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Abstract 

For every design exploration problem, the question of how many design points should be used to explore design 
space sufficiently is remained to be answered. Few points might result in insufficient approximation and lack of 
understanding of the design problem. In contrast, too many points might be costly, both in terms of time and 
resources especially if the model is multi-dimensional and complex. After execution of all designs of a defined 
explorative study, it is often the case that models fitted to the data are not sufficiently accurate which leads to 
the need for additional design points or a new Design of experiments (DoE). A usual approach that users follow 
is initializing a new DoE with increased number of design points. This however could lead to the complete waste 
of the first investigation. Therefore, it is necessary to add design points wherever and whenever is necessary in 
order to help users to explore the design space efficiently. In this regard, this study proposes a highly efficient 
and universal method to augment an existing DoE which is successfully applied to a multidisciplinary design 
optimization (MDO) problem. 

1. Introduction 

DoE is a systematic method to plan and evaluate experiments for complex models by variation of input 
factors in order to obtain knowledge about the model and its output factors. Exploring the design space 
or getting as much as information possible regarding the model behavior using a defined minimum 
number of design points or, respectively, to obtain a required model understanding by examining a 
minimum number of experiments is desirable. If a global explorative study or an approximation model 
of a costly to evaluate transfer function is desired, the first step is often to generate a space-filling DoE. 
The number of design points depends on the design space dimension, the complexity of the transfer 
function, and the time or computational budget. From an industrial point of view, one strives to minimize 
the number of runs for a sufficient level of accuracy in fitting an approximation model. Unfortunately, 
this number is not known a priori for most cases, and heuristics, combined with empirical knowledge 
are used. After execution of all designs, it is often the case that models fitted to the data are not 
sufficiently accurate, leading to the need for additional design points to be evaluated. This can be 
achieved by either defining a new DoE or adding additional points. Of course, when the former is 
pursued, this new DoE will be completely new which may be in that case unacceptably wasteful. 

2. Methodology 

Various researches have been conducted to improve the capability and efficiency of the existing Latin 
Hypercube Design (LHD) which is one of the most popular DoE techniques. It has been stated that 
the LHD might be enhanced by reducing the correlation among the inputs of the design matrix for a 
multitude of dimensions [1]. Another research suggests that pairwise correlation and inter-site 
distances should be considered simultaneously while constructing an LHD [2]. With regards to the 
augmentation of design plans, numerous methods have been published. In one study, it has been 
shown that various exploration-based sequential design strategies are more efficient compared to the 
popular and proven space-filling optimal Latin Hypercube (LH) approaches [3]. In [4] a method is 
proposed where an LHD with specific probability density functions (pdf) and correlation structure can 
be extended. The number of points to be augmented needs to be twice the number of initial sampling 
points. This could be a downside when fewer numbers are required for a required level of system 
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understanding. A highly efficient and universal method to augment an existing DoE with additional 
points while maintaining space-filling properties (uniform and orthogonal distributed samples) has 
been presented in [5]. This method is capable of dealing with input DoE plans which are plain Monte 
Carlo (MC), Latin Hypercube (LH), or optimal LH plans, as given in Figure 1. 

 
 

Figure 1 – Basic idea of 1 level augmentation with 3 additional points on a 2D design space with an 
initial sample size of 5 for a proper Latin Hypercube Sampling (LHS) input (left), and MC input (right). 

Additionally, the space-filling properties of the final design plan are nearly independent of the aug-
mentation sequence, i.e. from the number of levels and batch size. Basically, the final sample plan 
size of an augmentation sequence is defined by 

𝑁 = 𝑁0 + ∑ 𝑚𝑖
𝑙
𝑖=1   (1) 

with the initial number of samples, the number of levels and batch size are given as 𝑁0, 𝑙, 𝑚𝑖, 
respectively. For demonstration Figure 2 shows empirical results of random augmentation sequences 
that are repeated 100 times, i.e. with a random number of levels and random batch sizes, for a 50 
dimensional design space, and an initial sample size of 𝑁0 = 64 and a maximum sample size of 

𝑁 =  150. As space-filling criterion the maximum absolute pairwise correlation coefficient given as 

𝜌𝑚𝑎𝑝 = max
𝑖=1(1)𝑑,𝑗<𝑖

|𝜌𝑖𝑗
𝑃 |  (2) 

where the indices 𝑖, 𝑗 and the the design space dimension 𝑑 define all relevant pairs of design 
parameter combinations [5]. The lower green line in Figure 2 represents the reference quality that has 
been obtained by the creation of direct optimal LHS with varying sample sizes in the range between 
80 and 150. The black points show exemplarily how the space-filling property of the 2nd random 
augmentation (from the 100) evolves from each augmentation level, i.e. the first level augments the 

initial design plan with 𝑁0 = 64 by 𝑚1 = 19 points. This leads to a sample size of 83 and a maximum 
absolute pairwise correlation coefficient 𝜌𝑚𝑎𝑝 = 0.38. With the second augmentation with 𝑚2 = 50, 

𝜌𝑚𝑎𝑝 is reduced to 0.31. 
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Figure 2 – Empirical results of random augmentation sequences according to [5], repeated 100 times 
to demonstrate universality. 

It is noted that methods such as descriptive sampling (e.g. SOBOL sequences [6]) can be used to 
define a DoE with a very high number of designs where each additional design bases on the previous 
ones, making it possible to increase the number of design successively. However, these methods 
struggle with space filing properties (even for large numbers of design points) for design space 
dimensions greater than ten [5]. 

For MDO design problems and emulation techniques for rapid design space exploitation, it is often 
required that design points need to be condensed in certain areas of the design space because 
emulated understanding is not sufficient and prediction accuracy is too low for these areas. One could 
simply augment the whole design space until sufficient understanding has been gained. This approach 
leads to more design evaluation than necessary, of course.  Therefore, this paper focuses on 
enhancing the method presented in [5] by adding the capability to not only allow design plans with 
evenly spread design points but also non-uniform distributed points defined by arbitrary probability 
density functions.  

To motivate basic idea of the developed method the Branin test function 

𝑓(𝑥1, 𝑥2) =  (𝑥2 −
51

40𝜋2  𝑥1
2 + 

5

𝜋
 𝑥1 − 6)

2
+ 10 (1 −

1

8𝜋
) cos(𝑥1) + 10  (3) 

is used. As can be seen in Figure 3 an initial optimal LHS with 𝑁0 = 15 points has been created and 
the Branin test function has been evaluated for these points. Based on the results a radial basis 

function (RBF) based approximation model 𝑓(𝑥1, 𝑥2) according to [7] has been trained. A qualitative 
comparison of the prediction capability of the RBF-based model with the exact function can be seen 
in Figure 3. Since both models are not costly to be evaluated the absolute relative error between Branin 
and RBF-based approximation in percent 

𝜀 =  100% |(𝑓 − 𝑓)/𝑓|      (4) 

can be calculated at hundreds of points across the two-dimensional design space. As a result, three 
areas with very high differences can be identified, cf. right plot in Figure 3. Nevertheless, this is only 
possible for a pre-defined or known design space. 
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Figure 3 – Approximation of Branin test function (left) based on an optimal LHD with 𝑁0 = 15 points 
using RBF (middle) and resulting absolute relative errors in percent (right). 

For a costly to evaluate transfer function prediction capability can be estimated by use of leave-one-
out cross validation (LOOCV). In principle, the procedure of LOOCV is to remove each sample once 
from the training data set to train RBF models for each reduced set of samples and to predict the exact 
function values at the removed data point to be able to compare the differences between the predicted 
and known value. The advantage of LOOCV is to use the existing data only without a need for 
analytical definition. For the test model, the LOOCV results in terms of the difference between RBF 

approximation and Branin test function can be indicated with the Pearson correlation coefficient 𝜌𝑃  
obtained from the scatter plot which is shown in Figure 4c. For the initial RBF model, the correlation 

coefficient between Branin function values and approximation values is 𝜌𝑃 =  0.84. Also, the relative 

error 𝜀 according to Equation 4 is shown in Figure 4b as a contour plot. Comparing Figure 4b and 
Figure 3 right, one can see that the LOOCV results match the existing differences between the Branin 
test function and the RBF approximation. The two curves that are shown in Figure 4 are the error pdfs 
that are derived by projecting the LOOCV errors to the individual axes and scaling to ensure the basic 
requirements of a pdf are illustrated in Figure 4a and Figure 4d, respectively. As shown in Figure 4d 
the density of the 𝑓𝜀(𝑥1) has maxima for lower 𝑥1 and towards upper bound which is also can be 
identified from the three peaks of Figure 4b.  

 

 

Figure 4 – LOOCV prediction results in form of a contour graph for 𝜀 for the RBF-based 

approximation of the Branin test function shown in Figure 3 (b), Pearson correlation 𝜌𝑃  (c), and 
projections of the errors for 𝑥1 and 𝑥2 in form of pdfs 𝑓𝜀(𝑥1) (d) and 𝑓𝜀(𝑥2) (a). 

Although 𝜌𝑃 =  0.84 can be acceptable for some use cases, sometimes a better approximation model 
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might be needed. To further increase predicting capability, the two augmentation models (i) standard 
and (ii) a newly developed enhanced pdf-based, each with a batch size of 𝑚1 = 15 are applied. 
Figure 5, shows the augmented points coming from the two methods and the LOOCV results from the 
two RBF models using 𝑁1 = 30 points.  

 

Figure 5 – Standard augmentation (top) and enhanced pdf-based augmentation (bottom) using 
results, i.e. pdfs 𝑓𝜀(𝑥1) and 𝑓𝜀(𝑥2), shown in Figure 4 for the 15 initial points (blue circles) and 

augmented points (red squares) with their respective correlation coefficients. 

Comparing the standard augmentation with Figure 3 and Figure 4, it can be seen that a lot of 
augmented points are located where predicting quality was already acceptable. To overcome this 
inefficiency, the additional points are not added as evenly distributed but according to error pdfs for 
each of the two design variables. Compared to the standard augmentation the proposed approach 

augments design points where the error is high. As illustrated in Figure 4, the error for parameters 𝑥1 
and 𝑥2 are yielded high for lower and higher ends, and thus the pdf-based augmentation shifts the 
points to the areas where prediction capability is low. This also results in better emulator prediction 

capability with the increased 𝜌𝑃 and consecutively a better approximation model as shown in Table 1. 

 

 
Initial 
model 

Standard 
augmentation model 

Enhanced PDF based 
augmentation model 

Number of sample points 15 30 30 

Pearson correlation 
coefficient 

0.84 0.95 0.99 

 

Table 1 – Comparison of LOOCV results in terms of Pearson correlation coefficient for the Branin 
test function 

3. Application 

The design of an aero-engine fan blade is a demanding task due to the large design space, attempting 
to meet contradicting objectives, stringent certification requirements, insufficient analytical design 
tools, coupling non-linear dynamics, lack of experimentation, required high-precision simulation 
methods, and time-consuming process chain. The need to operate under a wide range of flight 
conditions during the flight, demanding not only good design and off-design performance 
characteristics but also large margins of aerodynamic stability to avoid stalls and surges makes the 
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design of the fan blade further challenging. As a consequence, state-of-the-art simulation methods are 
compulsory to adequately solve such multi-faceted problems involving various disciplines. 
Multidisciplinary design optimization indeed proposes a solution, providing the necessary 
sophistication using advanced algorithms and numerical techniques. 

 

 

Figure 6: MDO Isight workflow for a fan-blisk with geometry creation for different running conditions, 
3D CFD, stress and postprocessing. 

To demonstrate industrial applicability, the standard and enhanced augmentation methods are applied 
to a Multidisciplinary Design Optimization (MDO) workflow for a Fan-Blisk. Figure 6 shows the current 
design process, that has been automated by use of the process and automation tool Isight, where fully 
parametrized blade creation, 3D CFD, and stress assignments can be performed. 

  

A standard exemplary design task is to optimize the aerofoil subjected to constraints from various 
disciplines. For proof of concept, two simple single-objective optimization problems have been 
formulated. The first one focuses on structural aspect and given as  

 

min
𝒙𝑙≤𝒙≤𝒙𝑢

𝑓1(𝒙)   𝑠. 𝑡.   𝒉(𝒙) ≤ 𝟎 ∈ 𝑅𝑟 ,    𝒙 ∈ 𝑅6 ,    (5) 

 

where 𝒙 corresponds to six-dimensional design parameter vector including two maximum thickness 
values at hub- and mid-span, two axial-shift values at mid- and tip-span, and two theta-shift values at 

mid- and tip-span ranging in between lower 𝒙𝑙 and upper 𝒙𝑢 bounds. The balancing criterion 𝑓1(𝒙) is 

defined by different stress values on the aerofoil. The feasible design space is defined by 𝑙 number of 

different frequency and high cycle fatigue (HCF) constraints 𝒉(𝒙)  ∈ 𝑅𝑟 .  

 

The initial design space for the first example is initially populated using 40 points whereas only 𝑁0 =  32 
blades successfully pass through the whole process. Subsequently, it is then augmented using 20 

points by using standard augmentation and enhanced augmentation. From the 20 points, however, 
𝑚1 =  18 designs, and 𝑚1 = 16 designs have converged for respective methods. For the 

demonstration purpose, a hard to emulate HCF constraint is selected out of the 𝑙 + 1  trained RBF 
models. The LOOCV results for the initial model, and for the both augmentations have been illustrated 
in Figure 7 and tabulated in Table 2. Since the correlation coefficient of the enhanced augmentation 
method has been improved by a small fraction, the LOOCV mean error 

 

𝜇𝜀  =
100% 

𝑁
∑

𝑓𝑖−𝑓̂𝑖

𝑓𝑖

𝑁
𝑖=1        (6) 

 

and the standard deviation 
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𝜎𝜀  = √ 1

𝑁−1
∑ (100% ∙

𝑓𝑖−𝑓̂𝑖

𝑓𝑖
− 𝜇𝜀)

2
𝑁
𝑖=1      (7) 

 

have been also introduced and tabulated in Table 2. As it can be seen from Table 2, the errors of the 
enhanced method are lower indicating that the RBF using the enhanced augmented data has better 
prediction capability compared to the standard augmentation.  

 

 

 

Figure 7: Comparison of LOOCV results and correlations for initial model (a), standard augmentation 
(b) and enhanced augmentation (c). 

 
 

Figure 8: Comparison of LOOCV relative errors for initial model (a), standard augmentation (b) and 
enhanced augmentation (c). 

 
Initial 
model 

Standard 
augmentation model 

Enhanced PDF based 
augmentation model 

Number of sample points 32 50 48 

Pearson correlation coefficient 0.89 0.92 0.924 

Mean error 0.28% 0.20% 0.17% 

Standard deviation error 6.20% 5.03% 4.92% 

 

Table 2 – Comparison of LOOCV results in terms of Pearson correlation coefficient, the mean error 
and standard deviation error according to Equation 6 and 7 for the first use case 
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The second fan blisk problem focuses on the aerodynamic performance and reads as 

 

min
𝒙𝑙≤𝒙≤𝒙𝑢

𝑓2(𝒙)   𝑠. 𝑡.   𝒉(𝒙) ≤ 𝟎 ∈ 𝑅𝑙 ,    𝒙 ∈ 𝑅12 ,    (8) 

 

where 𝒙 corresponds to twelve-dimensional design parameter vector including two blade inlet angle 
values at hub- and tip-span, two blade outlet angle values at hub- and tip-span, two chord values at 
hub- and tip-span, two maximum thickness values at hub- and tip-span, two axial-shift values at mid- 

and tip-span, and two theta-shift values at mid- and tip-span ranging in between lower 𝒙𝑙 and upper 
𝒙𝑢 bounds. The aerodynamic efficiency 𝑓2(𝒙) is obtained from 3D computational fluid dynamics (CFD) 
and inequality constraints analogous to the Equation 5.  

 

In contrast to the previous example, this time two reference LH experiments using 50 and 100 have 
been executed to investigate the potential differences between sequential and a single batch DoE. 
However, 𝑁0 =  44 and 𝑁0 =  85 number of design points have been completed successfully. The 
results from the LOOCV have been illustrated in Figure 9a and 9b, respectively. 

 

 
 

Figure 9: Comparison of LOOCV results and correlations for first reference model (a), and second 
reference model (b) 

Single batch LH First model Second model 

Number of sample points 44 85 

Pearson correlation coefficient 0.95 0.97 

 

Table 3 – Comparison of LOOCV results in terms of Pearson correlation coefficient and number of 
sample points for the first and second reference single batch DoE 

Similar to the first case, the initial design space is initially populated using 50 points whereas only 
𝑁0 =  44 blades successfully pass through the whole process. The first augmentation has been 

performed using 20 points by using standard augmentation and enhanced augmentation. From the 20 
points, however, 𝑚1 =  19 designs have converged for both methods. After that, the second 

augmentation has been performed with 20 points, however, 𝑚1 =  19 designs, and 𝑚1 = 18 designs 
have converged for standard and enhanced methods.  For the demonstration purpose, the 

aerodynamic efficiency is picked out of the 𝑙 + 1  trained RBF models. The LOOCV results for the 
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standard and enhanced methods have been illustrated in Figure 10, Figure 11, and tabulated in 
Table 4 and 5, respectively.  

 

 
 

Figure 10: Comparison of LOOCV results and correlations for initial model (a), first augmentation (b) 
and second augmentation (c) for the standard method. 

Standard augmentation Initial model First augmentation  Second augmentation 

Number of sample points 44 63 82 

Pearson correlation coefficient 0.95 0.97 0.98 

 

Table 4 – Comparison of LOOCV results in terms of Pearson correlation coefficient and number of 
sample points for the standard augmentation case 

 
 

Figure 11: Comparison of LOOCV results and correlations for initial model (a), first augmentation (b) 
and second augmentation (c) for the enhanced method. 

Enhanced augmentation Initial model First augmentation  Second augmentation 

Number of sample points 44 63 81 

Pearson correlation coefficient 0.95 0.98 0.98 

 

Table 5 – Comparison of LOOCV results in terms of Pearson correlation coefficient and number of 
sample points for the enhanced augmentation case 
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The first observation from the second problem is that residual that comes from the second reference 
DoE executed with a single batch 𝑁0 =  85  is higher compare to the first enhanced augmentation with 

𝑁0 =  63. Even the first standard augmentation with 𝑁0 =  63 is yielding similar results despite having 
less number of design points being used for the model. From Table 4 and 5, the results show that the 
models improve with the first augmentation but do not improve much with the second augmentation. 
The difference that should be mentioned is that the first augmentation of the enhanced method has 
the same capability with the second augmentation of the normal method. This creates a numerical 
advantage and clearly saves time and since the second augmentation will not be needed if the 
enhanced method is used.   

4. Conclusions 

In this paper, a newly developed enhanced pdf-based augmentation method has been introduced. 
The method has been developed by using the error pdfs that are obtained by projecting the leave-one-
out-cross-validation results to individual design parameter. The efficiency of the method first has been 
tested and proved using the Branin test function on two-dimensional design space at first, to apply 
later on for an industrial application. The industrial application is an MDO of a Fan-Blisk workflow 
where the design task is the single objective optimization of an aerofoil considering the constraints 
from multiple disciplines. The problem at hand is divided into two subsets to demonstrate different 
approaches that one can possibly take for every design exploration. In this regard, the differences 
between the single batch approach, standard augmentation, and the developed enhanced pdf-based 
augmentation have been examined. It is shown that the new enhanced method is superior to the both 
the other two methods both in two design dimensions 𝑑 = 6 and 𝑑 = 12 
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