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Abstract

This paper performs the fault diagnosis for the hexacopter attitude control system using a dual extended
Kalman filter (EKF). Fault detection and diagnosis (FDD) is conducted by using the analytical redundancy
of angular rates. Two EKFs are designed for dynamics and kinematics of angular rates, respectively. Fault
detection of the IMU sensor and actuator is conducted using these two EKFs. The performance of the fault
detection algorithm is verified through numerical simulation. The simulation results demonstrate that the pro-
posed fault detection algorithm can not only detect the complete fault of the IMU sensor and actuator but also
detect the partial fault of the IMU sensor.
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1. Introduction
Unmanned aerial vehicles (UAVs), especially multirotor UAVs, have been developed in various ways
and are widely used. Since UAVs can carry several types of equipment, it is being developed not
only for military purpose but also for civilian applications such as rescue and media. Recently, the
development of delivery drones operated in urban and suburban areas has been in the spotlight [1, 2].
As the operating range of UAVs expands to urban areas, a very high level of safety and reliability
is required for the aircraft. Although most modern vehicles are equipped with fault detection and
isolation systems, accidents due to sensor and actuator failures still occur [3]. Therefore, research
on fault diagnosis and response techniques is significantly important and essential.
Fault detection and isolation (FDI) methods are classified into three methods: hardware redundancy,
analytical redundancy, and signal processing [4]. Among them, hardware redundancy, which uses
multiple parallel sensors satisfying the same function, is commonly used in industry. For exam-
ple, commercial aircraft are equipped with triple or quadruple hardware redundancy for safety. This
method is easy to implement and manage, however, there are also limitations. For instance, if one
of the sensors is faulty, leaving only two sensors, it becomes more difficult to detect the failure be-
cause it cannot determine which of the remaining two sensors is healthy. The analytical redundancy
method based on a mathematical model solves this limitation of hardware redundancy. Additionally,
the analytical redundancy method has the advantage of reducing the cost and weight. This is useful
for small UAVs with a limited payload.
The analytical redundancy method is divided into model-based and knowledge-based approaches.
Model-based one uses a mathematical model. Knowledge-based one uses data collected through
online monitoring according to a set of rules learned from human experts and past experiences [5]. As
a model-based method, a filter-based method is widely used. There are studies that have performed
sensor fault diagnosis using filter-based methods, such as KF, EKF [6, 7], and UKF [8]. Furthermore,
a robust fault diagnosis method against model uncertainties is based on the EKF algorithm [9, 10].
Inspired by [7], this paper proposed a fault detection and diagnosis (FDD) scheme for the inertial
measurement unit (IMU) sensor and actuators of a hexacopter UAV. We design the fault detection
and isolation (FDI) algorithm using the analytical redundancy of angular rates. The fault detection of
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gyroscope, accelerometer, and actuator is performed using dual EKF, each designed for the dynamics
and kinematics of angular rates. Unlike [7] considering a satellite system, this paper considers a
multicopter UAV. Moreover, our method can detect the partial fault of IMU as well as a complete fault
on all axis. This fault diagnosis algorithm is tested through numerical simulations against bias sensor
fault.
This paper is organized as follows. The hexacopter UAV modeling will be discussed in Section 2.
In Section 3, the EKFs for fault diagnosis are designed. Then, Section 4 implements numerical
simulations to confirm the fault detection performance. Finally, Section 5 summarizes the work of this
paper.

2. Hexacopter UAV Modeling for Attitude Control
The configuration and coordinate system are shown in Fig. 1. The NED (North, East, Down) frame is
used in this paper.

Figure 1 – The configuration of the hexacopter UAV

The attitude control system for a hexacopter UAV is represented in Fig. 2. The accelerometer and
gyroscope are the measurement sensors for attitude estimation. The altitude control is additionally
included for hover flight as shown in Fig. 2.

Figure 2 – A block diagram of the hexacopter UAV attitude control system

2.1 Dynamics Model
The dynamics model for a hexacopter UAV can be described as follows.

ω̇ = I−1{(Mc +Mgyro)−ω × (Iω)} (1)

where ω = [p q r]T is the angular rate vector, I is a moment of inertia matrix, and Mc =
[
Mcφ

,Mcθ
,Mcψ

]T

& Mgyro denote a control torque and a gyroscopic moment. Expanding this element-wise gives
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where
Mcφ

= d1CT (−Ω
2
1 +Ω

2
2 +Ω

2
4 −Ω

2
5)+dCT (Ω

2
3 −Ω

2
6)

Mcθ
= d2CT (Ω

2
1 +Ω

2
2 −Ω

2
4 −Ω

2
5)

Mcψ
=CQ(Ω

2
1 −Ω

2
2 +Ω

2
3 −Ω

2
4 +Ω

2
5 −Ω

2
6)

(3)

and
ΩΓ = Ω1 −Ω2 +Ω3 −Ω4 +Ω5 −Ω6 . (4)

where [Ω1,Ω2, · · · ,Ω6] denotes the rotational speed of each propeller, d is the motor arm length,
d1 = dcos60◦, and d2 = dsin60◦.

2.2 Kinematics Model
The kinematics model for the hexacopter UAV represents the rotational transformation between the
body-axis angular rates and the Euler rates as follows [11].

φ̇

θ̇

ψ̇

=


p+qsinφ tanθ + rcosφ tanθ

qcosφ − rsinφ

qsinφsecθ + rcosφsecθ

 (5)

where [p,q,r]T is the body-axis angular rates, and [φ̇ , θ̇ , ψ̇]T is the Euler rates.

3. Fault Diagnosis System based on Extended Kalman Filter
This section presents a fault diagnosis algorithm for the hexacopter attitude control system based on
EKF. Figure 3 demonstrates the architecture of the fault detection considered in this paper.

Figure 3 – The architecture of the fault diagnosis system

We design two EKFs to diagnose the system faults using the redundant relationship between the
kinematics and dynamics models. The EKF1 designed based on the dynamics in Eq. 1 can detect
a fault of actuators and the gyroscope. The other EKF2 designed based on the kinematics in Eq. 5
can detect a fault of the accelerometer and gyroscope. Because the gyroscope is the redundant
component appeared in both kinematics and dynamics models, the fault diagnosis system of the
gyroscope, accelerometer, and actuator can be designed by using the two EKFs and the redundant
relationship of the hexacopter system.

3.1 Design of EKF-based on Dynamics
The state variable of the EKF1 is:

x1 = [p q r Ω1 Ω2 Ω3 Ω4 Ω5 Ω6]
T . (6)

The system equation about the state variable is defined as follows.

ẋ1 = f 1(x1,u)+η1 (7)
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where x1 is the state variable of the EKF1, u is the control input of the hexacopter system, that is
angular rate vector of the six rotors (Ωc). Element-wise representation is given as
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where τΩ is the rotor time constant, and Ωic is the control command of the rotors.
The measurements of the EKF1 are the three-axis angular rates and z-axis acceleration that can be
calculated by the angular rates of the six rotors [12]. The measurement equation is represented as
follows:

y1 = h1(x1)+ν1 + f 1 (9)
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where νg & fg are the measurement noise and the fault of the gyroscope, and νA & fA are the mea-
surement noise and the fault of the actuators.
The above state and measurement equations of the EKF1 are discretized to the first order as follows:

x1k+1 = f 1(x1k ,uk)+w1k

y1k
= h1(x1k)+ν1k

(11)

where w1k is the system noise, and ν1k is the measurement noise. The Kalman filter has an algorithm
that repeats the prediction and correction steps. In the prediction step, the predicted state is obtained
using the system dynamics. In the correction step, the estimated state is obtained by correcting the
predicted state using the measurement. The detailed equations of the prediction and correction steps
are represented as follows.

Time update (Prediction)

x̂−1k
= f 1(x̂1k−1 ,uk−1) (12)

F1 =
∂ f 1

∂x1
|x1=x̂1k−1

(13)

P−
1k
= F1P1k−1FT

1 +Q1 (14)

Measurement update (Correction)

H1 =
∂h1

∂x1
|x1=x̂−1k

(15)

K1k = P−
1k

HT
1 (H1P−

1k
HT

1 +R1)
−1 (16)

x̂1k = x̂−1k
+K1k{y1k

−h1(x̂−1k
)} (17)

P1k = (I −K1k H1)P−
1k

(18)

where x̂−1k
and x̂1k mean a priori and a posteriori estimates, respectively. F1 and H1 are the jacobian

matrix of the nonlinear system and nonlinear measurement equation, respectively. Q1 ∈ R9×9 is the
system noise covariance matrix. R1 ∈ R4×4 is the measurement noise covariance matrix.
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3.2 Design of EKF-based on Kinematics
The state variable of the EKF2 is the Euler angles x2 = [φ θ ψ]T . The system equation for the EKF2
is defined as:

ẋ2 = f 2(x2)+η2 (19)φ̇

θ̇

ψ̇

=

p+qsinφ tanθ + r cosφ tanθ

qcosφ − r sinφ

qsinφ secθ + r cosφ secθ

+

ηφ

ηθ

ηψ

 (20)

where [p q r]T is the known values measured by the gyroscope.
The measurements of the EKF2 are roll and pitch angles calculated by accelerometer measurements.

y2 = H2x2 +ν2 + f 2 (21)[
φm

θm

]
=

[
1 0 0
0 1 0

]φ

θ

ψ

+

[
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φ
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a

]
+

[
f φ
a

f θ
a

]
(22)

where νa & fa are the measurement noise and the fault of the accelerometer. The roll and pitch angle
measurements are calculated by three-axis accelerations as Eq. 23 [13].

φm = tan−1
(

ay

az

)
, θm = tan−1

 ax√
a2

y +a2
z

 (23)

The above state and measurement equations of the EKF2 are discretized to the first order as follows:

x2k+1 = f 2(x2k)+w2k

y2k
= H2x2k +ν2k

(24)

where w2k is the system noise vector, and ν2k is the measurement noise vector. The Kalman filter
algorithm is the same as the EKF1. However, the measurement equation in the EKF2 is a linear equa-
tion, unlike the EKF1 measurement equation. The detailed equations of the EKF2 are represented
as follows.

Time update (Prediction)

x̂−2k
= f 2(x̂2k−1) (25)

F2 =
∂ f 2

∂x2
|x2=x̂2k−1

(26)

P−
2k
= F2P2k−1FT

2 +Q2 (27)

Measurement update (Correction)

K2k = P−
2k

HT
2 (H2P−

2k
HT

2 +R2)
−1 (28)

x̂2k = x̂−2k
+K2k(y2k

−H2x̂−2k
) (29)

P2k = (I −K2k H2)P−
2k

(30)

where x̂−2k
and x̂2k mean a priori and a posteriori estimates, respectively. F2 is the jacobian matrix

of the nonlinear system equation. Q∈R3×3

2 and R∈R2×2

2 denote the system noise and the measurement
noise covariance matrices, respectively.
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3.3 Fault Diagnosis Algorithm
The fault diagnosis algorithm is designed based on the EKFs derived in the previous section. Fault
diagnosis using the EKFs can detect a fault when the residual exceeds a specific threshold (λ ). Here,
the residual means the difference between the measurement and the predicted measurement. The
residuals of the EKF1 and the EKF2 are shown as

r1 = y1 −h1(x̂−1 )

r2 = y2 −H2x̂−2
(31)

where r1 = [rp
1 rq

1 rr
1 raz

1 ]T and r2 = [rφ

2 rθ
2 ]

T are the residuals generated by the EKFs based on dynamics
and kinematics, respectively. Fault detection is performed using the RMS error of the residual as
represented in Eq. 32. We assume that only one component among the accelerometer, actuator, or
gyroscope can be faulty at a time. {

∥r(t)∥RMS < λ , fault-free
∥r(t)∥RMS ≥ λ , faulty

(32)

3.3.1 Complete Fault Diagnosis
In this paper, a complete fault of the sensor means failure on all axes, and a complete fault of the
actuator means that the actuator is turned off. Table 1 shows the algorithm for a complete fault
of the gyroscope, accelerometer, and actuator. Since the accelerometer measurement are used in
the z-axis acceleration of EKF1 and EKF2, if raz

1 and r2 exceed the thresholds, it is determined as an
accelerometer fault. A gyroscope fault is detected when all residuals excluding the z-axis acceleration
of EKF1 exceed the threshold. This is because the gyroscope measurements are used in the angular-
rates dynamics of EKF1 and kinematics of EKF2. Also, the z-axis acceleration of EKF1 is measured
from the accelerometer. The angular velocities of the actuator are used only in EKF1. However, in
the physical aspect, if a specific actuator fails, attitude changes are inevitable. Therefore, an actuator
fault is detected when all residuals exceed the threshold.

Table 1 – Fault diagnosis algorithm for a complete fault (rgyro
1 = [rp

1 rq
1 rr

1]
T and λ

gyro
1 = [λ p

1 λ
q
1 λ r

1 ]
T )

No. Diagnostic logic Fault type

1 ∥rgyro
1 ∥< λ

gyro
1 , ∥raz

1 ∥< λ
az
1 & ∥r2∥< λ2 Fault-free

2 ∥rgyro
1 ∥< λ

gyro
1 , ∥raz

1 ∥ ≥ λ
az
1 & ∥r2∥ ≥ λ2 Accelerometer fault

3 ∥rgyro
1 ∥ ≥ λ

gyro
1 , ∥raz

1 ∥< λ
az
1 & ∥r2∥ ≥ λ2 Gyroscope fault

4 ∥rgyro
1 ∥ ≥ λ

gyro
1 , ∥raz

1 ∥ ≥ λ
az
1 & ∥r2∥ ≥ λ2 Actuator fault

3.3.2 Partial Fault Diagnosis
A partial fault is defined as the fault of only one axis of the three-axis accelerometer or gyroscope,
and a partial fault of the actuator is not considered in this paper. Table 2 and 3 represent the fault
detection algorithm of a partial fault for the accelerometer and gyroscope, respectively. For the partial
fault of the accelerometer, the z-axis fault is not considered. In general, the z-axis measurement
is dominant in the accelerometer measurement. Thus, a fault in the z-axis can be regarded as a
complete fault.

Table 2 – Fault diagnosis algorithm for a partial fault of accelerometer

No. Diagnostic logic Fault type

21 ∥r1∥< λ 1 & ∥rφ

2 ∥< λ
φ

2 , ∥rθ
2 ∥ ≥ λ θ

2 x-axis fault

22 ∥r1∥< λ 1 & ∥rφ

2 ∥ ≥ λ
φ

2 , ∥rθ
2 ∥< λ θ

2 y-axis fault
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Table 3 – Fault diagnosis algorithm for a partial fault of gyroscope

No. Diagnostic logic Fault type

31 ∥rp
1∥ ≥ λ

p
1 , ∥rq

1∥< λ
q
1 , ∥rr

1∥< λ r
1 , ∥raz

1 ∥< λ
az
1 & ∥rφ

2 ∥ ≥ λ
φ

2 , ∥rθ
2 ∥< λ θ

2 x-axis fault

32 ∥rp
1∥< λ

p
1 , ∥rq

1∥ ≥ λ
q
1 , ∥rr

1∥< λ r
1 , ∥raz

1 ∥< λ
az
1 & ∥rφ

2 ∥< λ
φ

2 , ∥rθ
2 ∥ ≥ λ θ

2 y-axis fault

33 ∥rp
1∥< λ

p
1 , ∥rq

1∥< λ
q
1 , ∥rr

1∥ ≥ λ r
1 , ∥raz

1 ∥< λ
az
1 & ∥rφ

2 ∥< λ
φ

2 , ∥rθ
2 ∥< λ θ

2 z-axis fault

4. Numerical Simulation
In this section, numerical simulations are conducted to verify the performance of the fault diagnosis
algorithm. We select maintaining a hovering flight at an altitude of 5 m as a fault-free case. The
thresholds of the EKF1 and EKF2 are determined by fault-free case simulations shown in Fig. 4.
Since the difference between the residuals of the angular rates and the z-axis acceleration is large,
the threshold of EKF1 is divided into two as in Eq. 33. As shown in Fig. 4, all the residuals of the
EKF1 and the EKF2 are smaller than the thresholds in a fault-free case.

λ1 =

{
8×10−4 for angular rates (λ gyro

1 )

0.96 for z-axis acceleration (λ az
1 )

λ2 = 1.15×10−3

(33)

Figure 4 – Fault diagnosis simulation results - Fault-free (y = 1)

4.1 Complete Fault
Following the fault-free case, the sensor fault simulations are conducted by applying a bias fault
to the accelerometer ( fa) and the gyroscope ( fg). The actuator fault simulation is performed by
causing actuator 3 of the hexacopter shown in Fig. 1 to turn off at 5 seconds. The bias faults of the
accelerometer and gyroscope are described in Eq. 34 and 35, respectively.

fa =

{
0 t < 5s
5m/s2 t ≥ 5s

(34)

fg =

{
0 t < 5s
5deg/s t ≥ 5s

(35)
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Figure 5 – Fault diagnosis simulation results - Complete fault
(y = 2: accelerometer, y = 3: gyroscope, and y = 4: actuator)

Figure 5 shows the simulation results of the accelerometer, gyroscope, and actuator in order. The
results on the left side of Fig. 5 demonstrate that the fault detection module detects the accelerometer
fault when raz

1 and r2 exceed the thresholds. Since the z-axis acceleration of EKF1 is measured from
the accelerometer, and the accelerometer measurements are used to estimate the attitude angle in
EKF2, it can be seen that raz

1 and r2 exceed the thresholds. The gyroscope measurements are used in
both dynamics(EKF1) and kinematics(EKF2) of angular rates. Thus, the gyroscope fault is detected
when rgyro

1 and r2 exceed the thresholds at the same time. Note that raz
1 does not exceed the threshold

as the gyroscope is independent of the actuator dynamics of EKF1. Also, there is a time delay of
about 0.3 seconds to detect the gyroscope fault. This time delay occurs because the attitude angle
estimated by the EKF2 is calculated from the accelerometer measurements rather than directly using
the gyroscope measurements. Finally, the results on the right side of Fig. 5 show that actuator fault
is detected when all residuals exceed the thresholds. This is because, as mentioned in the previous
section, the actuator fault induces an immediate attitude change. There is a time delay of about 0.2
seconds to detect the actuator fault. This time delay is an acceptable range, but it can be reduced by
adjusting the threshold λ

az
1 . Although not shown in this paper, the same fault detection performance

is shown in other actuator failures.

4.2 Partial Fault
Same as the complete fault, the simulations of a partial fault are performed by injecting the bias
into each axis of the sensors. Figure 6 represents the fault detection results for each axis of the
accelerometer. Since the x-axis translation leads to a change in pitch angle(θ ), the fault of the x-axis
accelerometer is detected when rθ

2 exceeds λ θ
2 . Similarly, the y-axis translation leads to roll angle(φ )

change, the fault of the y-axis accelerometer is detected when rφ

2 exceeds λ
φ

2 .

8
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Figure 6 – Fault diagnosis simulation results - Partial fault of accelerometer
(y = 21: x-axis and y = 22: y-axis)

Figure 7 gives the x-, y-, and z-axis fault detection results of the gyroscope in order. The x-, y-, and
z-axis gyroscopes measure p, q, and r, respectively. In hover flight conditions, p measurement error
affects roll angle(φ ), and q measurement error affects theta angle(θ ) due to the kinematics of angular
rates. Therefore, the x-axis fault is detected when rp

1 and rφ

2 exceed thresholds, and the y-axis fault is
detected when rq

1 and rθ
2 exceed thresholds. Since the yaw angle(ψ) is not used as the measurement

of the EKF2, z-axis fault is detected when only rr
1 exceeds the threshold λ r

1 .

5. Conclusion
This paper conducted fault diagnosis for a hexacopter UAV attitude control system. We designed
two extended Kalman filters based on the dynamics and kinematics of the vehicle. Using these es-
timators, the fault detection of the gyroscope, the accelerometer, and the actuator was successfully
conducted. Moreover, it was verified through the simulations that both complete and partial fault
of the sensors was possible to detect. However, for the fault of the IMU sensor (gyroscopes + ac-
celerometers), there are various fault situations such as drift, loss of accuracy, loss of effectiveness,
as well as bias fault. In addition, for the fault of the actuator, it is not enough to simply detect whether
the actuator has failed since a multicopter has multiple actuators. To cope with the detected fault, it is
necessary to diagnose which actuator is a failure. Therefore, more detailed fault detection in various
fault situations will be conducted in the future.
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Figure 7 – Fault diagnosis simulation results - Partial fault of gyroscope
(y = 31: x-axis, y = 32: y-axis, and y = 33: z-axis)
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