM [3]. A general
form of translational equations expressed in the BFF can be written as

Fb = m
(

v̇b
b/e +ω

b
b/e×vb

b/e

)
, (4)

where m is the UAV’s mass, vb
b/e = [u v w]T is a velocity vector of Fb with respect to Fe expressed

in Fb and ωb
b/e = [p q r]T is the angular velocity vector of Fb with respect to Fe expressed in Fb.

Equation (4) can be derived from a general form in an inertial frame by expressing the velocity deriva-
tive in BFF using an angular velocity vector. The resulting force Fb acting on the UAV’s CoM can be
further decomposed. Since aerodynamic and gravitational forces are not generally expressed in BFF,
a coordinate frame transformations need to be utilized.

The rotation at motion of a UAV is a result of moments acting on its body. The angular momentum
theorem is introduced in a body-fixed coordinate system Fb. Let Mb be the resulting moment of all
external moments acting on the UAV’s CoM. The moment equation is formed in terms of the vehicle’s
angular velocity ωb

b/e in BFF as shown in equation (5).

Mb = Ib
ω̇

b
b/e +ω

b
b/e× Ib

ω
b
b/e (5)

The inertia tensor Ib is usually simplified due to the design’s symmetry of a UAV body. In other cases,
all components of the inertia tensor have to be known. In terms of a modular UAV design, the inertia
tensor can be computed using the Parallel axis theorem over all UAV components.

The UAV can be described as a collection of K components such as frame parts, propellers, payload
and batteries. Each of the components has it’s mass mk and inertia tensor Ik expressed in the frame
of the respective part as Ib

k = Ik +mk [(P j ·P j)E−P j
⊗

P j], where P j is the displacement vector of the
part center of mass to a model center of mass, E is an identity matrix and

⊗
is a tensor product

operation. The final mass is then computed as m = ∑
K
k=1 mk and the inertia tensor as Ib = ∑

K
k=1 Ib

k .

The Euler’s kinematic equation defines the rate of the Euler angles as a function of UAV’s angular
velocities in Fb. Let us have an Euler angle vector Φ = [φ θ ψ]T representing the orientation of Fb
with respect to Fe. The kinematic equation in (6) is described in terms of a kinematic transformation
matrix H linking the angular velocity and orientation of the vehicle as a first order ODE.

Φ̇ = Hω
b
b/e (6)
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The kinematic transformation matrix is given by equation (7). The orientation can be optionally de-
scribed by a set of quaternions.

H =


1 sinφ tanθ cosφ tanθ

0 cosφ −sinφ

0
sinφ

cosθ

cosφ

cosθ

 (7)

To compute the UAV’s center of mass position in Fe, a UAV’s linear velocity in Fe has to be derived
as a function of linear velocity in Fb. This relationship is called the kinematic equation of navigation
and it is described by equation (8). Let pe

cm/e = [x y z]T be a position vector of the CoM expressed
in Fe and Rb/e is the rotational matrix between BFF and the inertial NED frame usually referred to as
the Direction Cosine Matrix (DCM).

ṗe
cm/e = RT

b/evb
cm/e (8)

The position of a UAV can now be computed based on the knowledge of Euler angles and UAV’s
linear velocity in BFF. The resulting force Fb = [Fx Fy Fz]

T acting on the UAV CoM is decomposed
into three principal components. Based on the UAV’s configuration and required model fidelity, the
following forces and moments acting on the body can be introduced. Below we introduce the descrip-
tion of the gravitational force Fb

g, the aerodynamic force Fb
a and thrust/propeller force Fb

t . As already
mentioned, some forces are naturally not expressed in the BFF and need to be transformed via Rb/e.
The total external force acting on the vehicle is then a sum of its components as in equation (9).

Fb = Fb
g +Fb

a +Fb
t (9)

The gravitational force which is naturally expressed in the NED frame’s z-axis shall be transformed to
BFF using the transformation matrix leading to formulation introduced in equation (10).

Fb
g =

 −gsinθ

gcosθ sinφ

gcosθ cosφ

 (10)

To express the final propeller force of a generalized multirotor UAV, let N be the number of propellers
and R j

pr the radius of propeller j.

Fb
t =

 0
0

− 4
π2 ∑

N
j=1 ρ

(
R j

pr

)4
ω2

j C
j
T (µ j,α)

 (11)

The resulting thrust force can be described by equation (11), where ρ is the air density, ω j is the
propeller angular velocity and C j

T (µ j,α) is the value of propeller thrust coefficient for a given value
of advance ratio µ j and angle of attack α. The thrust coefficient depends on the number of blades
B j

pr. Advance ratio is defined as a ratio of the free stream fluid velocity to the propeller speed. For
a propeller j, it can be computed as introduced in equation (12), where Va is the relative airflow
magnitude.

µ j =
πVa

ω jR
j
pr

(12)

The thrust coefficient is usually determined for a set of representative conditions and subsequently
interpolated so that C j

T (µ j,α) is a twice continuous differentiable function. Assuming that the UAV is
seated in a stationary wind vector field ~W(x,y,z) = [Wx Wy Wz]

T , the relative airflow Vb
a with respect

to the UAV is described by equation (13) using substitutions cγ := cosγ and sγ := sinγ where γ is an
arbitrary angle and wx,wy,wz are turbulence and gust effects assumed to be zero when dealing with
trajectory optimization tasks.

Vb
a =

 cθ cψ sφ sθ cψ − cφ sψ cφ sθ cψ + sφ sψ

cθ sψ sφ sθ sψ + cφ cψ cφ sθ sψ − sφ cψ

−sθ sφ cθ cφ cθ

T  Wx +wx

Wy +wy

Wz +wz

−
 u

v
w

 (13)
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Finally the aerodynamic force can be decomposed into propeller forces generated by the interaction
of the incoming airflow with the rotating propellers and the drag force, so that Fb

a = Fb
prop + Fb

drag.
Aerodynamic force Fb

prop is complex to quantify and can be modelled in different ways based on
the level of complexity and model configuration. Using the blade properties, complex computational
models such as Khan’s model [12] utilizing the methodology of the Blade Element Momentum Theory
(BEMT) for propeller model development, can be adopted. The drag force Fb

drag can be simplified to
formulation in equation (14) where CD is the drag coefficient computed based on a projected shape
of the body to the airflow usually determined by the wind tunnel tests and AD is the drag area which
may be modeled as a constant or as a variable changing with orientation of the body with respect to
airflow.

Fb
drag =

1
2

ρCDADVb
a ‖ Vb

a ‖2 (14)

Let Mb = [Mx My Mz]
T be the resulting moment of all external moments acting on the multirotor

UAV’s CoM. The total external moment Mb can be decomposed into five principle components as
defined in equation (15).

Mb = Mb
t +Mb

q +Mb
j +Mb

g +Mb
a (15)

The decomposed moments contain thrust reaction torque Mb
t due to Fb

t , the propeller drag couple
Mb

q, the inertia couple Mb
j due to rotating parts of the propulsor, the gyroscopic torque Mb

g and the

aerodynamic moment Mb
a. Let P j

prop =
[

p j
x p j

y p j
z

]T
be a position vector of propeller j with respect

to UAV CoM in the BFF. The thrust reaction torque in equation (16) describes the generalized case
for the N-propeller UAV.

Mb
t =


− 4

π2 ∑
N
j=1 ρ

(
R j

pr

)4
ω2

j C
j
T (µ j,α)p j

y

4
π2 ∑

N
j=1 ρ

(
R j

pr

)4
ω2

j C
j
T (µ j,α)p j

x

0

 (16)

Next, the propeller thrust couples described by equation (17) are computed assuming a known power
coefficient C j

P(µ j,α) for the propeller j and its rotation orientation O j ∈ {−1,1}.

Mb
q =

 0
0

− 4
π3 ∑

N
j=1 ρ

(
R j

pr

)5
ω2

j C
j
P(µ j,α)O j

 (17)

Assuming a j-th propulsor’s moment of inertia J j
m, we can write the inertia couples using equation (18)

Mb
j =

 0
0

−∑
N
j=1 J j

mω̇ jO j

 (18)

where ω̇ j is the respective propeller angular velocity. Finally, the propeller’s gyroscopic torques of are
defined in equation (19), where p and q are the UAV’s angular rates.

Mb
g =

 −q∑
N
j=1 J j

mω jO j

p∑
N
j=1 J j

mω jO j

0

 (19)

Aerodynamic moments Mb
a = Mb

prop are assumed to be caused by the interaction of the incoming
airflow with the rotating propellers and can be modeled using the BEMT model. The model can be
extended to include differential equations of a DC motor controlled by the applied voltage. For j-th
motor, we get the differential equations (20) and (21), where L is the motor’s inductance, ke is the
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electromagnetic force constant, R is the resistance, km is the motor torque constant and bm is the
viscous friction constant. The equation (20) is the electrical circuit equation derived using the Kirch-
hoff’s voltage law with input voltage Vj. The mechanical equation (21) shows that the motor torque is
proportional to the armature current. The resulting change in propeller speed is further affected by
the viscous friction term and the propeller drag term.

L j İ j =Vj− k j
eω j−R jI j (20)

J j
mω̇ j = k j

mI j−b j
mω j−

4
π3 ρ

(
R j

pr
)5

ω
2
j C

j
P(µ j,α) (21)

The 6-DoF model of the generalized multirotor UAV can be augmented by the DC motor equations.
In the following chapters, the motor torque will be used to compute the energy consumption of the
UAV.

4. Gauss pseudospectral transcription method
The developed dynamic model can be composed to a system of ODEs ẋ= f(x,u) forming the dynamic
constraint of the OCP. This chapter introduces the transcription method used to discretize the devel-
oped dynamic constraints to a set of collocation points in the time domain where they strictly enforce
the set of ODEs. Pseudospectral methods employ global interpolating polynomials to approximate
the state across the entire time interval. Numerical methods including pseudospectral methods re-
quire fixed time interval which is a limiting factor for many OCP formulations. Using a transformation
in equation (22), the time interval t ∈ [t0, t f ] is mapped to a general interval τ ∈ [−1,1] with free initial
and final times.

τ =
2t

t f − t0
−

t f + t0
t f − t0

(22)

To minimize error in the quadrature approximation of the integral term of the cost function or dynamic
constraints discretization, respective Gauss quadrature support points are selected. The Gauss
quadrature has the highest accuracy for given number of points K and is exact for all polynomials
of degree 2K − 1 or less. The quadrature points are the Legendre-Gauss (LG) points [9] defined
in the interior of the fixed time interval τ ∈ (−1,1) as the roots of the Legendre polynomial PK(τ) of
degree K. It is given by equation (23).

PK(τ) =
1

2KK!
dK

dτK

[(
τ

2−1
)K
]

(23)

Similarly, another set of support points are the Legendre-Gauss-Radau (LGR) points on interval
τ ∈ [−1,1) defined as the roots of polynomial P̂K(τ) = PK(τ) + PK−1(τ). The third set of support
points applicable for pseudospectral collocation method is the Legendre-Gauss-Lobatto (LGL) points.
The support points lie on the interval τ ∈ [−1,1] including both boundaries, making the quadrature
scheme accurate to 2K−3 polynomial degree. The LGL points are derived as roots of the polynomial
P̃K(τ) =

(
1− τ2

)
ṖK−1(τ). Pseudospectral methods exploit rapid convergence rate of the quadrature

approximation and are able to provide better approximations with fewer number of support points.
Having obtained a possible choices of suitable support points, the global polynomial transcription
can be obtained using a Lagrange polynomial approximation. The choice of Lagrange polynomials
has two benefits when used with quadrature points in a transcription scheme. The function approxi-
mation is equal to the true function at the collocation points x(τ j) =X(τ j) and the unique set of support
points tends to bypass the so called Runge phenomenon which leads to higher approximation errors
near the boundaries for uniformly spaced support points. Let us define a basis of K + 1 Lagrange
interpolating polynomials defined by the equation (24).

Li(τ) =
K

∏
j=0, j 6=i

τ− τ j

τi− τ j
(24)

The state and control vectors are globally approximated in the fixed time domain defined by equation
(22) using the Lagrange polynomial basis functions as in equation (25). The control vector polynomial
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approximation is presented just for consistency purposes since it is used at the collocation points only.

x(τ)≈ X(τ) =
K

∑
i=0

Li(τ)x(τi)

u(τ)≈ U(τ) =
K

∑
i=1

Li(τ)u(τi)

(25)

As will be shown, the function will be evaluated only at the set of support points leaving global ap-
proximation of the control vector unnecessary. The support points M = {τ1, . . . ,τK} (called collocation
points) are extended to M0 = {−1,τ1, . . . ,τK} to be of size K +1. The discretization point X f is collo-
cated at the boundary τ f = 1. Due to boundary constraints of the original OCP, the final state must
be included as a set of discrete variables, even they are not part of the global polynomial state ap-
proximation. The initial and final states can be linked using a Gauss quadrature. The final state can
be integrated from the initial state as shown in equation (26).

x(τ f ) = x(τ0)+
∫ 1

−1
f(x(τ),u(τ),τ)dτ (26)

Reformulating using the polynomial approximation and a Gauss quadrature, the integration (26) trans-
forms to a set of equality constraints forming equation (27) with wk being the quadrature weights.

X(τ f )−X(τ0)−
t f − t0

2

K

∑
k=1

wkf(X(τk),U(τk),τk, t0, t f ) = 0 (27)

The mathematical properties of the Gauss quadrature allow an accurate approximation of the final
state. In the Lagrange polynomial reformulation, the dynamic constraints in the time domain interior
can be satisfied using the properties of the Lagrange polynomial approximation. The state derivative
at LG points for k = 1, . . . ,K gives

Ẋ(τk) =
K

∑
i=0

L̇i(τk)X(τi) =
K

∑
i=0

DkiX(τk), (28)

where Dki ∈ RK×(K+1) is called the LG differentiation matrix. It can be determined analytically during
the construction of an NLP problem. The dynamic constraints can now be composed to a set of equal-
ity constraints on a set M. Using the derivative approximation (28), we get the equality constraints
(29) enforcing the dynamics at the collocation points.

K

∑
i=0

DkiX(τk)−
t f − t0

2
f(X(τk),U(τk),τk, t0, t f ) = 0 (29)

Finally, the Gauss quadrature is utilized to integrate the path cost leading to the final form of the
objective function as given by equation (30).

J = Φ(X0, t0,X f , t f )+
t f − t0

2

K

∑
k=1

wkg(X(τk),U(τk),τk, t0, t f ) (30)

With minor changes in the handling of the boundary points, the transcription using LGL or LGR points
can be performed. The transcription methods allowed discretized formulation of a general OCP.
The obtained NLP problem may include large number of variables and constraints. The problem
complexity also extends by presence of equality constraints emerging from dynamic constraints. The
set of equality constraints in the NLP leads to dimension reduction which rules out many proven of
methods which are successfully used for nonlinear function minimization such as class of evolutionary
algorithms including the genetic algorithm or the particle swarm optimization which are popular choice
when solving global optimization problems.
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The set of variables defining the OCP is composed as seen in equation (31), where, at time τk, the
control vector is u(τk)= [u1(τk),u2(τk), . . . ,um(τk)] and the state vector is x(τk)= [x1(τk),x2(τk), . . . ,xn(τk)].
The variables also include the initial and final times.

zT = [u1(τ0),u2(τ0), . . . ,x1(τ1),x2(τ1), . . . ,um(τK),xn(τK), t0, t f , p1, . . . , pl] (31)

Apart from the initial and final time, the set of l algebraic optimization parameters can be optionally
defined as p = [p1, p2, . . . , pl]. The general formulation of the NLP problem can be written as shown in
equation (32).

min
z∈Rw

J(z)

subj.to cL ≤ c(z)≤ cU

zL ≤ z≤ zU

(32)

The vector z ∈ Rw contains the optimization variables with lower and upper bounds zL ∈ (R∪{−∞})w

and zU ∈ (R∪{∞})w. In context of OCP with no additional parameters, the number of variables can be
computed as w = 2+K (n+m), where n is the number of states, m is the number of control variables,
K is the number of time steps and the constant represents the free initial and final time variables.
The objective function J(z) : Rw −→ R and the constraint function c(z) : Rw −→ Rv can be generally
nonlinear convex or non-convex functions at least twice continuously differentiable.

The state-of-the-art class of algorithm for solving general NLP problems are called the interior point
(barrier) methods. The interior point methods define the auxiliary objective modeled by equation (33),
where sets IL and IU are defined as IL =

{
i : zi

L 6=−∞
}

and IU =
{

i : zi
U 6= ∞

}
.

min
z∈Rw

ϒη(z) = J(z)−η ∑
i∈IL

ln(zi− zi
L)−η ∑

i∈IU

ln(zi
U − zi) (33)

The finite bound constraints are therefore replaced by the logarithmic barrier terms. In case of barrier
parameter η > 0, the auxiliary objective function goes to infinity if any variable approaches it’s finite
lower or upper bound. A popular implementation of the interior point method is the freely available
IPOPT algorithm [11], the primal-dual interior-point algorithm with a filter line-search method, which
was in the presented case used to solve the trajectory optimization problem.

There are many more transcription method options available. Common integration schemes such
as trapezoidal rule or Simpson’s rule can be also used to formulate the equality constraints. Gauss-
pseudospectral methods however, benefit from using the Gauss quadrature on a special set of sup-
port points and faster convergence. Software solutions such as GPOPS-II [15] or GEKKO [16] imple-
ment the pseudospectral method for transcription. Trapezoidal collocation or Runge-Kutta methods
transcription are utilized by FALCON.m toolbox [7] developed at Technical University of Munich. To
speed up the convergence, the above mentioned software solutions utilize Jacobian and Hessian
sparsity patterns of the NLP and automatic differentiation tools. We used the ecosystem of JAX:
Autograd [8] to compute objective function gradient, Jacobian of the constraints and Hessian of the
Lagrangian function.

5. Implementation and examples
The theoretical background for multirotor UAV modelling and trajectory optimization techniques were
outlined. This chapter introduces the energy objective function 5.1, the modelling of terrain and no-fly
zone constraints 5.2and wind profile power law 5.3specifying the vertical change in wind speed which
form feasible options for OCP extension in form of inequality constraints. The chapter also provides a
2D OCP example with circular constraints in a wind field 5.4 following the analytically known Dubins
path and a 3D OCP case with set of operational and environmental constraints utilizing the fully
nonlinear UAV model.
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5.1 Minimum energy objective function
A total energy consumed by the UAV at time t can be derived using the motor torque τ(t) = kmI(t)
and the angular speed ω(t) forming the instantaneous power which is then integrated over the time
domain to compute the consumed energy [5]. The objective function (34) is derived using the me-
chanical equation (21) of the DC motor.

Ec =
∫ t f

t0

N

∑
j=1

(
J j

mω̇ j +
4

π3 ρ
[
R j

pr
]5

ω
2
j C

j
P(µ j,α)+b j

mω j

)
ω j dt (34)

The objective function assumes the motor angular speed derivatives ω̇ j to be the control inputs and
motor angular speeds ω j are assumed to be included in the state vector.

5.2 Terrain and no-fly zone constraints
A terrain constraints were implemented using the Inverse Distance Weighting (IDW) interpolating
function s(p). This ensures, that the planned trajectory does not intersect the terrain profile. The
terrain constraint is formulated by inequality constraint as in equation (35).

z(τk)− s(x(τk),y(τk))≥ 0, k ∈ {1, . . . ,K} (35)

where x(τk), y(τk) and z(τk) are the collocated position components of the UAV. The terrain surface
equation may be modeled by selection of IDW parameter p. Let us consider a rectangular domain
D = [a,b]× [c,d]. The multivariate interpolation of the terrain is some function s(p) : p ∈ D, where
p = [x,y] represents a location in the domain D. Due to computational efficiency, the Shapard’s inter-
polation was considered as a suitable continuous and differentiable approximation. Search structures
like kd-trees are not needed for classical IDW. Given a set of samples s(pi) = zi for i = 1,2, . . . ,N, the
interpolating function takes form of equation (36) for p such that d(p,pi) 6= 0 for all i.

s(p) = ∑
N
i=1 wi(p)zi

∑
N
i=1 wi(p)

(36)

In other case, s(p) = zi if p = pi. The set of weights are given by equation (37) where p is a positive
real number called a power parameter which affects shape of the interpolating function.

wi(p) =
1

d(p,pi)p (37)

A no-fly zone is a territory or area, over which the UAV is not permitted to fly. For practical purposes,
this work only considers circular no-fly zones. Let us assume zone i ∈ {1, . . . ,U}, where U is the
number of no-fly zones. The center [xi,yi] and radius Li defines the zone path constraint i given
the equation (38), where x(τk) and y(τk) are the position components of the UAV collocated in the
discretized time domain.

(xi− x(τk))
2 +(yi− y(τk))

2 ≥ L2
i , k ∈ {1, . . . ,K} (38)

Since the constraint has to be satisfied at all time points, a single no-fly zone leads to K inequality
constraints.

5.3 Wind profile power law
The change of altitude usually affects the nominal wind speed. The so called wind profile power
law [6] was used for the vertical extrapolation of the nominal wind speed W in the atmospheric surface
layer. In order to estimate the wind speed at certain height z, the power law given by the equation (39)
is used to extrapolate W (z) using known wind speed W (zA) at reference height zA.

W (z) =W (zA)

(
z
zA

)n

(39)

The exponent n is an empirically derived coefficient that varies with the stability of the atmosphere. In
neutral stability conditions, the value n = 0.143 was used for open land surfaces and value n = 0.110
was used for over open water surfaces. The applications of wind profile power law include wind power
assessments or atmospheric pollution dispersion models.
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5.4 No-fly zone avoidance using simplified kinematic model
In the first example, a construction of OCP will be investigated in a simplified fashion. A simple 2D
kinematic model is used and the notion of no-fly zones utilized. In this simple scenario, the model is
given by ODE system (40), where the parameter γ ∈ [0,1] is a weighting factor for the wind field effect
on the total speed.

ẋ =V sinψ + γ Wx(x,y)

ẏ =V cosψ + γ Wy(x,y)
(40)

The control vector of the OCP includes the UAV speed and heading u = [V,ψ]T . The components
of a stationary wind field are modeled as Wx = W cosαW and Wy = W sinαW . The quadratic objective
function has no actual physical meaning. The problem may thus be described as minimum control
effort problem. Let us assume a general UAV with starting position x0 = [1000,1000] m. The mission
target is located at x f = [5000,5000] m. The speed limit of the UAV in zero wind condition is specified
with Vmin = 0 m · s−1 and Vmax = 10 m · s−1. The UAV is affected by a wind field with nominal speed
W = 5 m · s−1, direction αW = π/2 and the weighting factor γ = 1. The designed trajectory should
avoid two no-fly zones with centers C1 = [2500,2500] and C2 = [4300,4300] and radii L1 = 800 m and
L2 = 500 m. The no-fly zones are modeled using the inequality constraints given by equation (38).
The OCP may be formulated as shown in (41).

min
u∈U

∫ t f

0
V 2(t)dt, u = [V(t),ψ(t), tf]

T

subj.to ẋ(t) = f(x(t),V (t),ψ(t)) , x(0) = x0

x(t f ) = xT

(x−2500)2 +(y−2500)2 ≥ L2
1

(x−4300)2 +(y−4300)2 ≥ L2
2

Vmin <V (t)<Vmax

|ψ(t)|< π

(objective)

(dynamics)

(final state constraint)

(no-fly zone constraint)

(no-fly zone constraint)

(velocity constraint)

(yaw angle constraint)

(41)

The problem was solved using Legendre-Gauss-Lobatto collocation scheme using K = 100 discretiza-
tion points. The flight time of the optimized trajectory was computed t f = 1255.7 s. The trajectory suc-
cessfully avoids two no-fly zones and commands lower velocity in a region where tailwind increases
the total velocity in the direction of flight. Figure 3 shows the optimized trajectory and Figure 4 shows
the UAV’s state and control profiles. The trajectory resembles the analytical results of the shortest
path 2D problem known as a Dubins path proved by application of Pontryagin’s maximum principle.
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Figure 3 – A 2D trajectory avoiding no-fly zones.
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Figure 4 – State and control vector profiles.
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5.5 Quadcopter minimum energy problem considering flight battery state of charge
Considering fully nonlinear 6-DoF EoM, the following example will explore a quadcopter’s energy
optimal trajectory with respect to a cost function presented in subsection 5.1. In some cases, mission
requirements may exceed capabilities of a considered vehicle, especially increased battery capacity
increases possible flight time, but can be unnecessary for shorter missions where objectives such
as maximum payload may be more relevant. Increased vehicle mass due to battery increases the
battery capacity based on battery energy density ρbat . The OCP can now facilitate mass as an
optimization parameter. Computation of the battery State of Charge (SoC) is simplified to be SoC =
100(1−Ec(t f )/Ebat), where Ebat is total battery energy at an initial time. The quadcopter is required
to arrive to a destination with at least SoCreq charged battery. Mass of the vehicle has to be now
optimized to satisfy this constraint and minimize total consumed energy.

min
u∈U

Ec(t f ), u = [u1(t),u2(t),u3(t),u4(t), t f ,m]T

subj.to ẋ(t) = f(x(t),u1(t),u2(t),u3(t),u4(t)) , x(0) = x0

Ebat = E0 +ρbat (m−m0)

m > m0

x(t f ) = xT

Ωmin < ω1(t),ω2(t),ω3(t),ω4(t)< Ωmax

Umin < u1(t),u2(t),u3(t),u4(t)<Umax

hmin < h < hmax

SoC > SoCreq

|φ(t)|< φmax

|θ(t)|< θmax

|ψ(t)|< π

(objective)
(dynamics)
(battery energy)
(minimal mass constraint)
(final state constraint)
(angular speed constraint)
(control input constraint)
(altitude constraint)
(minimum SoC requirement)
(roll angle constraint)
(pitch angle constraint)
(yaw angle constraint)

(42)

For this example given by the OCP (42), we assume the UAV can be equipped with a number of
18650 Li-ion Battery Cells (2500 mAh) with weight 45 g and energy of 9.25 Wh. Thus we can compute
the capacity density to be ebat = 200000 As ·kg−1 or energy density of ρbat = 205.5 Wh ·kg−1. The
initial mass of the UAV is assumed to be m0 = 1.7 kg with initial energy of single battery cell E0 = 33
kJ. The physical properties of the quadcopter are adopted from [4]. The drone mission has following
specifications:

1. The UAV starts in hover mode at position x0 = [5000,150,50] m over land.

2. The target for inspection is located at offshore location xT = [150,5000,10] m.

3. The UAV rotors have a maximum angular speeds of Ωmax = 800 rad · s−1.

4. Angular speeds lower than Ωmin = 400 rad · s−1 are considered to be insufficient for UAV flight.

5. The control inputs are constrained to Umin =−100 rad · s−2, Umax = 100 rad · s−2.

6. A constraints are given for maximum pitch θmax =
π

6 rad and roll φmax =
π

6 rad angles of the UAV.

7. The mission is constrained by maximum hmax = 400 m and minimum hmin = 10 m allowed altitude.

8. The UAV is required to arrive with at least 50% charged battery, thus SoCreq = 0.5.

During the mission, the UAV is under influence of wind field given by equation (43) with constants
C1 =C2 =W specifying nominal wind speed.

~W(x,y) =

[
−C1y√
x2 + y2

C2x√
x2 + y2

]T

, C1,C2 ∈ R (43)

The wind profile power law from subsection 5.3. was accounted for with zA = 40 m and n = 0.110. The
results are given for nominal wind speeds W = 10 m · s−1, W = 5 m · s−1 and W = 1 m · s−1. All solutions
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were computed using 280 time steps and an optimal solution was found for all the considered cases.
For wind speeds of W = 10 m · s−1, the total consumed energy was Eopt = 35.14 kJ with time of flight
t f = 249.83 s. The mass of the UAV was increased to m = 1.821 kg to satisfy state of charge re-
quirements at the destination. Similarly, wind speed W = 5 m · s−1 yields Eopt = 44.26 kJ, t f = 295.47 s
and m = 1.856 kg. With wind conditions equal to W = 1 m · s−1, optimal solution of Eopt = 55.57 kJ,
t f = 342.37 s and m = 1.908 kg was found. Figure 5 shows a 3D plot of all trajectories and their projec-
tion to a 2D plot with a wind vector field. It can be seen that with an increasing nominal wind speed,
the trajectories increasingly follow the field. Figure 6 shows the comparison of all three selected cases

x[m]

0
1000

2000
3000

4000
5000

6000

y[m]

0
1000

2000
3000

4000
5000

6000

z[m]

0
100
200
300
400
500
600
700
800

W = 10m s 1

W = 5m s 1

W = 1m s 1

(a)

0 1000 2000 3000 4000 5000 6000
x[m]

0

1000

2000

3000

4000

5000

6000

y[
m

]
Start

Finish

W = 10m s 1

W = 5m s 1

W = 1m s 1

(b)

Figure 5 – Obtained trajectories in a 3D plot (a) and 2D projection (b) with variety of wind conditions.

with respective velocity profile and battery state of charge. It can be seen that the battery mass is
optimized such that the battery is discharged exactly to 50 % at the endpoint to satisfy the mission’s
operational constraint. Control inputs in Figure 7 are bound to the propeller angular velocities as
ω̇ j = u j, ∀ j ∈ 1, . . . ,N. To solve the trajectory optimization problem, it took IPOPT 1166, 742 and 324
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Figure 6 – The velocity and SoC profiles.
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Figure 7 – Auxiliary control inputs.

iterations respectively for cases W = 10 m · s−1, W = 5 m · s−1 and W = 1 m · s−1. The convergence of
IPOPT with regards to the objective function value is shown in Figure 8. Both the objective tolerance
and the relative inequality and equality constraint tolerances were set to 1e−6. Figures 9 shows the
individual position and velocity components, angular rates and Euler angles.
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Figure 8 – Objective value convergence with respect to IPOPT iterations.
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Figure 9 – The optimized position, velocities, orientation and angular velocities of the quadcopter.

6. Conclusion
A framework for UAV trajectory optimization using direct transcription methodology was presented.
The work has introduced generalized high-fidelity model for multirotor UAVs so that fits various com-
monly used drone configurations and presented an interpretable objective function addressing total
energy consumption of the vehicle and possibilities to model terrain and no-fly zone constraints.
Since wind conditions strongly affect the capabilities and flight times of UAVs, wind fields are mod-
eled and accounted for in the optimization problem definition. The first presented example shows
a trajectory computed using simplified kinematic model with two active no-fly zone constraints. The
second presented example shows optimization using a fully nonlinear quadcopter model in a wind
field while posing constraint on the final battery state of charge. An optimal battery mass is subse-
quently found to meet the mission requirements. Both cases are solved using the state-of-the-art
Gauss pseudospectral methods transcribing the OCP to a parameter optimization problem on a set
of discrete points known as the collocation points. Utilizing the terrain constraint was achieved only
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when using restricted number of points and it is thus not included in the presented example but shows
promising future direction for extending the OCP applicability.
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