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Abstract 

The Robird is a bird-like drone or ornithopter that generates both lift and thrust by flapping its wings. Its 
appearance, size and weight, but specifically its flapping flight performance resemble that of a Peregrine falcon. 
This paper describes an extension of Prandtl’s Lifting-line method from steady flow to unsteady flow to predict 
the unsteady lift and thrust of the robotic bird. The extension comprises the derivation of the Kutta-Joukowski  
Theorem for unsteady flow, an unsteady Kutta condition and the representation of the wake as a stationary 
transpiration surface carrying a time-dependent dipole distribution, which instantaneous strength is solved from 
the spanwise distribution of the circulation of the lifting line at earlier times. For the cases considered, the 
numerical method predicts that both the section-lift and section-thrust of the wing vary with time. The cycle-
averaged section-lift and section-thrust, as well as the cycle-averaged overall lift and thrust, are mostly positive 
during the flapping flight. Cycle-averaged distributions of sectional circulation, lift and upwash, as well as cycle-
averaged overall lift depend on Strouhal number, not on pitch amplitude, while the distribution of cycle-
averaged sectional thrust, as well as cycle-averaged overall thrust depend on Strouhal number and on pitch 
amplitude. The topology of the wake as predicted by the unsteady-lifting-line method, is compared to results 
of experiments performed with 2D3C PIV applied to a wind-tunnel model including a full-scale port-side wing 
of the Robird. For the downstroke, the near-wake of the flapping wing is a free shear layer, which vorticity 
distribution has the orientation as predicted by the vortex distribution determined by the unsteady-lifting-line 
method The results of the measurements and of the predictions show topological similarities. 

Keywords: unsteady flow, aerodynamics of birds, lifting-line method, unsteady Kutta condition, PIV 
measurements 

 

1. Introduction 

The Robird [1] is an ornithopter-type of drone developed by Clear Flight Solutions (CFS) that was 
designed to appear like a Peregrine falcon during its flight, see Fig. 1. The drone has the same 
dimensions and weight as the life falcon, and produces lift and thrust by flapping its wings. Birds 
instinctively sense that a falcon in flapping flight is on the hunt, making the Robird very suitable for 
bird control at airports, garbage dumps, crop fields, etc. Its foam wings render the Robird different 
from ornithopters of similar size with foil-type rather than airfoil-type wings, such as the Robo Raven 
[2].  

   

Figure 1 – Robird [1]: Design robotic bird based on Peregrine falcon (left). Typical airfoil sections wing Robird. 
(right). 
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Furthermore, the Robird wings do not pitch passively nor consist of hinged individually moving parts 
like the Festo Smartbird [3]. The size of these drones is in a different class than successful flapping 
Micro-Aerial Vehicles (MAV’s), such as the Delfly [4] and the insect-sized robotic fly [5]. 

The performance of flapping wings is dominated by unsteady flow phenomena, which makes the 
aerodynamics inherently complex. Experimental work on birds and bird-like flapping wings has 
shown the importance of mechanisms such as leading-edge vortices for slow flight and hovering 
flight [6–8]. The challenge of formulating an aerodynamic model for flapping wings is to account for 
the dynamics of the wake in order to accurately predict the aerodynamic performance [9]. Many 
models for the wake have been proposed in the past [10], [11] and [12]. The results of these models 
share one important characteristic: the generation of thrust is associated with a wake that induces a 
jet-like flow. This jet-like flow has been confirmed to be present in the wake of the Robird with both 
numerical methods [13] and experimental methods [14] and [15]. The model of the wake to apply 
may depend on the bird species, and may even vary with flight speed for specific birds [16]. The 
accuracy of the wake models is influenced significantly by vortex dynamics, which makes the 
prediction of lift and drag sensitive to vortex dynamics [17].  

Though the Robird proves that flapping flight by a robotic bird is possible, the theory behind the 
aerodynamics of flapping flight is not yet fully understood. The goal of the present study, carried out 
since 2012, is to contribute to a better understanding of the aerodynamics of flapping wing propulsion 
of a robotic bird like the Peregrine-falcon based Robird. In [18] the lift curve has been measured of 
a scale model of the wing of the Robird in order to obtain the lift and drag polar for steady, non-
flapping flow conditions. This established the basic aerodynamics of the wing, with its highly 
cambered thin airfoil sections (similar to the ones of flying machines in the early part of last century), 
see Fig. 1, for the robotic bird operating at Reynolds numbers in the range of 30×104 to 105. CFD 
analysis [13] performed for 2D flow about the heaving/pitching Robird airfoils shown in Fig. 1, gave 
first insight in the unsteady aerodynamics of such cambered airfoils, as well as the relation between 
the flow in the wake and the generation of thrust. Further experimental studies [14], [15] and [19] 
focused on the wake downstream of a (full-scale) half-model of the Robird during flapping motion, 
using: (i) a wake rake, as well as a 5-hole probe; (ii) flow visualization, and; (iii) PIV (Particle Image 
Velocimetry) measurements, respectively. In [19] a simple unsteady potential flow model for 2D 
heaving/pitching motion has been presented developed for investigating whether a representation 
of the wake of a flapping wing by a vortex sheet results in the jet-like type of distribution of the axial 
velocity, generated by a reverse von Kármán vortex street. Such a velocity distribution in the wake 
is indicative for the generation of thrust by a flapping wing. 

For the subsequent experimental part of the study an advanced PIV set-up has been designed and 
realized for the upgraded Aeroacoustic Wind Tunnel [20] at the University of Twente (open-jet test 
section w × h = 0.9m × 0.7m). In [21] the PIV campaign to obtain wake velocity data for the wake of 
the Robird port-side wing has been pursued further. In addition, an unsteady lifting-line method has 
been developed for the 3D flow about flapping wings. 

The goal of the present study is to apply the unsteady lifting-line method to the Robird flapping motion 
in order to analyse its aerodynamics. Furthermore, numerical results are compared to results of new 
PIV measurements in the wake of the wind-tunnel model of the Robird.  

The present paper is structured as follows: Section 2 introduces the Robird, the kinematics of the 
flapping wing of the Robird and the simplifications that will be made for the computational part of this 
study. Section 3 describes the computational method followed by section 4 with a description on how 
the developed lifting-line method for unsteady flow is applied to the Robird. This section is followed 
by section 5 which describes the experimental methodology. Finally, the results of the numerical 
method and of the experiment are compared in section 6, followed by the conclusions of the present 
investigation in section 7. 

 

2. Kinematics Flapping Motion Wing Robotic Bird 

The motion of a bird has many degrees of freedom. In the present study the description of the motion 
of the wings is restricted to the motion of a rigid wing with just two degrees of freedom: flapping 𝛾(𝑡) 
and pitching 𝜃(𝑡). In a 2D frame work, the motion of a section of the wing is equivalent to a heaving 

ℎ̇(𝑡) pitching 𝜃(𝑡) motion, see Fig. 2. 
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Figure 2 – Flapping/pitching motion of bird wings [13]. Left: definition flapping motion. Center Free stream and 
overall dimensions.  Right: definition of equivalent 2D heaving/pitching motion airfoil sections. 

 
The flapping motion 𝛾(𝑡) is approximated as a harmonic motion of constant frequency, defined by 

  𝛾(𝑡) = 𝛾1 + 𝛾0sin2𝜋
𝑡

𝑇
,          (1) 

with 𝛾(𝑡) the wing shoulder angle of the pitch axis as function of time, 𝛾0 is the amplitude of the 

flapping motion and 𝛾1is the zero-position (off-set) of the wing. The period T of the motion equals T 
= 1/f, with f the frequency of the flapping motion. The pitching motion, coupled to the plunging motion, 
is a harmonic motion of the same frequency, defined as 

  𝜃(𝑡) = 𝜃1 + 𝜃0sin⁡(2𝜋
𝑡

𝑇
+ 𝜙),         (2) 

with 𝜃(𝑡) the pitching angle around the pitch axis as function of time, 𝜃0 the amplitude of the pitch, 
𝜃1 the off-set of the pitch angle and 𝜙 the phase shift between flapping motion and pitching motion. 

It is assumed that all motion parameters, i.e., 𝛾0, 𝛾1, 𝜃0, 𝜃1 and 𝜙 are constant along the pitch axis.  
Note that here the pitch angle θ does not depend on the spanwise coordinate 𝜂, i.e., nor geometric 
twist, nor aerodynamic twist, due to the flexibility of the wing, is considered. Furthermore, also the 
zero-lift angle of attack 𝛼0 of the airfoil sections is assumed to have a constant value along the entire 

span of the wing. Therefore, since the parameter 𝛼0 represents the effect of the camber of the airfoil 
sections on the lift curve, the variation of the airfoil sections along the span is neglected, only a single, 
representative, value of the zero-lift angle of attack 𝛼0 is taken into account. 
The height ℎ(𝑡), above the horizontal plane, of the ¼-chord point of the airfoil section at distance 𝑦 
from the pivotal point of the plunging motion, is a function of 𝛾0 and 𝛾1: 

  ℎ(𝑦, 𝑡) = 𝑦sin𝛾(𝑡), for 𝑦 ∈ [−𝑏/2, 𝑏/2],      (3) 
with b the full span of the wing. 
 
In the lifting-line method to be discussed, the boundary conditions are applied on a stationary 
reference surface, here the plane z = 0. The effect of the motion of the wing is accounted for through 
the so-called effective angle of attack 𝛼𝑒𝑓𝑓(𝑦, 𝑡) of the airfoil sections along the span of the wing, see 

Fig. 3: 

𝛼𝑒𝑓𝑓(𝑦, 𝑡) = 𝜃(𝑡) + arctan⁡(
−1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
).      (4) 

 

                              
Figure 3 – Effective angle of attack 𝛼𝑒𝑓𝑓(𝑦, 𝑡) due to plunging/pitching motion. Green arrow indicates direction 

of plunging motion. Angle of attack due to plunging motion equals 𝛼𝑝𝑙𝑢𝑛𝑔𝑒 = arctan⁡(
−1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
). 

 
The contribution of the plunge (heave) of the airfoil sections due to the flapping motion of the wing 
follows from the time variation of the position of the flapping/pitching wing with respect to the off-set 
angle 𝛾1. With 𝑦 the distance from the axis of rotation, 

 ℎ(𝑦, 𝑡) = 𝑦sin(𝛾1 + 𝛾0sin
2𝜋𝑡

𝑇
) = ℎ1(𝑦) + ℎ0(𝑦) sin (

2𝜋𝑡

𝑇
) ≈ |𝑦|𝛾1 + |𝑦|𝛾0sin

2𝜋𝑡

𝑇
,   (5) 

so that ℎ1(𝑦) = |𝑦|𝛾1 and ℎ0(𝑦) = |𝑦|𝛾0. It then follows: 

  
𝜕ℎ(𝑦,𝑡)

𝜕𝑡
= |𝑦|𝛾02π𝑓cos

2𝜋𝑡

𝑇
.         (6) 
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Substitution in the expression for the effective angle of attack, given in Eq. (4), yields 

 𝛼𝑒𝑓𝑓(𝑦, 𝑡) = [𝜃1 + 𝜃0 sin (
2𝜋𝑡

𝑇
+ 𝜙)] − arctan⁡(𝜋

𝑓2|𝑦|𝛾0

𝑈∞
cos

2𝜋𝑡

𝑇
) for 𝑦 ∈ [−𝑏/2, 𝑏/2].   (7) 

Note that the angle of attack of the configuration is included in the effective angle of attack 𝛼𝑒𝑓𝑓. 

 
In terms of dimensionless quantities, the effective angle of attack of a wing section becomes: 

 𝛼𝑒𝑓𝑓(
𝑦

𝑏/2
,
𝑡

𝑇
) = [𝜃1 + 𝜃0 sin (2𝜋

𝑡

𝑇
+ 𝜙)] − arctan⁡(𝜋St

|𝑦|

𝑏/2
cos2𝜋

𝑡

𝑇
),    (8a) 

with the Strouhal number defined as 

   St ≡
𝑓2ℎ0(𝑏/2)

𝑈∞
,         (8b) 

in terms of the distance 2ℎ0(𝑏/2) = 𝑏𝛾0 covered by the wing tip during one period of the motion. Eq. 
(8) shows that the effective angle of attack depends on four independent parameters, i.e., 

  𝛼𝑒𝑓𝑓 = 𝛼𝑒𝑓𝑓(
𝑦

𝑏/2
,
𝑡

𝑇
; 𝜃1, 𝜃0, 𝜙, St).       (9) 

 
Figure 4, left plot, presents for a representative set of parameters the effective angle of attack, during 

one cycle, at the tip of the wing 
𝑦

𝑏/2
= ±1. The right plot of Fig. 4 illustrates the spanwise distribution 

of the effective angle of attack along the span of the wing. 

     
Figure 4 – Effective angle of attack 𝛼𝑒𝑓𝑓(𝑦/0.5𝑏, 𝑡/𝑇) due to plunging/pitching motion. Left: as function of t/T at 

wing tips y/(b/2)= ±1. Right: as function of y/(b/2) at six moments during half a cycle, from upstroke t/T ∈
[0.0.25] to downstroke t/T ∈ [0.25,0.5].  𝜃1 = 0, 𝜃0 = 10⁡deg, 𝜙 = 90⁡deg, St = 0.3343. 

 
The left plot in Fig. 4 shows that the pitching motion, 90 deg out of phase with the plunging motion, 
reduces the amplitude of the angle of attack due to the plunge. It shows that at the wing tips the 
effect of the plunge dominates 𝛼𝑒𝑓𝑓, however, the reduction of 𝛼𝑒𝑓𝑓 by the pitch mitigates the danger 

of flow separation. Note that, for this set of kinematic parameters, along the whole span, the plunge 
angle as well as the pitch angle and therefore the effective angle of attack, equal zero at t/T = 0.25 
and 0.75 in the cycle, see also right plot in Fig. 4.  

The derivative of 𝛼𝑒𝑓𝑓(
𝑦

𝑏/2
,
𝑡

𝑇
) with respect to t/T follows from Eq. (8) as: 

 
𝜕

𝜕𝑡
𝛼𝑒𝑓𝑓 (

𝑦

𝑏/2
,
𝑡

𝑇
) = 2𝜋[𝜃0 cos (2𝜋

𝑡

𝑇
+ 𝜙) +

𝜋St
|𝑦|

𝑏/2
sin2𝜋

𝑡

𝑇

1+(𝜋St
|𝑦|

𝑏/2
cos2𝜋

𝑡

𝑇
)
2].      (10) 

For the case of 𝜙 = 90 deg, it follows that the derivative equals zero for t/T = 0, 0.5 and 1. The 
effective angle of attack at the start of the cycle and at the end of the cycle follow as 

 𝛼𝑒𝑓𝑓 (
𝑦

𝑏/2
,
𝑡

𝑇
) = 𝜃1 + 𝜃0 − arctan⁡(𝜋St

|𝑦|

𝑏/2
), at t/T = 0 and 1, while    (11) 

 𝛼𝑒𝑓𝑓 (
𝑦

𝑏/2
,
𝑡

𝑇
) = 𝜃1 − 𝜃0 + arctan⁡(𝜋St

|𝑦|

𝑏/2
), at t/T = 0.5.     (12) 

Therefore, for the present case, at the wing tips, the minimum value of the effective angle of attack 
𝛼𝑒𝑓𝑓,𝑚𝑖𝑛 = −36.4 deg at t/T = 0 and 1, while the maximum value equals 𝛼𝑒𝑓𝑓,𝑚𝑎𝑥 = 36.4 deg at t/T = 

0.5. The rather high value of 36.4 deg for the instantaneous effective angle of attack at the wing tips 
is subject to uncertainties in the measured position of the tips of the (slightly flexible) wing of the 
wind-tunnel model. For higher values of 𝜃0, these maximum and minimum values of 𝛼𝑒𝑓𝑓 decrease 

in magnitude. 
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The right plot of Fig. 4 presents the distribution of the effective angle of attack 𝛼𝑒𝑓𝑓 (𝑦/
1

2
𝑏, 𝑡/𝑇) as 

function of the spanwise coordinate, at six instants in time during half a flapping cycle. Since the 
angle of attack due to plunging decreases with decreasing y, the effect due to pitch and that due to 

plunge cancel at a certain value of y: here 𝛼𝑒𝑓𝑓 = 0 at 𝑦/
1

2
𝑏 ≈ 0.17, at all times. Subsequently, in 

the central part of the wing, 𝛼𝑒𝑓𝑓 = 𝛼𝑝𝑖𝑡𝑐ℎ + 𝛼𝑝𝑙𝑢𝑛𝑔𝑒, changes sign, as is the loading of the inboard 

sections: the effect of pitching dominates the effective angle of attack. So, for the first half of the 
flapping cycle, about 1/6-th of the span of the wing features a decreasing 𝛼𝑒𝑓𝑓, while both outboard 

panels experience an increasing 𝛼𝑒𝑓𝑓. For the second half of the cycle this is the other way around. 

The expression for 𝛼𝑒𝑓𝑓 (
𝑦

𝑏/2
,
𝑡

𝑇
), Eq. (8), shows that, to first approximation, the effective angle of 

attack is close to linear in the spanwise coordinate 
|𝑦|

𝑏/2
. This is confirmed in the right plot in Fig. 4,  

 
 

3. Computational Method 

3.1 Governing Equations 

In the present study, it is assumed that the flow is incompressible, unsteady, inviscid and irrotational. 

The latter implies that the vorticity 𝜔⃗⃗ ≡ ∇⃗⃗ × 𝑢⃗ = 0⃗ , leading to the introduction of the velocity potential 

Φ(𝑥, 𝑦, 𝑧, 𝑡), such that 𝑢⃗ (𝑥, 𝑦, 𝑧, 𝑡) ≡ ∇⃗⃗ Φ(𝑥, 𝑦, 𝑧, 𝑡), which satisfies the irrotationality condition implicitly. 
For incompressible flow the continuity equation reduces to the condition that the flow is divergence-

free: ∇⃗⃗ . 𝑢⃗ = 0. Therefore ∇2Φ = 0, i.e., the velocity potential Φ(𝑥, 𝑦, 𝑧, 𝑡) satisfies Laplace’s equation: 

  
𝜕2Φ

𝜕𝑥2 +
𝜕2Φ

𝜕𝑦2 +
𝜕2Φ

𝜕𝑧2 = 0.          (13) 

In the present case the wing is slender (high-aspect ratio AR), thin and mildly cambered. Therefore, 
the wing is modelled as an infinitesimally-thin flat lifting surface Swi, like sketched in Fig. 5 (left). The 
wake is attached to the trailing edge (TE) as the time-dependent wavy surface Swa. For small-
amplitude motion the lifting surface and its time-dependent wake are projected on the plane z = 0, 
where linearized boundary conditions are imposed, e.g., [22]. The wing reference surface Swi + Swa, 
i.e., 𝑥 ∈ [0, 𝑐], 𝑦 ∈ [−𝑏/2, 𝑏/2] carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) with the edge conditions 

𝜇(𝑥 = 0, 𝑦, 𝑡) = 0 and 𝜇(𝑥,±𝑏/2, 𝑡) = 0. The wake reference surface 𝑥 ∈ [𝑐,∞], 𝑦 ∈ [−𝑏/2, 𝑏/2] also 
carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) with the edge condition 𝜇(𝑥,±𝑏/2, 𝑡) = 0 and along the 

connection between wing and wake the continuity condition 𝜇(𝑐−, 𝑦, 𝑡) = and⁡𝜇(𝑐+, 𝑦, 𝑡). Along the 
edge far downstream 𝜇(𝑥 = ∞, 𝑦, 𝑡) ≠ 0 except for 𝑦 = ±𝑏/2, which corresponds to the vortex 
filament that formed at the very start of the motion of the wing, a very long time ago. 
The dipole distribution 𝜇(𝑥, 𝑦, 𝑡), a scalar quantity, is equivalent to a vortex distribution 𝛾 (𝑥, 𝑦, 𝑡), a 
surface-vector quantity, through the relation:  

  𝛾 (𝑥, 𝑦, 𝑡) = 𝑒 𝑛 × ∇⃗⃗ 𝜇,          (14) 
Eq. (14) implies that the surface vector 𝛾  is tangential to the plane z = 0 and is simultaneously normal 

to the gradient ∇⃗⃗ 𝜇 of the dipole distribution. The vector ∇⃗⃗ 𝜇 is a surface vector perpendicular to the 
iso-contours of the dipole strength. Vortex lines, similar to streamlines, are defined as curves 
everywhere tangential to 𝛾 . Therefore, it follows from Eq. (14) that vortex lines coincide with iso-
dipole contours on the plane z = 0. So, conveniently, an iso-dipole plot on the surface is equivalent 
to a plot of vortex lines on the plane z = 0. 
A discontinuity in the dipole distribution corresponds to a vortex filament along the curve along which 
the dipole strength is discontinuous, with the strength of the vortex filament equal to the local value 
of the discontinuity in the dipole distribution.  
The formulation in terms of the dipole distribution intrinsically obeys Kelvin-Helmholtz’s vortex laws. 
Specifically, any vortex line on 𝑆(𝑥, 𝑦, 𝑡) is either a closed curve in itself, or a curve on 𝑆(𝑥, 𝑦, 𝑡) that 
merges into a vortex filament and subsequently emerges from the vortex filament, in that way forming 
a closed vortex line. 
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Figure 5 – Starboard side flapping-wing configuration at certain moment in cycle. Left: Flapping-pitching thin 
wing with wavy wake. Right: Stationary reference surface for application unsteady transpiration boundary 
conditions on wing and wake. Note that origin is on QC. 
 

The velocity potential Φ(𝑥 , 𝑡), at time t at point 𝑥 , is split in the contribution 𝑈∞𝑥 due to the uniform 
free stream and a (perturbation) velocity potential 𝜑𝑑(𝑥 , 𝑡) due to the dipole distribution on 𝑆𝑤𝑖 + 𝑆𝑤𝑎, 
i.e., 
 Φ(𝑥 , 𝑡) = 𝑈∞𝑥 + 𝜑𝑑(𝑥 , 𝑡), with 𝜑𝑑(|𝑥 | → ∞, 𝑡) → 0.      (15)  
 
The velocity potential 𝜑𝑑(𝑥 0, 𝑡) induced at 𝑥 0, at time t, by the dipole distribution 𝜇(𝑥 , 𝑡), on the surface 
𝑆𝑤𝑖 + 𝑆𝑤𝑎, equals the surface integral: 

 𝜑𝑑(𝑥 0, 𝑡) =
1

4𝜋
∬ 𝜇(𝑥 , 𝑡)

𝑒 𝑛.(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑆(𝑥 ),        (16) 

with 𝑥 = 𝑥𝑒 𝑥 + 𝑦𝑒 𝑦. In Eq. (16) 𝑒 𝑛 = 𝑒 𝑧 is the unit vector perpendicular to the surface 𝑆𝑤𝑖 + 𝑆𝑤𝑎, i.e., 

the plane z = 0,  𝜇(𝑥 , 𝑡) = 𝜇(𝑥, 𝑦, 𝑡) and 𝑑𝑆(𝑥 ) = 𝑑𝑥𝑑𝑦. 
 

The velocity 𝑢⃗ 𝑑(𝑥 0, 𝑡) = ∇⃗⃗ 𝜑𝑑(𝑥 0, 𝑡) induced by the dipole distribution 𝜇(𝑥, 𝑦, 𝑡) on 𝑆𝑤𝑖 + 𝑆𝑤𝑎 follows 

from taking the derivative of Eq. (16) with respect to 𝑥 0. The derivation of obtaining ∇⃗⃗ 𝜑𝑑(𝑥 0, 𝑡) is 
given amongst others in Ref. 22. It yields: 

 𝑢⃗ 𝑑(𝑥 0, 𝑡) =
1

4𝜋
∬

𝛾⃗⃗ (𝑥,𝑦,𝑡)×(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑥𝑑𝑦 −

1

4𝜋
∫ 𝜇(𝑥, 𝑦, 𝑡)

(𝑥 0−𝑥 )×𝑑𝑙⃗⃗⃗⃗ (𝑥 )

|𝑥 0−𝑥 |3𝜕(𝑆𝑤𝑖+𝑆𝑤𝑎)
,  (17)  

with, in the first term 𝛾 (𝑥, 𝑦, 𝑡) = 𝑒 𝑧 × ∇⃗⃗ 𝜇, given in Eq. (14), the vortex distribution on the surface 

carrying the dipole distribution 𝜇(𝑥, 𝑦, 𝑡). The reference surface representing the wing and its wake, 
i.e., 𝑆𝑤𝑖 + 𝑆𝑤𝑎, form a vortex sheet in 3D space. 
The second term in Eq. (17) is recognised as the law of Biot and Savart for the velocity induced by 
a vortex filament in 3D space. In this case the vortex filament is along the boundary (i.e., the closed 
edge 𝜕(𝑆𝑤𝑖 + 𝑆𝑤𝑎) of the reference surface of the wing and its wake. The strength of the vortex 

filament equals the local strength 𝜇(𝑥 ∈ 𝜕(𝑆𝑤𝑖 + 𝑆𝑤𝑎), 𝑡) of the dipole distribution, while 𝑑𝑙⃗⃗  ⃗(𝑥 ) is an 
infinitesimal element of the vortex filament running along its edge. 
The surface integrals in Eqs. (16) and (17) are singular integrals, i.e., when 𝑥 0 → 𝑥 = 𝑥𝑒 𝑥 + 𝑦𝑒 𝑦, a 

point on the dipole/vortex sheet, the integrands of the surface integrals tend to infinity. However, the 
result of the evaluation of these integrals, i.e., the velocity potential and the velocity, is finite, though 
discontinuous. To obtain this result, the integrals are evaluated as Cauchy-Principle-Value (CPV) 
integrals [22].  
For 𝑥 0 ∈ 𝜕(𝑆𝑤𝑖 + 𝑆𝑤𝑎), the second term in Eq. (17) for the induced velocity due to the vortex filament, 
is singular, like 1/r, with r the distance from the filament. For a curved vortex filament there is an 
additional singular term that behaves like lnr. In the present investigation both these terms are 
omitted from the induced velocity, or rather avoided by limiting the distance to the filament to a certain 
cut-off value. 
The result for the velocity potential, of this CPV procedure, is that for 𝑥 0 ∈ 𝑆𝑤𝑖+𝑤𝑎(𝑥, 𝑦): 

 𝜑𝑑(𝑥 0, 𝑡) = ±
1

2
𝜇(𝑥0, 𝑦0, 𝑡) +

1

4𝜋
CPV∬ 𝜇(𝑥, 𝑦, 𝑡)

𝑒 𝑧.(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑥𝑑𝑦     (18) 

and for the induced velocity: 

𝑢⃗ 𝑑(𝑥 0, 𝑡) = ±
1

2
𝛾 (𝑥0, 𝑦0, 𝑡) × 𝑒 𝑧 +

1

4𝜋
CPV∬

𝛾⃗⃗ (𝑥,𝑦,𝑡)×(𝑥 0−𝑥 )

|𝑥 0−𝑥 |3𝑆𝑤𝑖+𝑆𝑤𝑎
𝑑𝑥𝑑𝑦 −

1

4𝜋
∫ 𝜇(𝑥, 𝑦, 𝑡)

(𝑥 0−𝑥 )×𝑑𝑙⃗⃗⃗⃗ (𝑥 )

|𝑥 0−𝑥 |3𝜕(𝑆𝑤𝑖+𝑆𝑤𝑎)
, (19) 

with 𝛾 × 𝑒 𝑧 = ∇⃗⃗ 𝜇 =
𝜕𝜇

𝜕𝑥
𝑒 𝑥 +

𝜕𝜇

𝜕𝑦
𝑒 𝑦. In Eqs. (18) and (19) the ± symbol indicates that the quantity is 

positive on the upper side of 𝑆𝑤𝑖+𝑤𝑎(𝑥, 𝑦) and negative on the lower side of 𝑆𝑤𝑖+𝑤𝑎(𝑥, 𝑦).  
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3.2 Bernoulli’s Equation 

The momentum equation for irrotational, incompressible, inviscid flow, not subjected to a body force 
field, like gravity, reads: 

   
𝜕𝑢⃗⃗ 

𝜕𝑡
+ ∇⃗⃗ 1

2
|𝑢⃗ |2 + ∇⃗⃗ 

𝑝

𝜌∞
= 0⃗ .        (20) 

Employing 𝑢⃗ = ∇⃗⃗ Φ, then results, upon integration with respect to space, in Bernoulli’s equation for 
incompressible, irrotational, inviscid flow not subjected to body forces, i.e., 

   
𝜕Φ

𝜕𝑡
+ 1

2
|∇⃗⃗ Φ|

2
+

𝑝

𝜌∞
= 𝐶(𝑡),        (21) 

with C(t) independent of position in space, so, either a constant, or the same function of time in the 
whole space. In the present case, the constant is evaluated in the far- field, which yields 𝐶(𝑡) = 𝐶 =
1

2
𝑈∞

2 +
𝑝∞

𝜌∞
, so that with Φ(𝑥 , 𝑡) = 𝑈∞𝑥 + 𝜑𝑑(𝑥 , 𝑡) and ∇⃗⃗ Φ(𝑥 , 𝑡) = 𝑈∞𝑒 𝑥 + 𝑢⃗ 𝑑(𝑥 , 𝑡) and with the pressure 

coefficient 𝐶𝑝(𝑥 , 𝑡) defined as 𝐶𝑝(𝑥 , 𝑡) ≡
𝑝(𝑥 ,𝑡)−𝑝∞

1

2
𝜌∞𝑈∞

2
,        (22) 

   𝐶𝑝(𝑥 , 𝑡) = −
2

𝑈∞
2

𝜕𝜑𝑑

𝜕𝑡
− [2

𝑒 𝑥.𝑢⃗⃗ 𝑑

𝑈∞
+

|𝑢⃗⃗ 𝑑|2

𝑈∞
2 ].       (23 

For points on the wing and on the wake in the plane z = 0, it follows 

  𝐶𝑝(𝑥, 𝑦, 𝑡) = −
2

𝑈∞
2

𝜕𝜑𝑑

𝜕𝑡
−

2

𝑈∞
𝑢𝑑(𝑥, 𝑦, 𝑡) −

2

𝑈∞
2 |𝑢⃗ 𝑑(𝑥, 𝑦, 𝑡)|2.     (24) 

In this expression, the first two terms are linear, while the third term is quadratic, which is neglected 
in the linearized formulation. 

3.3 Boundary Conditions 

In order to solve for the dipole distribution on the wing Swi, the boundary condition is the normal-
velocity condition, i.e., the no-penetration condition 
  (𝑢⃗ − 𝑢⃗ 𝑤𝑖). 𝑒 𝑛 = 0, for points on Swi,        (25) 
which assures that, in normal direction, the wing surface moves at the same speed as the flow. In 
order to impose this condition, it has to be converted into a transpiration condition to be applied at 
the reference surface. In the present study, in which a lifting-line method has been developed, this 
is not needed. 
On the wake surface Swa, both the dipole distribution and the wake surface are to be solved for. 
Therefore, two boundary conditions have to be imposed: the normal-velocity boundary condition, Eq. 
(25) and the condition that the wake surface does not carry a load, i.e., that the pressure difference 
across the wake surface equals zero. Equation (24) applied at Swa, yields: 

∆𝐶𝑝(𝑥, 𝑦, 𝑡) = −
2

𝑈∞
2

𝜕∆𝜑𝑑

𝜕𝑡
−

2

𝑈∞
∆𝑢𝑑(𝑥, 𝑦, 𝑡) −

2

𝑈∞
2 ∆[|𝑢⃗ 𝑑(𝑥, 𝑦, 𝑡)|2], for points on Swa.   (26)  

 

3.4 Prandtl’s Lifting-Line Theory 
The lifting-line theory of Prandtl for high-aspect-ratio wings in steady, incompressible, irrotational 
(potential) flow, can be phrased in terms of the dipole/vortex-distribution formulation described in 
section 3.1, see Fig. 5 (right). From Eq. (14) it follows that, on the reference surface z = 0 of the wing 

and its wake, the vortex distribution 𝛾 (𝑥, 𝑦) can be expressed in terms of the partial derivatives of 

the dipole distribution 𝜇(𝑥, 𝑦) as: 

  𝛾 (𝑥, 𝑦) = 𝑒 𝑧 × ∇⃗⃗ 𝜇 = −
𝜕𝜇

𝜕𝑦
𝑒 𝑥 +

𝜕𝜇

𝜕𝑥
𝑒 𝑦.       (27) 

The spanwise component 𝛾𝑦(𝑥, 𝑦) of the wing vortex distribution is lumped into the circulation Γ𝑐⁡/4(𝑦) 

of the wing, through 

  Γ𝑐⁡/4(𝑦) ≡ ∫ 𝛾𝑦(𝑥, 𝑦)𝑑𝑥
𝑐

0
= ∫

𝜕𝜇

𝜕𝑥
𝑑𝑥 = 𝜇(𝑐, 𝑦)

𝑐

0
, ), for 𝑦 ∈ [−𝑏/2, 𝑏/2],   (28) 

where the (leading-)edge condition 𝜇(0, 𝑦) = 0 has been imposed. For each section y = constant of 

the wing, the circulation Γ𝑐⁡/4(𝑦) is positioned at the center-of-vorticity (COV) of the vortex distribution 

𝛾𝑦(𝑥, 𝑦), with 

  𝑥𝐶𝑂𝑉(𝑦)Γ𝑐⁡/4(𝑦) ≡ ∫ 𝑥𝛾𝑦(𝑥, 𝑦)𝑑𝑥
𝑐

0
.       (29) 

Prandtl placed the circulation at the ¼-chord line of the wing. This can be related to the classical 
complex-function solution of the incompressible 2D potential flow about a flat plate at angle of attack, 
e.g. [25]. Alternatively, it can be related to Prandtl’s thin-airfoil solution for incompressible 2D 
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potential flow about a flat plate at angle of attack, e.g. [26]. From this solution it follows 𝛾𝑦(𝑥) =

𝐴√(𝑐 − 𝑥)/𝑥, with constant A proportional to the free stream velocity 𝑈∞and the angle of attack. 

                           
Figure 6 – Prandtl’s lifting-line theory for incompressible potential flow about high-aspect ratio wing at angle of 
attack. Note that origin coordinate system is on lifting line. 

 
Substitution of this solution in Eq. (29) leads to 𝑥𝐶𝑂𝑉 = 𝑐/4. The dipole distribution on the wing and 
wake in Fig. 5 (right) is now, see Fig. 6 

   𝜇(𝑥, 𝑦) = Γ𝑐⁡/4(𝑦), for 𝑥 ∈ [0,∞) and 𝑦 ∈ [−𝑏/2, 𝑏/2],   (30) 

equivalent to a spanwise vortex filament of strength Γ𝑐

4

(𝑦), with Γ𝑐⁡/4(±𝑏/2) = 0, and a continuous 

distribution of the chordwise component 𝛾𝑥(𝑦) = −
𝑑

𝑑𝑦
Γ𝑐⁡/4(𝑦) of the vortex distribution on the region 

downstream of the lifting line. Finally, formally, there is also a vortex filament of strength −Γ𝑐⁡/4(𝑦) 

along the line x = ∞, z = 0, for 𝑦 ∈ [−𝑏/2, 𝑏/2], the so-called start vortex, but its induced velocity at 
the lifting line is infinitesimally small. Note that a vortex line starting in the lifting-line running in 
spanwise direction, emerges at some point along the span, turns abruptly in chordwise direction, 
continues straight on until at infinity downstream it meets the start vortex filament. There it turns 
abruptly in negative y-direction and runs chordwise upstream, until it meets the lifting-line vortex 
filament, where it turns abruptly in positive y-direction until it arrives at its initial point, completing the 
closed circuit, obeying the Kelvin-Helmholtz vortex laws. 

 
In Prandtl’s lifting-line method the distribution of the circulation Γ𝑐⁡/4(𝑦) along the lifting line is 

obtained from an integro-differential equation that evolves from an intricate combination of the 
relation for sectional lift ℓ(𝑦) [N/m], obtained from the Kutta-Joukowski Theorem for the force on a 
vortex filament and the expression for the sectional lift in terms of the slope 𝑎0 = 2𝜋 of the sectional 
lift vs angle-of-attack curve, obtained from thin-airfoil theory. 
The Kutta-Joukowski Theorem, provides the sectional lift ℓ(𝑦) in terms of the circulation Γ𝑐⁡/4(𝑦) of 

the wing, the free-stream velocity 𝑈∞ and the density 𝜌∞, as 

   ℓ(𝑦) = 𝜌∞𝑈∞Γ𝑐⁡/4(𝑦).         (31) 

Thin-airfoil theory gives the lift coefficient 𝑐ℓ(𝑦) in terms of the slope 
𝑑

𝑑𝛼
𝑐ℓ(𝑦) = 𝑎0(𝑦) of the lift curve 

𝑐ℓ(𝛼), the dynamic pressure 𝑞∞ = 1

2
𝜌∞𝑈∞

2 , the chord c(y) of the airfoil section and the effective angle 

of attack of the airfoil section: 

   ℓ(𝑦) ≡ 1

2
𝜌∞𝑈∞

2 𝑐ℓ(𝑦)𝑐(𝑦),        (32) 

with the lift coefficient 𝑐ℓ(𝑦) expressed as 

  𝑐ℓ(𝑦) = 𝑎0(𝑦)(𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) +
𝑤𝑖𝑛(𝑦)

𝑈∞
),      (33) 

with α the geometric angle of attack of the wing, 𝛼0(𝑦) the zero-lift angle of attack of the airfoil 
sections making up the wing, β(y) the spanwise distribution of the twist angle of the wing, with at the 
root of the wing β(0) = 0 and finally, win(y) the z-component of the velocity induced at the lifting line 
by the trailing vortex sheet. Combining Eqs. (31)-(33) yields 

  Γ𝑐

4

(𝑦) =
1

2
𝑈∞𝑐(𝑦)𝑎0(𝑦)[𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) +

𝑤𝑖𝑛(𝑦)

𝑈∞
], for 𝑦 ∈ [−𝑏/2, 𝑏/2]   (34) 

The upwash 𝑤𝑖𝑛(𝑦), induced by the vortex distribution 𝛾𝑥(𝑦) = −
𝑑

𝑑𝑦
Γ𝑐⁡/4(𝑦) on the trailing vortex 

sheet, (𝑥 ∈ [0,∞), 𝑦 ∈ [−𝑏/2, 𝑏/2], 𝑧 = 0), see Fig. 6, follows from Eq. (19) as 
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 𝑤𝑑(𝑥0, 𝑦0, 𝑧0 = 0) =
1

4𝜋
CPV∫ [−(𝑦0 − 𝑦)

𝑑

𝑑𝑦
Γ𝑐⁡/4(𝑦)∫

𝑑𝑥

[(𝑥0−𝑥)2+(𝑦0−𝑦)2]3/2

∞

0
] 𝑑𝑦

𝑏/2

−𝑏/2
  

The integral with respect to x can be evaluated analytically, which leads to 

 𝑤𝑑(𝑥0, 𝑦0, 𝑧0 = 0) =
−1

4𝜋
CPV∫

1

𝑦0−𝑦

𝑑

𝑑𝑦
Γ𝑐⁡/4(𝑦) [1 +

𝑥0

[𝑥0
2+(𝑦0−𝑦)2]1/2] 𝑑𝑦

𝑏/2

−𝑏/2
. 

The upwash to be substituted in Eq. (34) equals 𝑤𝑖𝑛(𝑦0) = 𝑤𝑑(𝑥0 = 0, 𝑦0, 𝑧0 = 0), so that 

 𝑤𝑖𝑛(𝑦) =
−1

4𝜋
CPV∫

1

𝑦−𝜂

𝑑

𝑑𝜂
Γ𝑐⁡/4(𝜂)𝑑𝜂

𝑏/2

−𝑏/2
. 

Substitution in Eq. (34) yields the integro-differential equation for Γ𝑐⁡/4(𝑦): 

 Γ𝑐⁡/4(𝑦) =
1

2
𝑈∞𝑐(𝑦)𝑎0(𝑦)[𝛼 − 𝛼0(𝑦) + 𝛽(𝑦) −

1

4𝜋𝑈∞
CPV∫

1

𝑦−𝜂

𝑑

𝑑𝜂
Γ𝑐⁡/4(𝜂)𝑑𝜂

𝑏

2

−
𝑏

2

], for 𝑦 ∈ [−𝑏/2, 𝑏/2]. (35) 

 

3.5 Kutta-Joukowski Theorem for Unsteady Flow 

The flow about a flapping wing is an unsteady flow problem. In the case of unsteady, incompressible, 
potential flow, Laplace’s equation, Eq. (13), is the governing equation for the velocity potential, like 
for steady, incompressible, potential flow. The unsteadiness enters the problem through the 
boundary conditions, i.e., the motion of the wing. Furthermore, as a consequence of the temporal 
variation of the circulation, the wake is now a vortex sheet of strength depending on the history of 
the circulation of the wing, i.e., of the history of the motion of the wing.  

For unsteady flow, Eq. (31) has to be adjusted since the classical Kutta-Joukowski Theorem is for 
steady flow only. For unsteady potential flow, Eq (24) for the pressure coefficient 𝐶𝑝(𝑥, 𝑦, 𝑡) has been 

derived from the momentum equation for unsteady, incompressible potential flow. From Eq. (24) the 
pressure jump across the wing reference surface Swi is derived, to first order in the perturbations, 
as: 

  ∆𝐶𝑝(𝑥, 𝑦, 𝑡) ≡
𝑝(𝑥,𝑦,𝑧=0−)−𝑝(𝑥,𝑦,𝑧=0+)

1
2
𝜌∞𝑈∞

2 =
2

𝑈∞
[
𝜕Δ𝜑

𝜕𝑥
+

1

𝑈∞

𝜕Δ𝜑

𝜕𝑡
] + ℎ. 𝑜. 𝑡., with  (36) 

𝜑(𝑥, 𝑦, 𝑧, 𝑡) the perturbation velocity potential and Δ𝜑 ≡ 𝜑(𝑥, 𝑦, 𝑧 = 0+) − 𝜑(𝑥, 𝑦, 𝑧 = 0−). In the 

present formulation the reference wing, as well as the wake, carry a dipole distribution 𝜇(𝑥, 𝑦, 𝑡), so 
that the jump in the perturbation potential can be expressed as Δ𝜑(𝑥, 𝑦, 0, 𝑡) = 𝜇(𝑥, 𝑦, 0, 𝑡). Then Eq. 
(36) becomes 

  Δ𝐶𝑝(𝑥, 𝑦, 0, 𝑡) =
2

𝑈∞
[
𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
]        (37) 

To derive an expression for the Kutta-Joukowski Theorem for unsteady flow about thin wings, the 
pressure difference given in Eq. (37) is integrated along the section of the wing reference surface, 
situated in the plane z = 0, i.e., 

 
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)
∫ Δ𝐶𝑝(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
=

2

𝑐(𝑦)𝑈∞
∫ [

𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
]𝑑𝑥

𝑐(𝑦)

0
.     (38) 

Since, ∫
𝜕𝜇

𝜕𝑥
(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
= 𝜇(𝑐(𝑦), 𝑦, 𝑡) = Γ𝑐⁡/4(𝑦, 𝑡), it follows: 

 
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)𝑈∞
[Γ⁡𝑐/4(𝑦, 𝑡) +

1

𝑈∞

𝜕

𝜕𝑡
∫ 𝜇(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
]      (39) 

Consider the integral in Eq. (39). Partial integration gives, with 
𝜕𝜇

𝜕𝑥
= 𝛾𝑦: 

∫ 𝜇(𝑥, 𝑦, 𝑡)𝑑𝑥
𝑐(𝑦)

0
= [𝜇(𝑥, 𝑦, 𝑡)𝑥]|0

𝑐(𝑦)
− ∫ 𝑥

𝜕

𝜕𝑥
𝜇(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
= Γ⁡𝑐/4(𝑦, 𝑡)𝑐(𝑦) − ∫ 𝑥𝛾𝑦(𝑥, 𝑦, 𝑡)𝑑𝑥

𝑐(𝑦)

0
. 

Therefore, with the definition of the center-of-gravity of the spanwise component of the vortex 
distribution defined in Eq. (29), Eq. (39) results in  

 
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)𝑈∞
[Γ𝑐⁡/4(𝑦, 𝑡) +

1

𝑈∞

𝜕

𝜕𝑡
{Γ⁡𝑐/4(𝑦, 𝑡)𝑐(𝑦) {1 −

𝑥COV(𝑦,𝑡)

𝑐(𝑦)
}]     (40) 

Similar to the argumentation following Eq. (29), it is assumed that 
𝑥COV(𝑦,𝑡)

𝑐(𝑦)
≈

1

4
. Then it follows 

 
ℓ(𝑦,𝑡)

1

2
𝜌∞𝑈∞

2 𝑐(𝑦)
=

2

𝑐(𝑦)𝑈∞
[Γ𝑐⁡/4(𝑦, 𝑡) +

3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ⁡𝑐/4(𝑦, 𝑡)],  

so that the Kutta-Joukowski Theorem for unsteady flow reads: 

  𝑙(𝑦, 𝑡) = 𝜌∞𝑈∞ [Γ𝑐⁡/4(𝑦, 𝑡) +
3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐⁡/4(𝑦, 𝑡)].      (41) 
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The relation presented in Eq. (41) is different from the relation for the section lift coefficient as for 

example given in [27], which instead of the factor 
3

4
 features the factor 1.0 in the added=-mass 

contribution to the section lift.  
 
 

3.6 Lifting-Line Theory for Unsteady Flow 
For the case of steady flow, the lifting-line integro-differential equation follows from the combination 
of Eqs. (31), (32) and (33). For unsteady flow Eq. (31), the classical Kutta-Joukowski Theorem, is 
replaced by its unsteady version. Then Eq. (34) becomes 

Γ𝑐⁡/4(𝑦, 𝑡) +
3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐⁡/4(𝑦, 𝑡) =

1

2
𝑈∞𝑐(𝑦)𝑎0(𝑦)[𝛼𝑒𝑓𝑓(𝑦, 𝑡) − 𝛼0(𝑦) + 𝛽(𝑦) +

𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
],  

for 𝑦 ∈ [−𝑏/2, 𝑏/2] and t > 0.          (42) 
In Eq. (42) the upwash 𝑤𝑖𝑛(𝑦, 𝑡) due to the dipole distribution on the wing between lifting line at x = 
c(y) /4 and the trailing edge and the dipole distribution on the wake, which runs from x = xTE = c(y) 
to infinity downstream, see Fig. 5-right, equals 

𝑤𝑖𝑛(𝑦, 𝑡) =
1

4𝜋
∫ 𝑑𝜂[∫

(𝑦−𝜂)𝛾𝑥(𝜂,𝑡)

[𝑥2+(𝑦−𝜂)2]
3
2

𝑐(𝑦)

𝑐(𝑦)/4

𝑏

2

−
𝑏

2

𝑑𝑥 + ∫
(𝑦−𝜂)𝛾𝑥(𝑥,𝜂,𝑡)+𝑥𝛾𝑦(𝑥,𝜂,𝑡)

[𝑥2+(𝑦−𝜂)2]
3
2

∞

𝑐(𝑦)
𝑑𝑥], for 𝑦 ∈ [−𝑏/2, 𝑏/2]. (43) 

Note that between the lifting line at x = c /4 and the trailing edge at x = c, the wing reference surface 

carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) = Γ𝑐⁡/4(𝑦, 𝑡), which corresponds to a vortex distribution 𝛾𝑥(𝑦, 𝑡) 

with a chordwise component only.  
Equation (43) is an integro-differential equation for Γ𝑐⁡/4(𝑦, 𝑡). However, now the situation is more 

complicated than for the case of steady flow in that the strength (circulation) Γ𝑐⁡/4(𝑦, 𝑡) of the lifting 

line is time-dependent, while the wake carries a dipole distribution 𝜇(𝑥, 𝑦, 𝑡) that depends not only 

on y, but on x, y and t, so that both components of the vortex distribution, i.e., 𝛾𝑥 = −
𝜕𝜇

𝜕𝑦
 and 𝛾𝑦 =

𝜕𝜇

𝜕𝑥
 

have to be considered. 
 

3.7 Boundary Conditions on Wake 
The wake is subject to two boundary conditions, see section 3.2. In the present study, the condition 
that the wake surface should be a stream surface, Eq. (25), is omitted since the true wake surface 
is not part of the formulation, i.e., just the wake reference surface z = 0 is considered. Note that once 
the dipole distribution has been determined, the planar wake reference surface features a 
distribution of non-zero normal velocity that might be used to update the geometry of the wake 
surface in an iterative manner. 

The second condition, Eq. (26), that across the wake the jump in pressure Δ𝐶𝑝 equals zero, is 

employed to determine the spatial and temporal strength of the wake dipole distribution. 
Equation (37) applied to the wake reference surface reads: 

 Δ𝐶𝑝(𝑥 > 𝑥𝑇𝐸 , 𝑦, 𝑡) =
2

𝑈∞
[
𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
] = 0, for 𝑦 ∈ [−𝑏/2, 𝑏/2] and t > 0.   (44) 

Eq. (44) is recognized as a first-order wave equation in (x,t)-space, for 𝜇(𝑥, 𝑦, 𝑡) convecting with 

constant velocity 𝑈∞ in x-direction. At time t the solution equals:  

 𝜇(𝑥, 𝑦, 𝑡) = Γ𝑐⁡/4 (𝑦, 𝑡 −
𝑥−𝑥𝑇𝐸

𝑈∞
), for 𝑥 ∈ [𝑥𝑇𝐸 , 𝑥𝑇𝐸 + 𝑈∞𝑡], 𝑦 ∈ [−𝑏/2, 𝑏/2] and t > 0.  (45) 

 
The classical Lifting-line method does not require a Kutta condition at the trailing edge: Actually, in 
the problem formulation there is not a solid part of the wing nor a trailing edge. For the unsteady-
flow version of the lifting-line method there is a trailing edge, at x = c, which forms the connection 
between the wing and the wake. This implies that a Kutta condition is to be imposed on the solution. 
The condition that is imposed is that at the trailing edge, the pressure difference between upper and 
lower side of the surface equals zero at all times. This implies that the linearized equation given in 
Eq. (44) is not only applied on the wake surface, but also at the trailing edge. Therefore, the Kutta 
condition for unsteady flow reads:  

  Δ𝐶𝑝(𝑥 = 𝑥𝑇𝐸 = 𝑐, 𝑦, 𝑡) =
2

𝑈∞
[
𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
] = 0, i.e., 

𝜕𝜇

𝜕𝑥
+

1

𝑈∞

𝜕𝜇

𝜕𝑡
= 0,    (46) 

for 𝑥 = 𝑥𝑇𝐸 = 𝑐, 𝑧 = 0, along the span of the trailing edge, for all times. 
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3.8 Spanwise Lift and Drag Distributions 
The spanwise distribution of section lift ℓ(𝑦, 𝑡) is given in Eq. (41), repeated here, in terms of the 
unsteady Kutta-Joukowski Theorem.  

  𝑙(𝑦, 𝑡) = 𝜌∞𝑈∞ [Γ𝑐⁡/4(𝑦, 𝑡) +
3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐⁡/4(𝑦, 𝑡)].      (41) 

The section drag 𝑑(𝑦, 𝑡) follows from application of the Kutta-Joukowski Theorem to the lifting-line 
vortex filament subject to an upwash velocity component: 

𝑑(𝑦, 𝑡) = −𝜌∞𝑈∞ [
𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
−

1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
] Γ𝑐⁡/4(𝑦, 𝑡)      (47) 

The term inside the square brackets is the velocity in z-direction, relative to the flapping motion of 
the lifting line, consisting of the contribution induced by the dipole distribution on the wing and on 
the wake, with the upwash corrected for the time-derivative of the position of the lifting line. Once 
the circulation distribution of the lifting-line has been determined from the Unsteady-Lifting-Line 
integro-differential equation, Eq. (42), the velocity induced at the lifting line by the dipole distribution 
follows as 
𝑤𝑖𝑛(𝑦,𝑡)

𝑈∞
=

2

𝑎0(𝑦)

𝑐̅

𝑐(𝑦)

1

𝑈∞𝑐̅
[Γ𝑐⁡/4(𝑦, 𝑡) +

3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐⁡/4(𝑦, 𝑡)] − [𝛼𝑒𝑓𝑓(𝑦, 𝑡) − 𝛼0(𝑦) + 𝛽(𝑦)]   (48) 

Equation (4) gives the effective angle 𝛼𝑒𝑓𝑓(𝑦, 𝑡) of attack as the sum of the pitch angle 𝜃(𝑡) and the 

plunge angle −
1

𝑈∞

𝜕ℎ(𝑦,𝑡)

𝜕𝑡
. Substitution in Eq. (47) yields: 

𝑑(𝑦, 𝑡) = −𝜌∞𝑈∞Γ𝑐⁡/4(𝑦, 𝑡) [
2

𝑎0(𝑦)

𝑐̅

𝑐(𝑦)

1

𝑈∞𝑐̅
{Γ𝑐⁡/4(𝑦, 𝑡) +

3

4

𝑐(𝑦)

𝑈∞

𝜕

𝜕𝑡
Γ𝑐⁡/4(𝑦, 𝑡)} − {𝜃(𝑡) − 𝛼0(𝑦) + 𝛽(𝑦)}]  (49) 

The section lift coefficient 𝑐𝑙(𝑦, 𝑡) and section drag 𝑐𝑑(𝑦, 𝑡) coefficient then follow by dividing left- and 

right-hand side of Eqs. (41) and (49) by 1
2
𝜌∞𝑈∞

2 𝑐(𝑦). 

 

4 Application Lifting-Line Method for Unsteady Flow 

4.1 Parameters of flapping wing motion 

The present Unsteady Lifting-Line Method has been applied to simulate the flow about the flapping 
wing of the wind-tunnel model of the Robird at a free stream velocity of 𝑈∞= 6 m/s, flapping frequency 
f = 3 Hz and spanwise uniform pitching with amplitude 𝜃0 = 0(2.5)20 deg, without off-set (𝜃1= 0 deg), 

with phase angle 𝜙⁡= 90 deg. The amplitude of the flapping motion equals 𝛾0 = 34.2 deg, with offset 
𝛾1 = 7.5 deg. All parameters of the flapping motion are listed in Table 1. Note that the Strouhal 
number St, defined in Eq. (8b) is a combination of flapping/pitching frequency f, free-stream velocity 
𝑈∞ and the amplitude 2ℎ0 (which is proportional to 𝛾0) of the flapping motion at the wing tips. 

Dimension analysis shows that, using (𝜌∞, 𝑈∞, 𝑏), the dimensionless aerodynamic properties A of 
the flapping wing motion can be expressed as ⁡𝐴 = 𝐴(𝑆𝑡, 𝜃0, 𝛾1, 𝜃1, 𝜙, 𝛼, AR). In the present study the 
focus is on the dependency of the aerodynamic properties on the amplitude of the pitching motion 
𝜃0 and on the Strouhal number St. 

 

 Table 1 – Flapping wing parameters in application Unsteady-Lifting-Line Method. 

𝛾1 7.5 deg 𝑈∞ 6 m/s 2ℎ0(𝑦/0.5𝑏 = ±1) 0.67 m 

𝛾0 34.2 deg f 3 Hz St 0.3343 

𝜃1 0 α 0   

𝜃0 0(2.5)20 deg     

𝜙 90 deg     

 

4.2  Geometry simplified wing 
The spanwise distribution of the chord c(y) of the Robird wing (Fig. 1) has been simplified to a piece-
wise linear distribution, symmetric with respect to the plane-of-symmetry y = 0. The half-span is 
subdivided in three parts: 
𝑦 ∈ [0.0, 0.182] m     : 𝑐(𝑦) = 0.2 m 

𝑦 ∈ [0.182, 0.476⁡] m: 𝑐(𝑦) = [0.200(0.476 − 𝑦) + 0.102(𝑦 − 0.182)]/0.294 m 
𝑦 ∈ [0.476, 0.560⁡] m: 𝑐(𝑦) = [0.102(0.560 − 𝑦) + 0.010(𝑦 − 0.476)]/0.084 m 
The distribution is shown in Fig. 7. 
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Figure 7 - Spanwise distribution of chord 𝑐(𝑦/0.5𝑏) of simplified planform of wind-tunnel model Robird.  

 

Table 2 - Geometric parameters of simplified flapping-wing configuration. 

b 1.12 m 

c0 0.2 m 

𝑐̅  0.1527 m 

AR 7.34 

 
For reasons of convenience of modeling, the wing of the simplified configuration extends from the 
root of the wind-tunnel model to the plane of symmetry y = 0, i.e., the gap between the root of the 
wind-tunnel model and the fuselage of the configuration is closed and the wing span runs from the 
plane of symmetry to the wing tip. 
For the wind-tunnel model the axis of rotation of the flapping motion is located at a distance of 0.04 
m from the plane of symmetry of the configuration. For the simplified configuration the axis of rotation 
of the flapping motion of the wing is located in the plane of symmetry, i.e., along the x-axis.  

 

4.3 Discretization flapping-wing configuration 

For the purpose of application of the present Unsteady-Lifting-Line method to the simplified flapping-
wing configuration, the linearized (transpiration type of) boundary conditions are imposed on a 
rectangular domain of span b and chord 𝑐̅ in the plane z = 0, but, the effect of c(y) is retained in the 
formulation. The free-stream velocity is parallel to this plane, directed in positive x-direction (α = 0). 
The lifting line of the simplified flapping-wing configuration is located along the quarter-chord line 
(𝑥 = 0,y ∈ [-b/2,b/2],z = 0). The trailing edge (TE) is located at (𝑥 = 3𝑐̅/4,y ∈ [-b/2,b/2],z = 0). The 
lifting line is divided into N = 80 elements, here in a uniform distribution. The chord c(y) of the airfoil 
sections and the effective angle of attack 𝛼𝑒𝑓𝑓(𝑦, 𝑡) are assigned to the mid-points (collocation points) 

of the N elements on the lifting line. The circulation Γ𝑐⁡/4(𝑦, 𝑡) of the lifting line is discretised by 

element-wise quadratic representations f(y) based on Γ𝑐⁡/4(𝑦, 𝑡), at three consecutive collocation 

points: 𝑦 = 𝑦𝑘−1, 𝑦𝑘 and 𝑦𝑘+1, with Γ𝑐⁡/4(𝑦𝑘 , 𝑡), for k = 1(1)N as unknowns to be determined. The N 

unknown Γ𝑐⁡/4(𝑦𝑘 , 𝑡)’s are solved for in the Unsteady Lifting-Line method. Across the edges of the 

elements, the element-wise quadratic representations f(y) are continuous in function value and in 
first derivative, guaranteeing a continuous, second-order accurate representation of the dipole 
distribution 𝜇(𝑥, 𝑦, 𝑡) on wing and wake.  

    
  Figure 8 – Time-stepping procedure progressed to time 𝑡 = 𝐿Δ𝑡, L = 5. 
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Figure 8 shows that between the lifting line at x = 0 and the TE at 𝑥 = 3𝑐̅/4, the dipole distribution 

𝜇(𝑥, 𝑦, 𝑡) = Γ𝑐⁡/4(𝑦, 𝑡), i.e., 𝜇(𝑥, 𝑦, 𝑡) is constant in x-direction, therefore, the discretization consists of 

a chord-wise strip conveying the circulation of the lifting line (LL) to the trailing edge (TE). The 
discretization of the wake, situated downstream of the TE, is tied to the time-stepping procedure 
used to obtain the time-dependent solution. For each new increment Δ𝑡 in time, the trailing edge of 

the wake domain is extended by a spanwise strip of width Δ𝑥 = 𝑈∞Δ𝑡. Then the dipole distribution 
on the wake is shifted in downstream direction, such that at time t: 𝜇(𝑥, 𝑦, 𝑡) = 𝜇(𝑥 − 𝑈∞Δ𝑡, 𝑦, 𝑡 − Δ𝑡). 

The number of time steps per period t equals 20, i.e., 
Δ𝑡

𝑇
= 0.05. In the present study four full periods 

of the flapping motion have been simulated, i.e., the calculation comprises 80 time-steps. 
 

5 Experimental Set-up 

A model that represents the port-side of the Robird is placed in the open jet of the University of 
Twente (UT) Aeroacoustics wind tunnel, as shown in Fig. 9 [20]. In the model the full-size port-side 
wing of a Robird is mounted on a flapping mechanism. Three measurement volumes are defined at 
one chord-length downstream of the wing trailing edge, perpendicular to the incoming flow field. Each 
volume is considered in a separate measurement. The purpose of the present setup is to measure 
the velocity flow field in the wake of the Robird wing at a number of Strouhal numbers St for several 
pitching amplitudes 𝜃0. The goal of the measurement is twofold: (i) to confirm that a jet-like flow 
establishes during the flapping cycle, and (ii) to identify vortical structures traveling downstream in 
the wake. 

                                 
Figure 9 - Full-scale Robird wing (black with checker pattern in root and tip region) mounted in open 
section of UT aeroacoustics wind tunnel. Also visible: calibration plate, blue articulated optic arm; 
two Phantom V611 high-speed cameras. Flow is from right to left. 

 

5.1 Parameters Experiments 

The parameters of the experiments are presented in Table 3. The Strouhal numbers St were: (i) St 
= 0.19, a value lower than the value for the Robird in cruising flight; (ii) St = 0.124, a value 
corresponding to the cruising flight condition and (iii) St = 0.31, the highest value achievable with the 
present setup. The values for the pitching amplitude 𝜃0 could not be chosen, as the flapping 
mechanism did not allow for independent variation of the pitching angle 𝜃(𝑡) nor of the flapping angle 
𝛾(𝑡). In a previous study [28], the flapping angle of an airfoil section at 𝑦/0.5𝑏 = 0.45 was studied.  

     Table 3 – Matrix of parameters experiments. 

𝑈∞[m/s] f [Hz]  𝜃0 at y/0.5b = 0.45 [deg] St Re 

6 3 7.5 0.31 0.8×105 

8 3 7 0.24 1.1×105 

10 3 7 0.19 1.3×105 

The pitching angle was found to mainly depend on flight velocity. The pitching angle 
amplitudes given in Table 3 are the values from this study. The Reynolds number is based 
on the mean chord of the wing. 
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5.2 Equipment and Procedure Experiments 

Stereo-PIV measurements were performed to validate the results of the numerical method developed 
in the present study. Figure 10 shows a schematic top-view and side-view of the experimental setup. 
The measurement volume is imaged by two Phantom V611 cameras, each fitted with an AF Nikkor 
60 mm f/2.8 D lens. Bandpass filters (532 nm) were fitted to each lens to reduce noise caused by 
reflections. The cameras have a resolution of 1200 pixels by 800 pixels. Lavision V4 Scheimpflug 
mounts were used to align the focal plane with the measurement plane. The cameras were 
positioned in a forward-scatter arrangement, with one camera on either side of the measurement 
volume. The opening angle β was approximately 50 deg. The measurement volume was illuminated 
with a Photonics Industries DM30 high-speed laser. The laser-light sheet thickness was 
approximately 5mm at the beam waist. The beam waist was aligned with the center of the 
measurement volume. The flow was seeded with liquid Di-Ethyl-Hexyl-Sulphate (DEHS) particles of 
approximately 1 µm in diameter. Measurements were performed at 600 Hz during 10 flapping cycles. 
Each measurement cycle was triggered by a trigger-pulse generated by the flapping device, which 
phase-locked the measurements. Initial calibration and perspective correction were carried out using 
a two-level calibration plate. Further errors were eliminated a posteriori with disparity mapping.  

 

5.3 Data Acquisition and Processing 

The data was processed with the DaVis 10.1 software package. Before processing, the calibration 
for each position (tip, middle and root) was corrected with a planar self-calibration routine that relies 
on disparity mapping. Prior to the PIV analysis, reflections were suppressed with a Gaussian time 
filter. The PIV analysis was performed with window shift and window deformation enabled. Two 
coarse passes with a window size of 48 pixels × 48 pixels were followed by a single fine pass with a 
window size of 24 pixels × 24 pixels. A spatial auto-mask was used to mask both the wing as well 
as poorly illuminated areas. The vector fields were post-processed with a universal outlier-detection 
algorithm [29]. Outliers were replaced with interpolated data. All datasets were phase-averaged over 
the 10 cycles measured. Finally, all measured flow structures are assumed to be convected with the 
flow, allowing the reconstruction of the wake shape in three-dimensional space. Vortical structures 
are assumed to be frozen in time, according to Taylor’s frozen wake hypothesis. Although this 
hypothesis is demonstrably incorrect [17], on paper, it allows for the best representation of data 
acquired over time. 

   
Figure - 10 Schematic of setup (a) top view: orientation of laser sheets, laser optics (blue box) and cameras 
(two grey objects at left side). (b) oblique view: three measurement volumes used, one at wing tip in blue, one 
at mid-wing section in black and one at root in red. 
 

6  Results 

6.1 Numerical Simulations 

6.1.1 Wake Topology 
Figure 11 presents iso-contours of the dipole distribution 𝜇(𝑥, 𝑦, 𝑡 = 4𝑇)/(𝑈∞𝑐̅) on the wing and on 
the wake of the simplified configuration at t/T = 4, i.e., after 4 periods of the flapping/pitching motion, 
with magnitude in pitching motion of 𝜃0 = 0(2.5)20 deg. As reference, Fig. 11 includes, for every 5 deg 
increment in 𝜃0, the corresponding spanwise distributions of effective angle-of-attack during half an 
upstroke-downstroke cycle of the wing. The large bluish regions are formed during the upstroke (t/T 

∈ (0.75,1.0/0.0,0.25)), while the larger reddish regions are formed during the downstroke (t/T ∈

(0.25,0.5,0.75)).  
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On the wing the instantaneous dipole distribution 𝜇(𝑥, 𝑦, 𝑡 = 4𝑇)/(𝑈∞𝑐̅] is constant in x-direction. On 
the wake the dipole distribution is clearly periodic in space, with dimensionless spatial period 
U∞/(fb/2), which is proportional to 1/St. Also, the dipole distribution is symmetric with respect to the 
plane y = 0: μ(x,-y,t/T) = μ(x,y,t/T). Consequently, the x-component (chordwise) γx= -∂μ/∂y of the 
vortex distribution is anti-symmetric: ∂μ/∂y(x,-y,t/T)=-∂μ/∂y(x,y,t/T). The y-component (spanwise) γy= 
∂μ/∂x of the vortex distribution is symmetric with respect to the plane y = 0: ∂μ/∂x(x,-y,t/T)=∂μ/∂x 
(x,y,t/T). 
Since iso-dipole contours coincide with vortex lines, see section 3.1 and Eq. (14), in Fig. 11 the short 
black arrows tangential to the iso-contours, indicate the direction of the vortex lines on the wake and 

on the wing: 𝛾 = 𝑒 𝑧 × ∇⃗⃗ 𝜇 = −
𝜕𝜇

𝜕𝑦
𝑒 𝑥 +

𝜕𝜇

𝜕𝑥
𝑒 𝑦. In the iso-plots, the reddish regions with closed clockwise 

running vortex lines, forming a ring-like vortex in the plane of the wake, are regions with high values 
of 𝜇/(𝑈∞𝑐̅), which are produced during the upstroke of the wing. The bluish regions with closed, 
counter-clockwise running vortex lines, are regions with negative values of 𝜇/(𝑈∞𝑐̅), also a ring-like 
vortex of opposite direction, which are produced during the downstroke of the wing. Locally, the 

denser the iso-𝜇 lines, the larger ∇⃗⃗ 𝜇 and the stronger the vortex distribution. The port side of the 
wake features the mirror-image of the pattern observed on the starboard part of the wake. 

 
Figure 11 – Iso-contours of dipole distribution on wing and wake of simplified configuration, for conditions listed 

in Tables 1 and 2, for St = 0.3343, 𝜃0 = 0(2.5)20 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. Flow is from left to right. Iso-contour 

values range from 𝜇/(𝑈∞𝑐̅) ∈ [−0.98,1.4] in ten equal steps. Column on right shows spanwise distribution 
effective angle-of-attack as function of t/T for every 5 deg increment in pitch angle amplitude. Note that at time 

t, 𝜇 at location x – xTE in wake equals Γ𝑐⁡/4(𝑦, 𝑡 − (𝑥 − 𝑥𝑇𝐸)𝑈∞/). 
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From the starboard side of the wing, vortex lines start and subsequently proceed in downstream 
direction. The more outboard starting vortex lines turn around to return to the part of the trailing edge 
next to the tip. Vortex lines starting from the part of the trailing edge closer to the plane of symmetry 
(root) do not return to the trailing edge. These vortex lines continue downstream, meandering around 
a sequence of regions with closed, alternatingly clock-wise and counter-clockwise running, vortex 
lines. 
 
For the lower values of the pitch amplitude 𝜃0, vortex lines do not continue in downstream direction, 
but instead cross the y-axis (perpendicularly) to encircle the like-signed vortex region on the other 
side of the plane of symmetry. 
The direction of the vortex lines given by the small black arrows, show that the bluish regions of low 
values of the dipole distribution, formed during the upstroke, at the wing tips correspond to upstream 
directed arrows on the starboard side and downstream directed arrows at the port side of the wing. 
This corresponds to tip vortices that, from a downstream point of view turn clockwise on the starboard 
side and counter-clockwise on the port side. For the downstroke of the wing motion, the situation is 
the other way around: counter-clockwise directed vortex at the starboard side and clock-wise 
directed vortex at the port side. 
Figure 11 also illustrates that the spanwise distribution of the effective angle of attack determines 
the topology of the vortex distribution in the wake. Below a of 𝜃0 = 10 to 12.5 deg, the regions with 
high, similarly the ones with low, values of the dipole distribution occur in pairs, one region on the 
starboard side and one equal-signed region on the port-side of the wake. For higher values of the 
pitch amplitude 𝜃0, for which in the root part of the wing the effective angle of attack has the opposite 
sign of the effective angle of attack for the rest of the wing, the weaker and weaker, two equal-signed 
regions are separated more and more by a region with opposite-signed values of the dipole 
distribution. For pitch amplitude of 𝜃0 = 20 deg, the central region of the wing, with opposite-sign 
dipole distributions are almost as strong as the ones near the wing tips. With increasing pitch 
amplitude𝜃0 , the vortex wake becomes more complex in topology and the ring-like vortex regions 
become weaker, which results in lower lift and lower thrust.  

 

6.1.2 Instantaneous spanwise distributions and time histories 
Figure 12 (right) presents the spanwise distribution of the upwash w𝑖𝑛(y/(b/2), 𝑡/𝑇) at the lifting line 

for 𝜃0 = 10 deg. At the same moments in the flapping cycle, the spanwise distribution of the 
circulation Γ𝑐

4
(𝑦/0.5𝑏), 𝑡/𝑇) is given in Fig. 12-left, also for 𝜃0 = 10 deg. During the whole cycle the 

central (root) part of the lifting line carries positive circulation, while the wing tip portions carry 
negative circulation during the downstroke part of the cycle and positive circulation during the 
upstroke part of the cycle. Clearly, the evolution of the distribution mostly follows that of the effective 
angle of attack, see Fig. 4. The circulation is maximal in magnitude around spanwise location y/(b/2) 
= ± 0.75 during downstroke (around t/T = 0.5) and upstroke (around t/T = 0.0/1.0).  

 
Figure 12 - Left: Spanwise distribution circulation Γ𝑐⁡/4(y/(b/2), 𝑡/𝑇). Right: Spanwise distribution induced 

upwash w𝑖𝑛(y/(b/2), 𝑡/𝑇) at lifting line. Conditions listed in Tables 1 and 2, St = 0.3343, 𝜃0 = 10 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. Shown are distributions at five instants in 4th cycle of motion. Upstroke: t/T ∈ (0.75,1.0/0.0,0.25), 

downstroke: t/T ∈ (0.25,0.5/0.5,0.75). Both functions are symmetric with respect to y/(b/2) = 0. Red curve: Left: 
cycle-averaged spanwise distributions of circulation lifting line; Right: upwash induced at lifting line. 
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As expected, near the wing tips the distribution of the circulation appears to tend to a square-root 
type of behavior. Note that the distributions of Γ𝑐

4
(𝑦/0.5𝑏), 𝑡/𝑇)⁡ are directly related to cross-sections 

(𝑥 − 𝑥𝑇𝐸)/0.5𝑏 = constant of the iso-contours of the plot of the dipole distribution for 𝜃0 = 10 deg in 

Fig. 11. At time t the corresponding location in the wake of the wing is 𝑥𝑇𝐸 + 𝑈∞𝑡. 

Figure 12 shows that the induced upwash is mostly in phase with the circulation, i.e., the sign of the 
two distributions is equal over almost the entire span of the lifting line except in the root region. That 
indicates, as follows from the Kutta-Joukowski Theorem, that the drag force will be negative, i.e., the 
wing sections are generating thrust along most of the span of the wing, except at the root.  

Furthermore, note that the amplitude of the unsteady distributions of circulation and upwash, with 
respect to the cycle-averaged distribution are quite large. Also, note that similar to the distribution of 
the effective angle of attack 𝛼𝑒𝑓𝑓 the distributions of circulation and that of the induced upwash 

intersect each other at |𝑦/(𝑏/2)| ≈ 0.17, i.e., at these two points the value of effective angle of attack, 
circulation and induced upwash are invariant with respect to time.  

Figure 13 presents, for (St = 0.3343, 𝜃0 = 10 deg), the temporal evolution of the circulation Γ𝑐/4(𝑦, 𝑡) 

of the lifting line and the upwash w𝑖𝑛(𝑦, 𝑡), induced at two points on the lifting line, i.e., at the root y 
= 0 and at point y/(0.5b) = 0.75 near the wing tip. Clearly the solution becomes harmonic after the 
initial flapping cycle. As also clear from Fig. 12 showing the full spanwise distribution for the fourth 
cycle, at y/(0.5b) = 0.75 the circulation and the upwash are almost in phase: i.e., when the circulation 
is positive/negative, the upwash is also positive/negative. In the root region, for y/(0.5b) = 0. The 
circulation and the upwash are out of phase. This implies that, since the induced drag is proportional 
to the product of circulation and upwash, that the contribution to the induced drag will be negative, 
corresponding to thrust, over most of the four cycles calculated. Note that the temporal evolution of 
the circulation presented in Fig. 13 corresponds to the dipole distribution along the traverses y/(0.5b) 
=0.0 (dashed line) and y/(0.5b) = 0.75 (solid line) in Fig. 11, for the case of 𝜃0 = 10 deg. 

 
Figure 13 – Temporal evolution of circulation Γ𝑐/̅4(𝑦, 𝑡) (left) and upwash w𝑖𝑛(𝑦, 𝑡) (right) for simplified 

configuration, at root y = 0 (dashed line) and near tip y= 3

4

𝑏

2
 (solid line). Conditions listed in Table 1 and 2, 𝜃0 

= 10 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. Plot contains results for four flapping cycles. 

 
Figure 14 – Left: Spanwise distribution section wing loading 𝑐ℓ(y/(b/2), 𝑡/𝑇)c(y)/𝑐̅. Right: Spanwise distribution 

section axial loading 𝑐𝑑(y/(b/2), 𝑡/𝑇)c(y)/𝑐̅. Red curves: Cycle-averaged values. Lifting line method of simplified 

configuration, for conditions listed in Table 1 and Table 2, 𝜃0 = 10 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. Shown are 

distributions at five moments in 4th cycle. Upstroke: t/T ∈ (0.75,1.0/0.0,0.25), downstroke: t/T ∈
(0.25,0.5/0.5,0.75).  
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Figure 14 presents the spanwise distribution of the (lift) loading 𝑐ℓ(y/(b/2), 𝑡/𝑇)c(y)/𝑐̅ (left) and the 

spanwise distribution of the axial (drag) loading 𝑐𝑑(y/(b/2), 𝑡/𝑇)c(y)/𝑐̅ (right) at five moments in the 
fourth cycle of the flapping motion. Clearly, the sectional lift is directly proportional to the distribution 
of the circulation of the lifting line, see Fig. 12. During the whole cycle, the wing loading is positive 
and highest in magnitude during the downstroke, while during the upstroke the wing loading is 
negative but lower in magnitude. The results in a cycle-averaged distribution of the load that is 
positive during the whole cycle. Note that the amplitude of the distribution with respect to the cycle-
averaged value is quite large. 
The sectional induced drag is proportional to the product of upwash and circulation, which results in 
a more complicated distribution. However, because in the outboard parts (y/(0.5b) > ≈0.17) of the 
wing the circulation and the upwash are in phase, and circulation and upwash have mostly the same 
sign, the result is that the sectional induced drag is negative, i.e., along almost the entire length of 
the lifting line the stream wise component of the force corresponds to sectional thrust. Note that 
during downstroke (around t/T = 0.5) and during upstroke (around t/T = 0.0/1.0) most sectional thrust 
is on the outer, wing-tip, parts of the wing, most during downstroke. At the present combination of 
parameters (𝛾1, 𝛾0, 𝜃1, 𝜃0, 𝜑, St, 𝛼0, 𝑎0⁡, see Table 1) during part of the cycle, the root part of the wing 
experiences drag.  

Figure 14 also presents the cycle-averaged quantities: 𝑐ℓ(𝑦/(𝑏/2), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅c(y)/𝑐̅, the spanwise 

distribution of the cycle-averaged wing loading (lift) and 𝑐𝑑(𝑦/(𝑏/2), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, the cycle-averaged 
axial (drag) loading. The cycle-averaged lift distribution is highest in the mid-section of the wing, 
positive all along the lifting line, with the distribution decreasing smoothly to zero towards the wing 
tips. It appears that for the present wing shape and flapping/pitching parameters, at the wing tips y 

/(b/2)= ±1, the spanwise lift distribution is nearly elliptic, i.e., showing a √1 − (
𝑦

𝑏/2
)2 behavior. Figure 

14 demonstrates that during the cycle the wing loading varies considerably, from -1.4 to 2.2 at the 
¾-semi-span position, where the cycle-averaged value equals 0.3, i.e., there is a large dynamic 
effect of the flapping on the aerodynamic wing loads. 
The spanwise distribution of the cycle-averaged thrust is positive for most part of the cycle, all along 

the span of the lifting line, with a peak value at 
𝑦

𝑏/2
≈ ±

3

4
. In the root section lower, negative, thrust 

values (drag) are experienced by the flapping wing. Also, the thrust (negative drag) varies 
considerably during the cycle, with the highest values at the ¾-semi-span location. Here the cycle-
average thrust coefficient amounts to 0.45, with excursions to 1 and -0.15. 

For the present conditions the span-integrated, cycle-averaged, lift amounts to 𝐶𝐿
̅̅ ̅ = 0.4583. The 

span-integrated, cycle-averaged thrust amounts to 𝐶𝑇
̅̅ ̅ = 0.2237. 

 

6.1.3 Spanwise distributions cycle-averaged load and drag (-thrust) coefficients 
For St = 0.3343, Fig. 15 presents 𝑐ℓ(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, the spanwise distribution of the cycle-averaged 

wing loading (lift) and of 𝑐𝑑(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, the cycle-averaged axial (drag) loading, for the whole 
range of pitch amplitudes 𝜃0 = 0(2.5)20. 

         
Figure 15 – Left: Spanwise distribution cycle-averaged section wing loading 𝑐ℓ(𝑦/(b/2), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ 𝑐(𝑦)/𝑐̅. Right: 

Spanwise distribution cycle-averaged section axial loading 𝑐𝑑(𝑦/(b/2), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐(𝑦)/𝑐̅. Lifting line method of 
simplified configuration, for conditions listed in Table 1 and Table 2, St = 0.3343, 𝜃0 = 0(2.5)20 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. 
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It is noted that the cycle-averaged values 𝑓(𝑡)̅̅ ̅̅ ̅̅  are obtained from the temporal values 𝑓(𝑡) by applying 
the midpoint quadrature rule, for the n-th cycle with 𝐼 sample points: 

𝑓(𝑡)̅̅ ̅̅ ̅̅ ≡
1

𝑇
∫ 𝑓(𝑡)𝑑𝑡

(𝑛+1)𝑇

𝑛𝑇
≈

1

𝑇
[
1

2
(𝑡2 − 𝑡1)𝑓(𝑡1) + ∑ (𝑡𝑖+1 − 𝑡𝑖)𝑓(𝑡𝑖)

𝐼−1
𝑖=2 +

1

2
(𝑡𝐼 − 𝑡𝐼−1)𝑓(𝑡𝐼)], (50) 

with 𝑡1 = 𝑛𝑇, 𝑡𝐼 = (𝑛 + 1)𝑇 and ∑ (𝑡𝑖+1 − 𝑡𝑖)
𝐼−1
𝑖=1 = 𝑇. 

 

The cycle-averaged lift (load) distribution 𝑐ℓ(𝑦/(𝑏/2), 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ c(y)/𝑐̅, is highest in the mid-section of the 
wing, with the distribution decreasing smoothly to zero at the wing tips, in a square-root-type of 
fashion, as already noted in Fig. 14. The spanwise distribution of the cycle-averaged wing loading 
does not depend on the pitch amplitude 𝜃0, only on the Strouhal number. This can be deduced from 
the formulation of the unsteady lifting-line theory, presented in section 3. 

Furthermore, the spanwise distribution of the cycle-averaged circulation Γ𝑐⁡/4(𝑦/0.5𝑏), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ⁡, as well 

as the distribution of the cycle-averaged upwash w𝑖𝑛(𝑦/0.5𝑏), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, only depend on Strouhal number 
St, not on the pitch amplitude 𝜃0. 
 
The spanwise distribution of the cycle-averaged sectional drag (thrust), involving the product of 
circulation and upwash, depends on both Strouhal number St and pitch amplitude 𝜃0, as can be 

deduced form Eq. (49). Here, for St = 0.3343, the spanwise distribution of 𝑐𝑑(𝑦/(b/2), 𝑡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑐(𝑦)/𝑐̅ varies 
smoothly with pitch amplitude 𝜃0, at any spanwise location decreasing stepwise with the stepwise 

pitch amplitude increasing from 𝜃0 = 0 deg to 𝜃0 = 20 deg. It appears that, for 𝜃0 < 7.5 deg, the cycle-
average thrust is positive along the whole lifting line, while for higher pitch amplitudes 𝜃0 an 
increasing part of the root section is subjected to drag, with a value of 0.12 at the root for  𝜃0 = 20 
deg. 
 

6.1.4 Evolution overall lift and thrust coefficients  
For St = 0.3343, Fig. 16 presents the time-dependent lift coefficient CL(t) and the time-dependent 
drag (negative of thrust) coefficient CD(t) of the wing, i.e., the value obtained by integrating the results 
presented in Fig. 14 with respect to space along the span of the wing. Given the values at the 
midpoints of the discretisation of the lifting line, the midpoint quadrature rule has been used to obtain 
the integrated values. Results are shown for the whole range of pitch amplitudes: 𝜃0 = 0(2.5)20. 

 
 
Figure 16 – Upper: Temporal lift coefficient 𝐶𝐿(𝑡⁡/𝑇). Lower: Temporal drag coefficient 𝐶𝐷(𝑡⁡/𝑇). Lifting line 
method of simplified configuration, for conditions listed in Table 1 and Table 2, St = 0.3343, 𝜃0 = 0(2.5)20 deg, 

N = 80, 
Δ𝑡

𝑇
= 0.05. 

 
Both the lift and the drag coefficients become harmonic after the first cycle of the flapping motion. 
For the lower values of the pitch amplitude 𝜃0, the amplitude of the lift coefficient is largest, with an 
amplitude of 2.0 for 𝜃0 = 0, which decreases with increasing 𝜃0. For 𝜃0 = 10 deg this amplitude of 
the temporal variation of the lift coefficient has decreased to 1.0. For still higher pitch amplitudes, 
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peaks in the temporal distribution flatten out and the variation with time decreases to an amplitude 
of 0.2. At the highest pitch amplitudes of 𝜃0 > 15 deg, the lift coefficient is positive during the whole 
cycle. Note that, though the amplitude of CL(t/T) very much depends on the pitch amplitude 𝜃0, like 

the spanwise distribution of the cycle-averaged wing load. The cycle-averaged value 𝐶𝐿
̅̅ ̅⁡ of the time-

dependent overall lift coefficient CL(t ) does not vary with pitch amplitude 𝜃0. 
 
The evolution of the drag coefficient is also harmonic, but in a form somewhat more complex than 
the lift coefficient. This can be understood by realising that the drag is proportional to the product of 
the distribution of the circulation of the lifting line and the upwash distribution, induced at the lifting 
line, by the wake dipole distribution. The latter depends linearly on the circulation distribution of the 
lifting line at the same moment in time and at all earlier moments in time. That yields a first harmonic 
at double the frequency of the frequency of the flapping/pitching motion [21]. 
The maximum value of the harmonic drag/thrust coefficient decreases with increasing pitch 
amplitude: the peak amplitude of the thrust coefficient (-CD(t/T)) equals about 0.7 in absolute value 
at 𝜃0 = 0, which decreases to 0.35 at 𝜃0 = 20 deg  
 

6.1.5 Time-averaged overall lift and thrust coefficients, dependence on 𝜃0 and St 
Figure 17 presents the cycle-averaged lift coefficient 𝐶𝐿

̅̅ ̅ ⁡= 𝐶𝐿(𝑡⁡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the cycle-averaged thrust 

coefficient 𝐶𝑇
̅̅ ̅ = −𝐶𝐷(𝑡⁡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ as function of the Strouhal number St, for pitch amplitude 𝜃0 = 0(2.5)20 

deg. The Strouhal numbers considered were St = {10-3,10-2,0.025,0.05,0.1,0.15,0.19,0.24,0.3,0.3343}. 
Figure 17 shows that the unsteady-lifting-line method predicts a mean lift coefficient that, like the 
cycle-averaged load distribution, does not depend on the pitch angle. For small values of St the lift 

coefficient asymptotes to 𝐶𝐿
̅̅ ̅ = 0.5507, the drag coefficient to 𝐶𝐷

̅̅̅̅  = -0.0003. For steady flow, lifting-
line theory provides the lift coefficient for an AR = 7.3358 wing with 𝛼0 = −5 deg, at zero angle of 
attack, from [26]: 

𝐶𝐿 =
𝑎0

1+
𝑎0

𝜋𝑒𝐴𝑅

(𝛼 − 𝛼0),  

with 𝑎0 = 2𝜋 the sectional lift slope and e the span efficiency. For e = 1, it follows that 𝐶𝐿 = 0.5483, 

a value close to 𝐶𝐿
̅̅ ̅ = 0.5507 determined in Fig. 17 for St → 0. For the induced drag coefficient 𝐶𝐷,𝑖𝑛, 

the lifting-line theory provides [26]: 

  𝐶𝐷,𝑖𝑛 =
𝐶𝐿

2

𝜋𝑒𝐴𝑅
. 

So, for the present wing it follows 𝐶𝐷,𝑖𝑛 = 0.0131. Figure 17 gives for St = 10-3 a value of 𝐶𝐷
̅̅̅̅  between 

-0.00014 and – 0.0014, i.e., a small thrust rather than a drag.  
 

The overall lift coefficient 𝐶𝐿
̅̅ ̅ decreases with increasing Strouhal number, which is due to the shorter 

wave length of the time-dependent dipole (vortex) distribution on the wake, which equals 
𝑈∞

𝑓
=

2ℎ0

𝑆𝑡
. 

The upwash 𝑤𝑖𝑛 induced by the wake at the lifting line decreases with decreasing St. 

 

 
Figure 17 – Left: Mean lift coefficient 𝐶𝐿 = 𝐶𝐿(𝑡⁡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ vs Strouhal number St, for pitch amplitude 𝜃0 = 0(2.5)20 
deg. Right: Mean thrust coefficient 𝐶𝑇 = −𝐶𝐷(𝑡⁡/𝑇)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ vs Strouhal number St, for pitch amplitude 𝜃0 = 0(2.5)20 
deg. St = {10-3,10-2,0.025,0.05,0.1,0.15,0.19,0.24,0.3,0.3343}. Lifting line method of simplified configuration, 

for conditions listed in Tables 1 and Table 2, 𝜃0 = 0(2.5)20 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. 

 

Finally, included in Fig. 17 is the overall, cycle-averaged, thrust coefficient 𝐶𝑇
̅̅ ̅ as function of Strouhal 

number St, for the full range of pitch amplitudes 𝜃0. The results show that the cycle-averaged (mean) 
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span-integrated thrust coefficient is positive for higher Strouhal numbers and lower pitch 
amplitudes⁡𝜃0. There is also a range of combinations (St, 𝜃0) for which the overall thrust turns into 
drag: the lower St, the lower the pitch amplitude should be in order to retain thrust. 
 

6.1.6 Knoller-Betz / von Kármán – Burgers effect 
Figure 18 presents a snapshot at t/T = 4 of the distribution of the spanwise component 
𝛾𝑦(𝑦/(0.5𝑏), 𝑡)/𝑈∞ of the wake vortex distribution along the traverse 𝑦/(0.5𝑏) = 0.75, z = 0, from 

trailing-edge to 14 wing semi-spans downstream. This traverse has been chosen because it passes 
through the spanwise location at which the thrust is highest, e.g., see Figs. 14 and 15. Figure 18 
illustrates the harmonic character of the wake vortex distribution, with an in time constant amplitude 
and nearly equal magnitude of positive (clock-wise sense of rotation) and negative (counter-
clockwise sense of rotation) peak values. 

 

                      
Figure 18 - Top: snapshot at t/T = 4 of distribution spanwise component 𝛾𝑦(𝑦/(0.5𝑏), 𝑡)/𝑈∞ vortex distribution 

along traverse 𝑦/(0.5𝑏) = 0.75, z = 0, from trailing-edge to 14 semi-spans downstream. Bottom: estimate 
cross-section wake vortex sheet, at same instant, in plane 𝑦/(0.5𝑏) = 0.75. Lifting-line model of simplified 

configuration, for the conditions listed in Tables 1 and 2, 𝜃0 = 10 deg, N = 80, 
Δ𝑡

𝑇
= 0.05. 

 
Furthermore, note that between the peaks and the valleys of the distribution of 𝛾𝑦(𝑦/(0.5𝑏), 𝑡)/𝑈∞ 

the slope of the distribution of 𝛾𝑦/𝑈∞ is almost constant, namely 
1

𝑈∞

𝜕𝛾𝑦

𝜕𝑥
≈ ±1. 

Figure 18 also presents the corresponding cross-section of the wake vortex sheet in the plane 
𝑦/(0.5𝑏) = 0.75, at instant t/T = 4. The shape of the wake vortex sheet in the present unsteady-
lifting-line method is the plane z = 0. The estimate of the true state is obtained from the assumption 
that the wake vortex sheet is formed at the trailing edge of the wing and subsequently, like the dipole 
distribution, is convected with velocity 𝑈∞𝑒 𝑥 in downstream direction. Therefore, at time t, the wake 
vortex sheet is determined by the motion of the trailing edge at all earlier moments in time. As clear 
from Fig. 18, the wake vortex sheet and the distribution of the spanwise component 𝛾𝑦 of the vortex 

distribution are 180 deg out of phase. This leads to the situation that 𝛾𝑦 is maximal negative (counter-

clockwise sense) at the peaks and maximal positive (clockwise sense) at the valleys of the wavy 
wake vortex sheet. Precise such a configuration of the wake is used to explain the generation of 
thrust by flapping (plunging/pitching) wings through the so-called Knoller-Betz effect [9], [30], [31], 
also called the von Kármán-Burgers effect [32], in which the self-induced flow inside the reverse von-
Kármán-vortex-street type of wake is jet-like. This downstream-directed jet results in an upstream-
directed reaction, i.e., thrust. 
In the present study the wake is represented by a flat (transpiration) surface in the plane z = 0. This 
implies that, since the vortex distribution is situated in this plane, the self-induced velocity of the 
wake, will not be jet-like nor wake-like. Instead, the upwash generated at the lifting line by this 
simplified wake geometry causes, through the Kutta-Joukowski Theorem, the thrust experienced by 
the lifting line. 
 



INVESTIGATION FLAPPING-FLIGHT AERODYNAMICS OF A ROBOTIC BIRD 

22 

 

 

6.2 Results Experiments 

The experimental results were post-processed in several ways in order to reveal the shape of the 
wake, as well as the evolution in time of the different vorticity components. Figure 19 shows iso-
surfaces of the vorticity magnitude, coloured by the value of the spanwise vorticity. It appears that 
the wing generates negative spanwise vorticity during the upstroke and positive spanwise vorticity 
during the downstroke. This is similar to the prediction by the numerical method in Fig. 11. 
Specifically, the experimental results match the predicted results for cases with 𝜃0 < 10 deg. For 
higher pitch amplitudes, a change of sign in vorticity closer to the wing would be expected, but this 
is not seen in the experimental results. The limit of 𝜃0 < 10 matches the expected value of the pitch 
amplitude, as observed in a previous study [28]. 

                
Figure 19 - Visualisation flow measurements for 𝑈∞ = 6⁡m/s (see Table 3), facing pressure side of wing. 

Shown are iso-volumes of vorticity magnitude |ω⃗⃗ | ∈= [100,300]⁡[1/𝑠] with intervals of 50 [1/s]. The contours 
are coloured with value of spanwise vorticity. Note that the wake is sinusoidal and represents a single period 
of the wing flapping cycle: starting with the upstroke at the far right, moving through zero-position in the middle 
of the wake.  
 

Figure 20 shows a cross-section, at the plane at y = 220 mm, of the acquired vector volume. This 
figure further illustrates that indeed a free shear layer with positive spanwise component of the 
vorticity is generated during the downstroke and negative vorticity during the upstroke. 
The cross-section of the field of the y-component of the vorticity 𝜔𝑦 in Fig. 20 reveals about one 

wave length of the shear layer of the wake. The shape of the shear layer resembles the one shown 
in Fig. 18. In the lower part of Fig. 20, the wake vortex sheet of Fig. 18, is repeated, now with the 
vortex sheet coloured with the value of the spanwise component of the wake vortex distribution. The 
lower part of Fig. 20, obtained from the unsteady lifting-line method, clearly resembles the upper part 
obtained from the PIV results. 

                    
Figure 20 – Top: Spanwise (y-)component of vorticity measured for 𝑈∞ = 6⁡m/s (see Table 3) on plane at 𝑦 =
220⁡mm, which is approximately at half semi-span of wing. Bottom: similar cross-section approximated wake 
vortex sheet with strength spanwise component wake vortex distribution indicated by colour. 
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Furthermore, in the upper figure, 𝜔𝑦 is predominantly negative (counter-clockwise) near the top of 

the shear layer and predominantly positive (clockwise) near the valley in the shear layer, again 
resembling the configuration presented in lower figure of Fig. 20 and in Fig. 18. This makes clear 
that in the present experimental results, indeed, the reverse von-Kármán vortex street is evident and 
that via the Knoller-Betz/von Kármán-Burgers effect it is clear that, without determining the force 
itself directly, the flapping wing experiences a thrust force. 

 

Figure 21 shows the development of the tip vortex with distance from the trailing edge of the wing, 
or equivalently, as evolution in time, since the flow features in a plane at x = constant in the wake at 
time t, were generated at time 𝑡 − (𝑥 − 𝑥𝑇𝐸)/𝑈∞. In the wake the sign of the vorticity in the tip vortex 
depends on location, i.e., also on the time it was generated at the trailing edge. The topology revealed 
in Figs. 19 and 21, agrees with the predicted results in section 6.2. However, an important difference 
can also be observed: during the upstroke the tip vortex seems to interact with the tip vortex of 
opposite sign generated during the preceding part of the flapping cycle. This results in the 
mushroom-shaped cross-section of the vortical structure seen in the third cutting plane from the left.  

 

Figure 21 - Tip vortex for different moments in flapping cycle for 𝑈∞ = 6⁡m/s (see Table 3), visualized through 

chordwise component vorticity 𝜔𝑥. Cutting planes: from right to left: upstroke, halfway upstroke, end of upstroke 
and downstroke. Adapted from [21]. 

7 Concluding Remarks 

Prandtl’s lifting-line, approximate, theory for the incompressible, inviscid, irrotational, steady flow 
about thin, mildly-cambered, high-aspect-ratio wings has been extended for application to flapping 
wings. In the extended theory the circulation of the wing, i.e., of the lifting line, is time-dependent. 
The theory is formulated in terms of a time-dependent dipole distribution μ(x,y,t) on a planar, 
stationary wake reference surface. The planar surface, z = 0, consists of the wing, with attached to 
its trailing edge, a semi-infinite wake surface also in the plane z = 0. 
On the wing the dipole distribution is approximated by a spanwise distribution Γ𝑐/4(𝑦, 𝑡) along the ¼-

chord line, continued to the trailing edge by a chordwise-constant distribution μ(x,y,t) = Γ𝑐/4(𝑦, 𝑡). 

Therefore, the trailing edge carries a dipole distribution identical to the dipole distribution along the 
lifting line at the 1/4-chord line. This formulation is identical to Prandtl’s lifting line formulation, with 
the lifting-line along the 1/4-chord line, however, with the difference that in Prandtl’s theory for steady 
flow, the chord-wise-constant dipole distribution is continued to infinity downstream. The dipole 
distribution on the wake surface is the continuation of the dipole distribution on the wing. In the case 
of unsteady flow, at time t, the wake dipole distribution is determined in terms of Γ𝑐/4(𝑦, 𝑡∗) generated 

at the trailing edge at earlier times, which subsequently is convected onto the wake surface. The 
unsteady-lifting-line method includes the newly derived Kutta-Joukowski Theorem for unsteady flow 
and the Kutta trailing-edge condition for unsteady flow. 
 
The resulting unsteady lifting-line method has been applied to a flapping wing like the Robird wing. 
The method predicts: (i) the topology of the vortical wake of the flapping wing; (ii) the spanwise 
distributions of transient (and cycle-averaged) sectional lift (wing load) and sectional axial force 
(thrust); (iii) the transient (and cycle-averaged) overall lift and overall thrust, for a number of pitching 
amplitudes and a number of Strouhal numbers. These numerical results provide insight in the trends 
in topology of the vortical wake, lift and thrust experienced by the flapping wing due to variation in 
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pitch amplitude and Strouhal number. It has been demonstrated that the spanwise distribution of 
cycle-averaged sectional circulation, sectional lift (load) and upwash, as well as cycle-averaged 
overall lift, depend on Strouhal number St, but do not depend on pitch amplitude 𝜃0, while the 
spanwise distribution of cycle-averaged sectional thrust and of cycle-averaged overall thrust depend 
on both Strouhal number and pitch amplitude 𝜃0. 
Prediction of required power and of propulsive efficiency of flapping flight forms future work. 
 
A number of these findings, specifically on wake topology, were subsequently validated with the help 
of PIV measurements. The PIV measurements indicate that the unsteady-lifting-line method 
captures two important flow phenomena accurately: tip vortices of opposite sign for the up- and 
downstroke, i.e., vorticity generated at the trailing edge changes sign from upstroke to downstroke. 
Also, the predictions by the unsteady-lifting-line method gives further credibility to previously 
performed measurements on the deformation and pitching motion of the wing during the flight of the 
Robird.  
The computational method, however, does not account for the three-dimensional transient shape of 
the wake of the Robird. In addition, the PIV measurements are still to be used to predict thrust and 
lift of the wing from the measured three-dimensional velocity field. This will be the subject of future 
work. 
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