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Abstract 

In this work, an adaptive decentralized formation control is proposed to cancel the effect of time-varying 

disturbances that enter the control input. A neural-network adaptive element is added to the input of the collective 

dynamics, maintaining the original structure of the decentralized formation control. In this way, the formation is 

controlled linearly, and the adaptive element provides disturbance rejection capabilities.  
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1. Introduction 

In recent years the control of multiple vehicles has regained attention due to numerous new applications, 

which require to control a large group of drones, satellites, and other flight vehicles for commercial and 

military applications. Besides, the use of quadcopters has become popular because they are accessible 

and easy to implement with an aid of commercial products. The way to control this group of vehicles to 

achieve a common objective is known as Formation Control. To address the formation control problem, 

many approaches are available such as: leader-follower [1], behaviour-based approach [2], virtual 

structure method [3] and decentralized formation control [4][5]. Among them, decentralized formation 

control offers a simplified and easier way to control a group of vehicles than the other approaches. By 

using graph theory, it is possible to define the connections among vehicles and control the group 

towards a common goal. 

In more realistic applications, a formation is subject to disturbances and uncertainties. In [4] researchers 

proved necessary conditions for a decentralized linear stabilizing feedback, however, this approach 

does not consider disturbances.  To cope with this problem, robust and adaptive techniques are 

available. In [6] the decentralized formation flight is controlled using PID technique, the integral action 

gives robustness to the system to regular perturbations, however when a time-varying disturbance is 

considered, the performance of the system response is degraded. Furthermore, in [6][7] robust control 

using sliding mode control is proposed. The main drawback of these nonlinear control approaches is 

that they increase the complexity of the decentralized control law and make the stability analysis subject 

to nonlinear control theory.  

In this work, a neural-network augmentation of the existing decentralized linear control is proposed 

based on [8]. This approach offers two advantages: the original structure of the formation control is not 

modified, and the adaptive element is simply added to the system. Besides, the neural-network adaptive 

component provides disturbance rejection capabilities.  



 

2. Decentralized Formation Control  

We assume a formation of N  vehicles with the same dynamics 

 
21,..., n

i v i v i ix A x B u i N x= + =   (2.1) 

Where ix  represents each vehicle variables for position and velocity of n  dimension, and iu  

represents the control input. Also, matrices vA  and vB  have the form: 

 ( ) ( )1

22 22

0 1 0 1 0
,...,

10 0
v v nn

A diag B I
a a

      
= =              

 (2.2) 

In the previous equation, the odd entries of x  are position variables, and the even entries are the 

velocity variables represented by vectors px  and vx  respectively. Thus, the following relation holds: 
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Then let’s define the formation vector h  
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Here ph  represent the position of the desired formation.  

The formation of N vehicles is said to be in formation if there are some vectors pq and vq  such that 

, , 1,...,
i i ip p p v vx h q x q i N− = =  = . Then the vehicles converge to a formation h  when 

( ) ( ) 0
i ip p px t h q t− − →  and ( ) ( ) 0

iv vx t q t− →  when t → , 1,...,i N = . Then the objective is to 

design a feedback control law that guides the vehicles to a desired formation.  

Then, the output vector z  can represent the relative information  
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Taking Eq. (2.1) we can define the collective dynamics: 

 x Ax Bu= +  (2.3) 

where ,N v N vA I A B I B=  =  . With the output vector ( )z L x h= − , a control law same as in  [4] is 

used:  

 ( )u FL x h Fz= − =  (2.4) 

Where 2G nL L I=   and ( )u FL x h Fz= − =  , 
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, with GL  as the Laplacian Matrix 

of a graph G , representing the interactions among a group of vehicles.  



 

We can also write the control input for each vehicle as: 
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The closed-loop dynamics can be expressed as follows: 

( )x A BFL x BFLh= + −  

It was shown in [1] that having v v vA B F+   Hurwitz will make: 
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 with characteristic equation: 

2

22 2 1( ) ( )p s s a f s f = − + −  

The gains 1f  and 2f  satisfy the following relation 

 22 2 10, 0a f f +    (2.6) 

with   a nonzero eigenvalue of GL . 

The control gain F , can be designed using any kind of linear controller. For example, by using LQR 

approach, ( 6 , )db−   gain margin and ( 60 ,60 )− phase margin are guaranteed.  

3. Augmented Decentralized Formation Control with Adaptive NN 

In this section, a neural network augmentation of existing decentralized control is described as shown 

in Fig. (1). In this approach, the neural network is simply added to the system, preserving the existing 

control architecture [8].  

 

Figure 1 - Augmented adaptive decentralized formation control. 

 



 

Control augmentation and error equation 

Let us recall the collective dynamics from (2.3) with control input (2.4): 

( )
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u FL x h

= +

= −
 

which can be seen as an approximation of a nonlinear system of the form: 

 ( ) ( ( ), ( ))x t f x t u t=  (3.1) 

If we make ˆ ( )A A BFL= + , B̂ BFL=  and then introduce an uncertainty term ( , , )x u t ,  the closed-

loop system becomes: 
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 (3.2) 

Then, we define a reference system: 

 ˆ ˆ( ) ( )r rx t Ax t Bh= −  (3.3) 

Using previous expressions and taking re x x= −  , the error dynamics is constructed as: 
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Now, we define the augmented control input as: 

 ( ) ( ) ( )a adu t u t u t= −  (3.5) 

where adu  is the adaptive signal, which is aimed to cancel the uncertainty term ( , , )t x u . It is assumed 

that ( , , )t x u  can be written as a linear combination of some basis functions ( , )x u  

( , , ) ( , )Tt x u W x u =  

However, since the adaptive signal provides an approximation of the uncertainty, it is described as: 

 ˆ ˆ( ) ( , , ) ( , )T

adu t t x u W x u=  =  (3.6) 

such that the approximation is bounded as max
ˆ ( , ) ( , ) ( , )T TW x u W x u x u  −   

Introducing the augmented control ( )au t  to expression (3.2) gives: 
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Then, the error equation becomes: 
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 We define the Lyapunov candidate: 

 ( )( , ) 0T TV e W e Pe tr W W = +     (3.9) 

Where 0TP P=   satisfies the Lyapunov equation  ˆ ˆTA P PA Q+ = − , with 0TQ Q=  .  

The time derivative of ( , )V e W  along (3.8) gives: 

 ( )1 ˆ( , ) 2 ( , ) 0T T TV e W e Qe tr W W x u e PB−  = − +   − 
  

 (3.10) 

Then ( )e t  and ( )W t  are uniformly ultimately bounded (UUB). Furthermore, by Barbalat’s lemma It was 

proven that ( )e t  is indeed asymptotically stable [9]. 

 

Uncertainty restrictions  

If then the corrective signal ( )adu t  is built such that:  

 ˆ( ) ( , , )ad adu t t x u u=  −  (3.11) 

This expression represents a fixed-point problem, because adu  is a function of itself. Thus, a sufficient 

condition for the existence to a solution of this problem is required: 

 1
adu





 (3.12) 

Differentiating Eq.  (3.1) and Eq. (3.2) will give an expression for ( , )   : 
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The inequality (3.12) is satisfied when 
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Neural Network 

The augmented adaptive approach allows us to use any adaptive element to approximate the 

uncertainty term ( , , )t x u . Here, a RBF neural network is used to obtain the corrective signal adu  as 

in Eq. (3.6), where ( , )x u  is a radial basis function vector (RBF) [10]. 

The weight update law is derived from Eq. (3.10) as:  

 ˆ ( , )TW e PB x u= −  (3.15) 

Then to keep the adaptive Ŵ  parameter bounded some modifications to adaptation law are required 

such as e-modification,  -modification and projection operator.  

4. Simulation and Results 

In order to test the proposed methodology, we try to control a group of 5 quadcopters. The purpose is 

that the quadcopters can maintain a desired ‘V’ position (relative distance) under the presence of an 

external perturbation (wind). The simulation analysis is performed using Simulink-MATLAB environment. 

From Eq. (2.2), it can be seen that the vehicles dynamics are modelled as a double integrator position-

velocity model. However, in real world applications quadcopter dynamics are nonlinear by nature. Here 

we use a 6-DOF quadcopter dynamic model.  Applying feedback linearization, we can obtain the 

required position-velocity model. Thus, a Control Augmentation System (CAS) for position and 

orientation is applied, using Incremental nonlinear dynamic inversion (INDI). The two-time scale 

separation principle was utilized to separate the system into the inner (faster) loop for attitude control 

and the outer (slower) loop related to the translational dynamics.  The use of INDI is beneficial because 

it simplifies the feedback linearization process and provide robustness to unmodeled dynamics.  

 

 

 

Figure 2 - Block diagram of INDI with two-time scale separation 

 

 

 

 



 

Fig. (2) shows the block diagram of this approach. Notice that the inputs are not the position commands 

as in a normal CAS, instead, the acceleration terms are needed. This is because the decentralized 

formation control will provide the input for the system of each vehicle.  

For a formation of 5 vehicles ( )5N = , considering dimension 3n = , from Eq. (2.1) we have: 
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And the collective dynamics is  

x Ax Bu= +  

Where 
2nNx  and nNu  

Then, the control law ( )u FL x h= −  is designed with Laplacian matrix GL  for a complete graph of 5 

vehicles: 
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 
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The gain  15 1 2F I f f=   is selected satisfying (2.6) 

the formation control with INDI is tested under some wind disturbance. This disturbance can be taken 

as a sine function of the form ( ) 3sin(3 )t t = . Here we add 22 0a   in Eq. (2.2) to make the vehicles 

stop in a certain position once they converge to the formation h . The desired formation in z-axis was 

kept at the same level for all drones, thus we can visualize a 2-d graph in (x,y) axis. The augmented 

neural network provides the adaptation signal  adu  that will cancel the time-varying disturbance ( )t  

as observed in Fig. (1). 

 

 

 

 

 

 



 

Fig. 3. represents the quadcopters formation that reach the new desired formation without the wind 

disturbance. Achieving formations means that the vehicles maintain the desired ‘V’ formation. It can be 

seen from Fig. 4-5 that vehicles 3,4 and 5 converge to the same curve, because they maintain the same 

position in the x-axis. A Similar situation occurs to vehicles 1,2 and 3 that are aligned in the y-axis. In 

Fig. 4-5 the curves are parallel to each other, meaning the vehicles keep in formation. 

 

Figure 3 - Formation achieving consensus (no disturbance). 

 

Figure 4 - Vehicle’s position in X-axis. 



 

 

Figure 5 - Vehicle’s position in Y-axis. 

 

And, in Fig. 6, we can see that under the disturbance, the decentralized formation control doesn’t offer 

disturbance rejection and thus the quadcopters trajectories are affected. Although the vehicles achieve 

the formation, they drift in the direction of the wind without stopping. It was expected that they will stop 

and hover at certain point because 22 0a   was chosen.   

 

Figure 6 - Formation under wind disturbance without adaptation. 

 



 

 

 

Figure 7 - Formation under wind disturbance with adaptation. 

 

 

 

Figure 8 - Adaptation signal vs disturbance. 

 



 

 

Figure 9 - Convergence of z under wind disturbance with adaptation. 

 

In Fig. 7, the adaptation signal can cancel the uncertainty and the trajectories of the vehicles are not 

affected. The neural network has the capability to precisely approximate the disturbance term as seen 

in Fig. 8. Then, the group of quadcopters converge to a desired formation, which means that 

( ) 0z L x h= − →  as t → , as showed in Fig. 9.   

5. Conclusions 

the use of an augmented adaptive element preserves the control architecture of the formation control. 

It means the formation is still controlled linearly, having extra disturbance rejection capabilities due to 

the neural network approximation capabilities. 

Additionally, the quadcopter’s nonlinear dynamics are converted to a position-velocity model using INDI. 

This provides a more realistic approach and gives robustness to unmodeled dynamics of each vehicle.  
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