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Abstract

From warfare to the civil domain, UAV’s roles and missions are kept increasing and more complicated. To
complete the sophisticated mission, the significance of autonomous flight under uncertain condition rise. For
an avoidance problem with the unexpected situation caused by dynamic obstacles on a quad-rotor, methods
based on deep reinforcement learning have recently come into the spotlight, even though safety issues to
be implemented in the real world are included. In this research, a collision avoidance algorithm is proposed
based on reinforcement learning combined with a safety filter, with the advantages of (1)reshaping the unsafe
command from the DDPG actor network to avoid collision, and (2)using simplified depthmap for DDPG agent
training to consider a real-world implementation and to reduce the computation time. Through the surrounding
obstacle detection sensor such as 360° 3D Lidar, the UAV flight control unit can estimate the distance between
the airborne vehicle and detect stumbling blocks by depthmap and perform evasion flight if required. For path
following considering obstacles, we adopt the Reinforcement Learning (RL) agent. Meanwhile, the RL agent
shows excellent accuracy and fast learning compared to optimization-based avoidance it cannot guarantee
successful evasion. To ensure safeness and fast learning, we suggest an RL agent with a safety filter. As a
result, the RL agent acquired about an 80% success rate on a random-dynamic obstacle mission with randomly
generated 1,000 trials. Also, some of the successful scenarios are included to show the agent can avoid the
collision with the randomly moving dynamic obstacles with suggested safe reinforcement learning method. The
paper is organized as follows; first, we described the problem to solve and clarified the definition of random-
dynamic obstacle and environment including quad-rotor dynamic equations. Then, we described a safety filter
to reshape the velocity command from reinforcement learning agent not to collide if any collision with obstacles
or walls is predicted. Also, Deep Deterministic Policy Gradient (DDPG) neural network based reinforcement
learning method with the Actor-Critic Framework for given quad-rotor state and the depthmap is defined for
quad-rotor obstacle avoidance. Finally, simulation results based on MATLAB environment, and concluding
remarks are given.
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1. Introduction
In recent years, small sized Unmanned Aerial Vehicles(UAVs), or Micro Aerial Vehicles(MAVs) are
widely used for the various indoor mission including autonomous flight. Compared with the outdoor
flight with high altitude, indoor flight is surrounded with the obstacles with higher density. Therefore,
obstacle avoidance is necessary for the autonomous flight in indoor environment[2, 16].
There are various obstacle avoidance methods in obstacle dense environment. The main stream
can be described with two groups, optimization-based method[3, 5, 17, 22] and machine learning-
based method[7, 8, 12]. For the optimization-based obstacle avoidance, it is usually accurate and can
guarantee the collision avoidance with the obstacles, but need more computation time compared with
machine learning-based method[10]. On the other hand, machine learning-based method is faster
than optimization-based method, but is impossible to guarantee the collision avoidance performance.
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Meanwhile, the obstacles can be categorized as two groups, known and unknown objects. For the
usual situation, known obstacles are given with the mapping algorithm such as Simultaneous Lo-
calization And Mapping(SLAM)[4, 9, 11, 13]. As these obstacles are predictable, there is enough
computation time to avoid collision because it is able to maneuver more in advance. Also, as the
obstacle is provided with a static map, it can be considered as the non-changing constraints. In this
case, applying optimization-based method is effective to guarantee the collision avoidance perfor-
mance.
But for the unknown obstacles, they normally detected with the sensor on the platform when the
obstacles get closer to it. Moreover, there also can be moving obstacles which is hard to predict
its movement. If an unexpected obstacle is detected, multi-rotor should react immediately to avoid
detected obstacles, which implies optimization-based collision avoidance is inappropriate in this sit-
uation. Instead, machine learning based obstacle avoidance method can be applied for the faster
reaction with unexpected obstacles. However as described above, machine learning-based method
is impossible to guarantee success on the collision avoidance. To overcome this issue, safety filter
with optimal problem form[6, 19, 20] is recently introduced to reshape the unsafe action created with
the Reinforcement Learning Agent (RL-agent).
In this paper, reinforcement learning-based moving obstacle avoidance method with safety filter, or
safe-RL, is introduced with a quad-rotor platform in MATLAB environment[1]. The main contributions
of this paper are 1) introducing the safety filter to guarantee the non-colliding flight with reinforcement
learning based obstacle avoidance, and 2) using simplified depthmap instead of original depthmap
to minimize both the gap between reality and simulation and the size of the network to reduce the
calculation time.

2. Problem Definition
As assuming the indoor flight, flyable area limited with the room Sroom ⊂ R3 is defined in an inertial
coordinate limited within a square area as below,

Sroom = [Pmin, Pmax] (1)

where

Pmin = [Xmin, Ymin, Zmin], Pmax = [Xmax, Ymax, Zmax]. (2)

With the assumption that the walking people to avoid are simplified as cylinders, Nobst number of
moving obstacles are existing inside Sroom. The position, radius and the height of nobst,i

th obstacle
at time tc is defined as Pobst,i(tc) = [Xobst,i(tc), Yobst,i(tc), 0], Robst,i and Hobst,i = Zmax −Zmin, respectively.
Also, a union space of the all obstacles at time tc is expressed as Sobst(tc)⊂ Sroom.
Then, safe zone that the quad-rotor can fly at time tc is defined with a safe zone Ssa f e(tc) as below.

Ssa f e(tc) = Sroom −Sobst(tc) (3)

Current position of a quad-rotor at time tc in inertial frame p(tc) is given as appeared in the follows.

p(tc) = [X(tc), Y (tc), Z(tc)] ∈ Ssa f e (4)

Also, let velocity in inertial frame and attitude as follows.

v(tc) = [vx(tc), vy(tc), vz(tc)] (5)

Θ(tc) = [φ(tc), θ(tc), ψ(tc)] (6)

Then, v(tc) is limited with the performance specification of quad-rotor as follows.

v(tc) ∈ [vmin, vmax] (7)

where
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vmin = [vx,min, vy,min, vz,min], vmax = [vx,max, vy,max, vz,max]. (8)

The discretized dynamics and controller of the UAV can be described as

x(tc +1) = f (x(tc),U(tc)) (9)

where x(tc) and U(tc) are the states and the reference command with current time tc. For x(tc), position
in inertial frame, velocity, Euler angles, and angular rates are included. The observation space that
can given to the reinforcement learning framework can be given as St . A(tc) is an appropriate velocity
command that can be applied to the platform to avoid obstacle and reach to the global goal position
pgoal. The diagram of defined problem is as follows.

Figure 1 – Diagram of defined problem.

3. Environment Settings
3.1 Workspace and Obstacles
The definition of obstacles at time tc and the workspace are given in chapter 2.. For the discretized
obstacle movement simulation, acceleration is changing with the randomized magnitude amag,i(tc) =
amag,i,maxurand and the azimuth angle, aazi,i(tc) = aazi,i(tc − 1) + aazi,i,maxurand where amag,i,max, aazi,i,max,
and urand are the maximum magnitude and azimuth angle of acceleration vector, and a random vari-
able which follows the uniform distribution with urand ∈ [−0.5,0.5], respectively. With the randomly
generated amag,i(tc) and aazi,i(tc), the velocity and the position of the obstacle is propagated with the
assumption of constant velocity and acceleration in the current time with the discretized time step.
To limit the velocity of each obstacles as the maximum obstacle speed vobst,max, the speed is revised
to vobst,rev which is smaller than vobst,max, and the direction is changed to opposite. Also, if the obstacles
are crashed with each other, the direction of the velocity are changed to the other side of each others
which is parallel to the line connecting two obstacles in the crashing moment.

3.2 Depthmap with Obstacles
The depthmap is simulated with the assumption of 360-degree camera. Distance with the obstacles
are calculated by checking the distance between the quad-rotor and cross point on surface of the
obstacles with the simulated ray on each pixel[18]. With the pixel number of Nhor ×Nver = 20×20, and
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the Field Of View(FOV) of α = 2π and β = π/6 in the horizontal and vertical direction of the camera,
we can get a depthmap in tc as ID(tc,α,β ,Nhor,Nver).

3.3 Multi-rotor Dynamics and Controller
The Equation-Of-Motion(EOM) for the quad-rotor can be described with translational and rotational
motion[14]. The EOM in translational and rotational motion is defined as below

mp̈(tc) =

 0
0

−mg

+R(φ ,θ ,ψ)

 0
0

Tsum

 (10)

 p
q
r

=

 cθ 0 −cφ sθ

0 1 sφ

sθ 0 cφ cθ

 φ̇

θ̇

ψ̇

 (11)

I

 ṗ
q̇
ṙ

=

 Mx

My

Mz

−

 p
q
r

× I

 p
q
r

 , I =

 Ixx 0 0
0 Iyy 0
0 0 Izz

 (12)

where m, g, Ikk, Tsum, p, q, r and Mk are the mass of quad-rotor, gravitational acceleration, moment of
inertia in k axis, total thrust from motors, angular rates in roll, pitch, and yaw directions, and moment
in k axis, respectively. Finally, controller is designed with cascade form with PID(Proportional-Integral-
Derivative) controllers. With the given velocity command in X and Y axis, P-controller generates the
roll and pitch angle command. Yaw angle command is generated with an outer algorithm. Then,
roll, pitch, and yaw angle command are given as an input for a PID-controller to generate angular
rate command which are given as the input of a PID-controller to generate moment in (X-Y-Z) axis.
On the other hand, velocity command in Z axis is generated from a P-controller with a given altitude
command. Then, the total thrust is calculated from a P-controller with the velocity command in Z axis.
Finally, Total the state of next step is calculated with the dynamics in simulator with given total thrust
and the moment from the controllers.
From the RL-agent, the calibrating value for vx,des and vy,des, ∆vx,des and ∆vy,des are generated, which is
provided to the controller. Then, U(tc) can be defined as below.

U(tc) =


vx,des +∆vx,des
vy,des +∆vy,des

Zdes
ψdes

 . (13)

In this paper, action at current time, A(tc) = [∆vX ,des, ∆vY,des]
T , is generated with RL-agent. With the

definition of relative position from current quad-rotor position to the global goal position as prel(tc) =
[Xrel(tc), Yrel(tc), Zrel(tc)]T = p(tc)− pgoal, rest of the reference commands are generated based on
algorithm as [vx,des, vy,des]

T = [vx, f orward , 0]T , ψdes = atan2(Yrel(tc), Xrel(tc)) to make quad-rotor can get
closer to the final goal without A(tc). For the velocity or commands such as vx(tc), vy(tc), vz(tc),
vx,des(tc), vy,des(tc), ∆vx,des(tc), and ∆vy,des(tc), they use (xB −yB − zB) coordinate system as shown in the
figure, that (xB −yB) plane is parallel with (X −Y ) plane with rotated angle ψ(tc), and zB axis is equals
to Z axis. In this paper, equation of motion and the controller with given action At(tc) in discrete world
is represented as a discretized function in Eq. 9.

4. Safety Filter
4.1 Definition of Safety Filter
Safety filter is defined to reshape the generated action into safe region if any unexpected unsafe
situation is predicted such as collision[6, 19, 20]. To predict the collision, next position at time tc +1,
p̃(tc +1) is predicted based on the nominal equation of motion from Eqs. 10-12 and the controller de-
scribed in chapter 3.3 with given action At(tc). The distance with the nearest obstacle from predicted
quad-rotor position p̃(tc +1) is expressed in the below
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dobst,near(tc) = ∥p̃(tc +1)−pobst,near(tc)∥2 −Robst,near (14)

where pobst,near(tc) and Robst,near are the position and radius of the nearest obstacle from the quad-rotor,
respectively. Also, the nearest distance in (X-Y) plane between four walls and p̃(tc +1) is defined as
dwall,near(tc). If the crash with wall or obstacle is detected, action is reshaped with an optimal action
A∗

t to avoid collision. The safety filter algorithm is described as follows.

A∗
t (tc) =

{
sa f etyFilter(St(tc),At(tc)), if min(dobst,near(tc),dwall,near(tc))< 0

At(tc), else
(15)

To find an optimal value A∗
t (tc), sa f etyFilter(St(tc),At(tc)) is defined with a given problem in the below.

Minimize
St(tc),At(tc)

∥At(tc))−A∗
t (tc))∥2

2

subject to

x(tc +1) = f (x(tc),U(tc))

p(tc +1) ∈ Ssa f e, v(tc +1) ∈ [vmin, vmax]

(16)

5. Reinforcement Learning
For many problems related to multi-rotor autonomous flight or collision avoidance for mobile robots,
Reinforcement Learning (RL) is used such as vision based autonomous landing[14] or obstacle avoid-
ance for ground mobile robot[7, 8, 12]. As similar to the problems introduced in the above, RL is also
used to the problem in this paper to make the additional velocity command A(tc) for collision avoid-
ance of multi-rotor. Like other RL problems, RL-agent with environment is introduced to make action
with given observations and reward such as state of the quad-rotor or the depthmap of surrounding
obstacles, and to simulate or calculate the next state and the reward of the quad-rotor with given
action. For the deep RL framework, Deep Deterministic Policy Gradient(DDPG) is introduced with
Actor-Critic network[14, 15] based on MATLAB RL toolbox, example with DDPG agent training for
swing up and balance pendulum[1].

5.1 Network Structure
The structure of actor network is divided into two paths, image path and attitude path. For image path,
one Convolutional Layer(CL), and one Fully Connected Layer(FCL) are included with one Rectified
Linear activation Unit(ReLU) function for activation. Also for the attitude path, one FCL is included.
Two paths are concatenated and connected with three FCLs with hidden layer sizes of 400, 300, and
the dimension of action for each. Two ReLU functions are used for the activation and one hyper
tangent function is used to reshape the output size as between -1 and 1. Finally, scaling function
added in the end to scale the output size as the maximum action sizes.
The critic network is divided into three paths, image path, attitude path, and action path. Image path
and attitude path are the same with the actor network. Action path is constructed with a FCL, size of
300. Three path are concatenated and ReLU function with FCL are used for the critic output. Actor
and critic layers are shown in the Fig. 2-3.
Adaptive Moment estimation (Adam) optimizer[21] is used with learning rate 10−4 and 10−3 for action
and critic networks, experience buffer length with 106, discount factor with 0.99, mini batch size of
256, and noise variance and decay rate with 0.6 and 10−6. The maximum step number in one episode
tstep,max is defined that the episode is finished when the agent didn’t reach the terminal condition within
tstep,max.

5.2 Actor-Critic Framework
For the deep-RL framework with DDPG, actor and critic network is needed. For the training process,
actor network create an action At(tc) with given observation St(tc). Then, critic network receives both
At(tc) and St(tc) to update the policy of actor. After the training process is finished, only actor is
activated to generate appropriate At(tc) with given St(tc) while critic is deactivated.
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Figure 2 – Structure of actor network.

Figure 3 – Structure of critic network.

The observation is defined from the quad-rotor state and the depthmap. For the quad-rotor state in
observation, position in (X-Y) plane, relative position with goal position in (X-Y) plane, heading angle,
and velocity in (X-Y) plane, and a depthmap with normalization are included as follows.

St(tc) = [ID(tc), XN(tc), YN(tc), XN,rel(tc), YN,rel(tc), ψN(tc), vN,x(tc), vN,y(tc)] (17)

As prescribed in the above, action At(tc) creating with the actor network is defined as the additional
velocity in (xB − yB) coordinate, ∆vX ,des and ∆vY,des, to avoid collision and reach the goal position.
To check the successability and end the episode while training, ‘IsDone’ variable is defined with a few
scenarios as follows.

IsDone = (IsReachedGoal) | (IsCrashedWall) | (IsCrashedObstacle) (18)

Reward Rt(tc) is defined as a summation of few sub-rewards as the below

Rt(tc) = Robst(tc)+Rgoal(tc)+Rwall(tc)+RobstDist(tc)+Raction(tc)+Rstate(tc)+Rtime(tc) (19)

Robst(tc) =−106 × (IsCrashedObstacle) (20)
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Rgoal(tc) =

{
2, if ∥[XN,rel(tc), YN,rel(tc)]∥2

2 < εnear

106, elseif IsReachedGoal
(21)

Rwall(tc) =

{
−50, if min(XN(tc),YN(tc),(Xmax −Xmin)−XN(tc), (Ymax −Ymin)−YN(tc))< εnear

−106, elseif IsCrashedWall
(22)

RobstDist(tc) =−
{

dmax/2−∥p(tc)−pobst,near(tc)∥2 −Robst,near

2.5

}2

−dmax (23)

Raction(tc) =−
∥∥∥∥[ 10∆vx,des

(vmax − vmin)
,

3∆vy,des

2(vmax − vmin)

]∥∥∥∥2

2
(24)

Rstate(tc) = 25
(

1−0.5∥[XN,rel(tc), YN,rel(tc)]∥2
2

)
(25)

Rtime(tc) =


−2×106

(
1−

tstep, f in

tstep,max

)
, if (IsCrashedWall) | (IsCrashedObstacle)

2×106
(

1−
tstep, f in

tstep,max

)
, elseif (IsReachedGoal)

0, else

(26)

where εnear = 0.05, tstep,max = 3000, and tstep, f in is the time step number until the episode finished.

5.3 Reinforcement Learning Framework
With the described environment, safety filter, and RL-agent, reinforcement learning framework are
interacting for an RL framework. As the actor from 5. create an action At(tc), safety filter in chapter 4.
reshape the given At(tc) as A∗

t (tc) if unsafe condition is detected. Next observation and reward with
quad-rotor state and depthmap is generated with the given environment in chapter 3.. During training,
safety filter is excluded for agent to learn the proper action value in randomized environment. And
after training, safety filter is included to prevent the unsafe situation while critic network is excluded.
Also, actor network is deactivated if ID has only the maximum depth value that there is no need to
avoid obstacles. The overall framework with RL-agent and safety filter, environment is shown in the
figure below[20].

Figure 4 – Network structure of actor and critic network.
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6. Simulation Results
With the defined problem in the above, autonomous flight simulation to reach the given global goal
position including safe-RL based obstacle avoidance is done with MATLAB 2020a with Intel i7-8700K
CPU. GPU is not used for training as the DDPG agent network is not big enough to The training is
done with 11,000 episodes to learn environment for agent, and safety filter is applied with the trained
actor from DDPG agent.
For the verification of the performance of safety-RL framework, simulation is done with the random-
ized environment with obstacle number and start position, room size, quad-rotor start and global goal
positions. The result of randomized 1000 trials is shown as the table below.

Table 1 – Simulation result with 1000 trials in randomized scenarios

Cases Succeed Crashed with obstacle Crashed with wall Total
Number 790 136 74 1000

Also, the succeeded result including trajectory of quad-rotor and the obstacles, intermediate steps
of obstacle avoidance, and the final state of the scenario is appeared in each figures in the below.
The trajectories of quad-rotor and the obstacles, start and final goal positions of quad-rotor, current
positions of quad-rotor are obstacles are marked as red and black solid lines blue ’o’ and red ’x’
markers, black and blue ’x’ markers, respectively.

Figure 5 – Succeeded scenario 1, Final state with trajectories

Figure 6 – Succeeded scenario 1, Intermediate states with specific times
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Figure 7 – Succeeded scenario 2, Final state with trajectories

Figure 8 – Succeeded scenario 2, Intermediate states with specific times

As shown in the table 1, avoidance maneuvers to reach the goal position are possible with a high
probability. Also, it is possible to see the agent tries to avoid the detected obstacles with depthmap
and finally reach the global goal position as appeared in Fig.5-8.

7. Summary and Conclusions
In this paper, obstacle avoidance framework is suggested including RL-agent and safety filter. En-
vironment of the framework is described with the equation of motion of quad-rotor. Safety filter is
defined to reshape the action value to prevent the unsafe situation. Then, Deep-RL agent is de-
fined with the actor and critic network with the appropriate observation including normalized position,
relative position with global goal, heading angle, and velocity of the quad-rotor. Finally, safe-RL
framework is constructed and trained for the actor to create additional velocity command to avoid ob-
stacle while quad-rotor is heading to the global goal position. Safe-RL framework is conducted with
MATLAB environment simulator including quad-rotor dynamics. With the simulation result, we can
conclude that that quad-rotor can reach the global goal position while avoiding the unexpectedly de-
tected moving obstacles with low computation time. Also, successiveness on the collision avoidance
is performed. With the randomized 1,000 situations, the RL agent acquired about an 80% success
rate on a random-dynamic obstacle mission by adopting safety filter with RL-agent.
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