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Abstract

Unlike ground vehicles, fixed-wing aircraft that experiences structural damage faces more dangerous situa-
tions, even resulting in crash landing. Especially when the control law of the aircraft is based on the prior
system model knowledge of the aircraft, it can encounter loss of control when damage is inflicted to the air-
craft because the structural damage changes the parameters in the system model and control effectiveness
matrix, causing divergence of the closed-loop system. This structural damage causes the aircraft to change its
mass, center of gravity (CG), moment of inertia (MOI), aerodynamic coefficients and these problems impose
challenges to control design as it must handle high uncertainties in the system and control effectiveness ma-
trix. Two major approaches to deal with uncertainties are to use robust controller and estimate uncertainties
which are calculated online to counter them. For this problem, we present an Incremental Nonlinear Dynamic
Inversion (INDI) Control with Sparse on-line Gaussian Regression (SGPR) for controlling damaged aircraft.
Incremental Dynamics are used to overcome disturbances in the system by using state derivative measure-
ments. We applied Nonlinear Dynamic Inversion control with this Incremental Dynamics to profit from the
robustness properties of this form. In addition to this control law, uncertainties are estimated using SGPR to
add adaptiveness to the system; a non-parametric regression method. There are various situations of struc-
tural damage. In this study, severed single main wing tip situation is considered.

Keywords: Damaged Aircraft, Incremental Dynamics, Nonlinear Dynamic Inversion, Sparse Gaussian Pro-
cess Regression

1. General Introduction
When everything is nominal, aircraft system control using perfect model-based control law does not
cause any problem throughout the flight but flight in a nominal environment is but an ideal dream.
Structural damage is one of many situations that induce disturbances and alter the system model
and control effectiveness matrix. Structural damage in flight is uncommon in the aviation industry
but does occur and must be dealt with because it leads to degradation of control performance and
loss of control in the worst case. In 2003, DHL Airbus A300-B4 cargo aircraft encountered a loss
of hydraulics after being hit by a missile but the crew successfully landed the plane at Baghdad In-
ternational airport using asymmetric thrust control [6]. This shows that structurally damaged aircraft
may still be controllable. Hence it is a paramount objective to design control law that can counter
uncertainties due to structural damage. In this paper, the design of control law for fixed-wing aircraft
with structural damage is of interest. The model used is a reduced-order model (ROM) of generic
transport model (GTM) presented in [9]. As for the damage, a severed left-wing case is considered
only.

The mass, MOI, the CG, and aerodynamic coefficients are the four main properties that change when
damage is inflicted on the aircraft. The aircraft is almost symmetric along the xy and yz plane of the
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body-fixed frame, thus coupled MOI Ixy and Iyz are negligible. When damage occurs, these values
are no longer negligible and the dynamics of the aircraft change causing unwanted moments. The
CG also shifts after damage. Since sensors are attached to an aircraft reference frame that is fixed
closely at the CG point initially, a shift in CG due to damage will create additional force and moment
terms. All these additional moments and forces must be compensated using a controller. The dy-
namics equation when the MOI changes and CG shifts from a fixed reference point other than the CG
point with non-zero elements inertia matrix must be derived to examine the motion and design con-
troller, which will be explained in section 2.. Aerodynamic coefficients also change because the shape
of the aircraft is reconfigured after damage. Since it is hard to obtain aerodynamic coefficients for
all damaged scenarios, it is efficient to estimate uncertainties arising from aerodynamic uncertainties
online. To control fixed-wing aircraft under these uncertainties, we present an Incremental Nonlinear
Dynamic (INDI) Control with Sparse Gaussian Regression (SGPR) of the damaged aircraft. Though
there are various situations of structural damage, we considered severed single main wing tip situa-
tion only.

Recent studies include linear controllers and nonlinear controllers for fixed-wing aircraft under nor-
mal or disturbance and uncertainties induced situations. The linear controllers use linearized plant
dynamics at different sets of states and apply linear control methods like Linear Quadratic Regula-
tor(LQR), H∞ and Proportional Integral Derivative (PID) control. When an aircraft is damaged, the
dynamics equation changes significantly, and pre-determined linearized plant dynamics used for the
control design differ a lot from the nominal system. The robust linear controllers are studied and
developed to cope with this problem but they require knowledge of the bound of uncertainties which
are burdensome tasks to find. It is not efficient to choose large uncertainties bounds to alleviate
works on finding bounds since it will lead to large tracking error performances [5]. Let alone finding
the bounds of the uncertainties, designing linear controllers for all linearized plants is also a tedious
work. The nonlinear controllers like Nonlinear Dynamic Inversion(NDI) and Backstepping are free
from this problem but they face the same problem of performance degradation from damage since
they also use a priori system models and control effectiveness matrix. When the difference between
the dynamics model to the true damaged system is not negligible, a closed-loop system with these
nonlinear controllers may also become unstable. The sliding Mode Controllers (SMC) method can
add robustness to the nonlinear controller but it have inherent chattering problem.

Among these control laws, the Nonlinear Dynamic Inversion control (NDI) is a widely used control
scheme in the military [2]. The NDI control law uses linear control law on the linearized system model
that was not obtained using a numerical linearization method like the Taylor series expansion. The
linearization uses a diffeomorphic mapping function to map the state space of the nominal nonlin-
ear system to a linearized system. The mapping function guarantees the diffeomorphism when the
system knowledge of the true system is exact. The apparent disadvantage of the NDI control law
is that the performance of the controller degenerates when uncertainties increases [11]. To mitigate
the reliance on the system model and uncertainties, the INDI law was proposed. INDI controller is
a sensor-based control that uses incremental dynamics and linear control law. The incremental dy-
namics is derived using the assumptions that the sample time is small, and the change in the control
input affects the state derivative considerably larger than the change in the system states. With state
derivative measurements and assumptions, the INDI is known to have robustness to uncertainties.
The magnitude of the disturbance terms decreases as the sampling time decreases [12]. This means
that INDI is less susceptible to changes in the system model compared to the NDI control law and is
dependent on the control effectiveness matrix due to these assumptions.

In this paper, the control of the pre-mentioned damaged fixed-wing aircraft is designed using INDI
control as a baseline controller for robustness and SGPR for adaptiveness. The sample time is nor-
mally determined by the performance of the flight control computer (FCC) and is fixed and does not
change throughout the flight after FCC is determined, hence robustness of the system cannot be
tuned easily. Also, the performance may degrade when upset to state derivative due to change in
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state variable is no longer negligible and the uncertainties in the control effectiveness matrix B in-
crease. For these reasons, we provided adaptiveness to the control law using SGPR. The uncertain
terms are easily estimated when their parametric basis functions are known but they are very hard
to know. Also using a parametric basis function can overfit the controller to certain situations only.
It is ideal to use regression methods with non-parametric basis functions, meaning infinitely many
parameters, for general purposes and SGPR is one of them. So, we applied SGPR to estimate the
uncertainties due to structural damage. In this way, we aimed to benefit from the adaptiveness of
SGPR, and the robustness properties of the incremental dynamics.

The paper is structured as follows. This section 1.explains the general introduction. Section 2.derives
the equation of motion of an arbitrary point on a rigid body, offset from the CG. Section 3.explains the
ROM. The base-line controller are explained in section 4.where SGPR in section 5.. Section 6.shows
the simulation results. Conclusions are presented in section 7..

2. Equations of Motion Centered at an Arbitrary Point on a Rigid Body

Figure 1 – Arbitrary body frame on a fixed point relative to inertial and CG centered body frame

Normally, the equation of motion for aircraft is derived without considering CG shift since it is a rea-
sonable assumption that the CG point does not change during flight. This is hardly the case for
aircraft with damage. Sensors are attached to the Aircraft Reference System (OARS) frame. Initially,
this frame is closely centered at the CG point. If the CG point does not shift during the flight, sensor
measurements are assumed to have close values to that of the CG point. The damage to the aircraft
cause shift in CG and offset between the OARS frame and CG point gets larger, creating additional
force and moment acting on OARS frame. In this case, effect from CG shift is no longer insignificant.
The derivation of the general equation of motion of OARS frame with arbitrary CG shift can be derived
using Newton’s law as below.
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Referring to figure 1, the relative distance r from pARS to elemental mass δm is

r = rm +∆r (1)

where ∆r= [∆x,∆y,∆z] is offset vector from pARS to shifted CG point pG. Using Newton’s Law of motion,
the external force FB in the inertial frame OI is equal to adding all linear momentum of the δm

FB = ∑δFB = ∑

(
d
dt

(
vARS +

dr
dt

))
I
δm (2)

where vARS = [u,v,w] is the body linear velocity in OARS, ω = [p,q,r] is the body rate also in OARS. Both
vector sum undergoes the time derivative in the inertial frame OI. Simplifying,

FB = m
d
dt

(vARS +ω × r)I (3)

The subscript I denotes that the derivative is done on I frame. m is the total mass. Applying transport
theorem and neglecting the term from time rate of change in CG location,

FB = mv̇ARS +mω̇ ×∆r +mω × (vARS +ω ×∆r) (4)

where v̇ARS = [u̇, v̇, ẇ] and ω̇ = [ṗ, q̇, ṙ]. the •̇ accent denotes time derivative of variable • on the frame
OARS.

The angular moment equation is derived in similar manner. The angular momentum HB at point pARS

is,
HB =

∫
(r× (vARS +ω × r))δm (5)

Then the equation becomes,
HB = Iω +m∆r×vARS (6)

where I is the MOI matrix. The time derivative of the angular momentum in OARS frame becomes

d
dt

(HB)I =
∫ ( d

dt
(r)I ×vδm

)
δm+

∫ (
r× d

dt
(vδm)I

)
δm

=
∫ (( d

dt
(Aδm)I −

d
dt

(AARS)I

)
×vδm

)
δm+MB

(7)

where the external moment on the inertial frame MB =
∫ (

r× d
dt (vδm)I

)
δm by definition. Since d

dt (Aδm)I =

vδm and d
dt (AARS)I = vARS, they become

MB =
d
dt

(HB)I +mvARS ×
(
vARS +

(
∆̇r
)

I

)
=

d
dt

(HB)I +mω ×∆r
(8)

Finally, the moment equation is obtained as,

MB = Iω̇ +m∆r× v̇ARS +ω × Iω +mω × (∆r×vARS)+mvARS × (ω ×∆r) (9)

The above equations can be simplified in matrix form as organized from [1][
v̇ARS

ω̇

]
=

[
mI3×3 −M

ΩD I

]−1([FB
MB

]
−
[

mΩD −ΩDM
ΩDM ΩDI−VDM

][
vARS

ω

])
(10)

where

M =

 0 −m∆z m∆y
m∆z 0 −m∆x
−m∆y m∆x 0

 ,ΩD =

 0 −r q
r 0 −p
−q p 0


V D =

 0 −w v
w 0 −u
−v u 0

 , I =
 Ixx −Ixy −Ixz

−Ixy Iyy −Iyx

−Ixz −Iyz Izz

 (11)
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3. Reduced Order Model
The damaged aircraft model used is the GTM. This GTM is a 5.5% scaled model of a commercial
jet airliner developed by NASA to obtain changes in the aerodynamic coefficients, mass and inertia
properties, and CG. There were various attempts made to analyze this damaged model. The wind
tunnel test on this model was performed in [10]. The assessment concerning the stability derivatives
changes of the GTM model was performed in [7]. In [9], effects on structural load were explored on
the damaged main wing of the GTM and derived the ROM for the nominal and damaged GTM. In this
paper, we simulated the damaged aircraft model using this ROM model used in [9] and applied our
proposed control law.

3.1 Aerodynamic Coefficients of normal and damaged GTM

longitudinal lateral
State CD CL Cm CY Cl Cn

0 0.0279 0.0327 0.1569 0 0 0
α 0 5.9419 -1.8641 0 0 0
α2 2.0137 -0.2031 -0.6088 0 0 0
q̄ 0.4373 16.000 -54.1055 0 0 0
q̄2 -59.8215 -0.2884 -9.4867 0 0 0
δe 0 1.1267 -4.2718 0 0 0
δ 2

e 1.2721 0.0343 0 0 0 0
β 0 0 0 -0.8281 -0.1504 0.2153
β 2 -0.6123 0.1349 -1.7395 0 0 0
q̄ 0 0 0 -0.2159 -0.4420 0.0465
q̄2 -0.5697 0.0390 -0.2241 0 0 0
r̄ 0 0 0 0.6451 0.1285 -0.4227
r̄2 -0.4101 0.0774 -1.3550 0 0 0
δa 0 0 0 0.0143 0.0949 0
δ 2

a 0.0434 -0.0008 0.0122 0 0 0
δr 0 0 0 -0.4990 -0.0664 0.2269
δ 2

r 0.1803 -0.1395 0.6026 0 0 0

Table 1 – ROM Aerodynamic Coefficients of GTM with no Damage [9]

Table 1 shows the aerodynamic coefficients of the ROM for GTM in nominal condition. In the table,
α and β are angle of attack and side-slip angle, p̄ = c̄p

2Vt , q̄ = bq
2Vt , r̄ = c̄r

2Vt is the normalized roll, pitch,
yaw rate where c̄, b, Vt are the chord length, span and true air speed of the aircraft. δe, δa and δr are
the deflection of the elevator, aileron, and ruder control surfaces.

The aerodynamic coefficient of the ROM of the GTM with 33 % damaged left main wing is on the
table 2. If you compare the aerodynamic coefficients of the nominal GTM model to the 33 % dam-
aged left-wing one, you can notice that the longitudinal and lateral coefficients terms are created
when the wing is severed. It is obvious since the symmetry will be violated when a portion of the left
main is removed. The damage will create unwanted aerodynamic coupling force and moment. The
aerodynamic coefficients in the control surfaces are also changed, hence uncertainties will add up to
the nominal control effectiveness matrix B.

The change in aerodynamic coefficients using the table 1 and 2 are shown in figure 2 and 3. The
aerodynamic coefficients variation due to left main wing tip loss versus angle of attack is shown in
figure 2 with zero actuator deflection angle. The change in aerodynamic coefficients of actuators
versus wing loss in percentage is shown in figure 3. For brevity, only the moment aerodynamic
coefficients are displayed in the figures.
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longitudinal lateral
State CD CL Cm CY Cl Cn

0 0.0275 0.0186 0.1673 -0.0006 -0.0042 0.0001
α 0 5.1308 -1.3938 -0.0300 -0.2446 -0.0092
α2 1.7468 -0.1972 -0.5371 0.2334 0.0137 -0.1981
q̄ 0.4621 14.9681 -53.4648 -0.0386 -0.3218 -0.0160
q̄2 -58.6255 0.2680 -9.8754 0.5280 0.1581 -0.4000
δe 0 1.1192 -4.2686 -0.0001 -0.0023 -0.0002
δ 2

e 1.2777 0.0344 0 0.0002 0 -0.0004
β -0.0003 0.0536 -0.0332 -0.8253 -0.1329 0.2160
β 2 -0.6118 0.1409 -1.7475 0 0 0
q̄ -0.0066 0.4644 -0.2741 -0.1989 -0.2980 0.0531
q̄2 -0.3719 0.0368 -0.1974 0.1221 -0.0005 -0.0973
r̄ -0.0011 -0.0244 0.0157 0.6435 0.1199 -0.4225
r̄2 -0.4108 0.0674 -1.3499 0 -0.0045 0
δa -0.0012 -0.1345 0.1067 0.0072 0.0478 0
δ 2

a 0.0216 -0.0004 0.0061 -0.0045 0 0.0099
δr 0 -0.0009 0 -0.4989 -0.0666 0.2268
δ 2

r 0.1803 -0.1395 0.0625 0 0 0

Table 2 – ROM Aerodynamic Coefficients of GTM with 33 % Severed Left Wing [9]

3.2 Mass Properties of normal and damaged GTM
The damage on the left main wing tip does not affect only the aerodynamic coefficients of the aircraft
but also the mass properties like mass, the MOI, and the location of the CG. The variation of the
mass, MOI, and CG shift is displayed in figure 4. These data is attained from [8]. Among those mass
properties, CG shift creates the most unexpected force and moments on the body as was shown
in the equation derived in section 2.that could easily have been disregarded when mass and MOI
change were only considered to simulate damaged fixed-wing aircraft.

4. Incremental Nonlinear Dynamics Inversion Control
The performance of the traditional NDI control depends heavily on the a priori knowledge of the
system. The performance of any model-based control law relies on the accuracy of model knowl-
edge. Though the system knowledge is perfectly known, if the dynamics changes during operation
by chance, the performance degradation occurs; in the worst case, the system falls into inoperable
condition. To mitigate this dependency issue on the model accuracy, incremental dynamics were
formulated and used for control law derivation.

4.1 Incremental Nonlinear Dynamics
The derivation of INDI is as follows. Given the state derivative equation of the system as

ẋ = f(x,u) (12)

where x is a state column vector, u is a control input vector. Applying Taylor series expansion to the
above equation, it becomes

ẋ ≈ f(x0,u0)+
∂ f
∂x

(x−x0)+
∂ f
∂u

(u−u0) (13)

where subscript ’0’ means the most recent value. Re-writing the above equation becomes

ẋ ≈ ẋ0 +F(x−x0)+B(u−u0)

ẋ ≈ ẋ0 +B(u−u0)
(14)
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Figure 2 – Change in Roll, Pitch and Yaw Moment Aerodynamic Coefficients VS Angle of Attack
from Left Main Wing Loss

0 10 20 30

Left Main Wing Loss (%)

0

0.02

0.04

0.06

0.08

0.1

0.12

C
lm

n
a

C
l

a

C
m

a

C
n

a

0 10 20 30

Left Main Wing Loss (%)

-5

-4

-3

-2

-1

0

C
lm

n
e

C
l

e

C
m

e

C
n

e

0 10 20 30

Left Main Wing Loss (%)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

C
lm

n
r

C
l

r

C
m

r

C
n

r

Figure 3 – Change in Roll, Pitch and Yaw of Actuator Moment Aerodynamic Coefficients V.S.
Percentage of Left Main Wing Loss

This equation 14 is called the incremental dynamics. The INDI control law assumes that the x ≈ x0
and u ̸= u0 due to the assumptions as stated above and cancels the F(x−x0) from the equation. With
this incremental nonlinear dynamics equation, the control law and virtual input v ≈ ẋ, the control input
is obtained as

ẋ ≈ ẋ0 +B(u−u0)

u = u0 +B−1(ν − ẋ0)
(15)

Although INDI has robustness compared to NDI, to gain more robustness to large uncertainties like
in this damaged aircraft situation (change in mass, CG location, MOI, and aerodynamic coefficients),
uncertain parameters must be estimated to compensate its effect. In [11], the uncertainties in the
control effectiveness matrix B can affect the performance of the INDI controller compared to model
uncertainties F. Also, the INDI controller can lose its robustness when the assumption that the change
in control inputs governs the magnitude of the state derivatives equation no longer holds, creating
dependency in F and state x−x0. If the uncertainties in the model and control effectiveness matrix
increase due to structural damage and effect of F is no longer negligible, then the INDI controller may
experience performance degradation or fall into instability. This means that if these uncertainties are
estimated, used as feedforward terms in the controller, and cancelled, controller can have adaptive-
ness together with the inherent robustness that the INDI has. For this purpose, SGPR is used, which
is explained in section 5.
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Figure 4 – Change in Mass Properties from Left Main Wing Loss [8]

4.2 Control using Incremental Nonlinear Dynamics
The control law is derived using INDI for the damaged aircraft case when no damage is incurred. Due
to equation 11, the equation 14 becomes

ẋ = ẋ0 +
(
F̂+δF

)
(x−x0)+

(
B̂+δB

)
(u−u0)+d (16)

where F =
(
F̂+∆F

)
, B =

(
B̂+∆B

)
and d is disturbance term. The F̂ and B̂ are the a priori information

about F and B, ∆F and ∆B are the uncertainties created due to damage. After applying the following
control input to equation 15

u = u0 + B̂−1(ν − ẋ0) (17)

the equation 16 becomes,

ẋ = ν +∆

∆ = δF(x−x0)+δB(u−u0)+d
(18)

Selecting pseudo control input ν as

ν = νc −ν∆ (19)

where νc is the user chosen control input. If the uncertainty ∆ is estimated such that ν∆ ≈ ∆, the
equation 18 becomes

ẋ ≈ νc (20)

5. Uncertainties Estimation
The ordinary model-based controller may work fine for GTM under nominal conditions. After the
model experiences damage, the system dynamics and control effective matrix change, causing ab-
normal behavior compared to the expected control response. The INDI uses Taylor series expansion
when obtaining the incremental dynamics, so the basis functions for this dynamics are hard to be
formulated. If this was possible, parametric functions could have been used and various adaptive
control methods can be applied. The basis functions for additional disturbances are also hard to find.
For estimation of these changes, we used SGPR which is a non-parametric GP model with sparsity
consideration.
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5.1 Gaussian Process Regression
A stochastic process is a process composed of random variables indexed with spatial or temporal
components. A Gaussian Process (GP) is a type of stochastic process where the random variables
follows Multivariate Normal distribution. The GP regression uses Bayesian inference with GP priors
to estimate posterior given the dataset D = [(yt=0,xt=0),(yt=1,xt=1), ...,(yt=N ,xt=N)] with measurement
vector y, input state x, and time index t. From [13], the function f(x) is defined as

f(x)∼ GP(m(x),k(x,x′))
m(x) = E[ f (x)]

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))]
(21)

where m(x) is the mean and k(·, ·) kernel function. There are many candidate functions for kernel
k(·, ·). In this research, the exponential kernel is used, which is the most general one. The exponential
kernel is,

k(x,x′) = exp

(
∥x− x′∥2

2σ2
x

)
(22)

Typical the uncertainties ∆ = f (xi) are composed of unknown functions whose number of basis func-
tions are also not known. The measurement of ∆ is yi that includes the noise w as

yi = f (xi)+wi

wi ∼ N(0,σ2
i )

(23)

The uncertainties ∆ can be estimated using GP Regression as[
yt

yt+1

]
∼ N

(
0,

[
k(Xt ,Xt)+σ2

n In×n k(xt+1,Xt)
k(Xt ,xt+1) k(xt+1,xt+1)

])
(24)

where yt = [y1, ...,yt ] and Xt = [x1, ...,xt ] is the state measurement vector. The predictive distribution
p(yt+1|Xt ,yt ,xt+1) from the above joint Gaussian prior distribution over the new input xt+1 becomes
[4]

p(yt+1|Xt ,yt ,xt+1)∽N (mt+1,Σt+1)

mt+1 =α
T
t+1k(Xt+1,xt)

Σt+1 =k(xt+1,xt+1)+ k(Xt ,xt+1)
T Ctk(Xt ,xt+1)

α t+1 =Ctyt

Ct =
(
k(Xt ,Xt)+σ

2
n In×n

)−1

(25)

5.2 Sparse Gaussian Process Regression
Learning or regression problems that have fixed length of measurements have matrices with fixed
cardinality and calculation of inverse operation for matrix costs fixed resources. On the other hand,
online estimation problem has an increasing number of measurements, resulting in matrices whose
size increases proportionally to the number of measurements. If GP regression is to be used on
the online setting, it would be computationally intractable as the cardinality of the measurement set
increases. So the number of the data points needs to be fixed for tractable calculation of the posterior
mean. Csató and M. Opper proposed replacing data points, also known as basis vectors denoted
BV to maintain constant dataset size [4]. For addition and removal of the data points, the BV must
be re-evaluated with respect to the t +1 datapoint. This can be done by kernel linear independence
test [4], [3]. The linear independence test is as follows from [4], [3]

γt+1 = min
αi

∥∥∥∥∥i=1

∑
t

αik(·,xi)− k(·,xt+1)

∥∥∥∥∥
2

H

(26)

9



INSERT RUNNING TITLE HERE

whose solution αt is also given as
α t = K−1

Xt
k(xt+1) (27)

where KXt is a gram matrix. The above equation leads to the following relationship of γt+1 as

γt+1 = k(xt+1,xt+1)− k(xt+1,xt+1)
T

α t (28)

The above equation is used to check whether replacement of the new datapoint is required. When
γt+1 > βtol with user selected lower bound βtol, it tells us that one of BV needs replacement with new
datapoint.

The proposed SGPR learning by Csató and M. Opper also calculates the parameters α t+1 and Ct+1
recursively [4]. For this to be done, when a data xt+1 is observed at time t+1, the algorithm calculates
following scalar variables are defined as,

qt+1 =
(
yt+1 −α

T
t kx
)
/ρs

rt+1 =−ρ
−
s 1

ρs =σ
2
n + k(xt ,Xt)

T Ctk(xt ,Xt)+ k(xt ,xt)

(29)

Then αt+1 and Ct+1 are calculated using the following recursive formulas

αt+1 =Tt+1 (αt)+qt+1ss+1

Ct+1 =Ut+1 (Ct)+ rt+1ss+1sT
s+1

st+1 =Tt+1
(
Ctkxt+1

)
+ et+1

et+1 =Qtk(xt+1,Xt)

Qt =K−1
Xt

(30)

where KXt = k(Xt ,Xt). The Tt+1(·) and Ut+1(·) are operators to increase dimension of the (t ×1)
vector and (t × t) matrix to ((t +1)×1) and ((t +1)× (t +1)) by concatenating zeros so that vector
and matrix addition for increased dimension after adding or removing datapoint is possible. The size
of the set BV must be constant to make online regression possible. If adding datapoint from the
previous recursive equation increases the dimension of the set BV , the least informative BV must
be removed. For this process, the scores are calculated using the following equation,

ε(i) =
|αt+1(i)|
Qt+1(i, i)

(31)

The above equation is used to select the least informative BV from the set. Define the least infor-
mative BV index as i, then the following recursive equations update the parameters using set BV
with one data point removed.

α̂ t+1 =α
r +α(i)

Q(i)
q(i)

Ĉt+1 =Cr + c(i)
Q(i)Q(i)T

q(i)
−
(
Q(i)C(i)T +C(i)Q(i)T )

Q̂t+1 =Qr − Q(i)Q(i)T

q(i)

(32)

In the above equation, the α(i), c(i) and q(i) are scalar variables from α t+1(i), Ct+1(i, i) and Qt+1(i, i).
C(i) and Q(i) are Ct+1(:, i) and Qt+1(:, i) vectors with ith component from each removed, hence their
dimensions are (t × 1). The αr is a vector α t+1 with α(i) component removed, also having (t ×1)
dimension. In the same manner, Cr and Qr are Ct+1 and Qt+1 matrices with ith row and column
removed having (t × t) dimensions.

10



INSERT RUNNING TITLE HERE

Using SGPR, the uncertainties are estimated. The measurement yt is obtained by the following
equation

α̂ t+1 =α
r +α(i)

Q(i)
q(i)

Ĉt+1 =Cr + c(i)
Q(i)Q(i)T

q(i)
−
(
Q(i)C(i)T +C(i)Q(i)T )

Q̂t+1 =Qr − Q(i)Q(i)T

q(i)

(33)

6. Simulation Result
The designed controller was used for controlling GTM with left main wing tip severed. The tip loss
cases are 33 % and 40 %. The 40 % case was chosen to exaggerate differences between controllers
used. To attain aerodynamic coefficients, CG shift, mass, and MOI, extrapolated values are used.
The damage happens at 14 sec for both cases. The control variables are body rates. The figure
5 shows the result for NDI, INDI, and the proposed INDI SGPR of GTM that experiences 33 % left
main wing tip loss. As the figure shows, the NDI controller failed to follow the reference command
input. Among the other two controllers, the proposed INDI SGPR controller showed better reference
command response, especially in the roll axis. The figure 6 shows the controllers response for
40 % left-wing damage case. The model-based NDI controller showed poor reference command
following performance after damage occurred while the other two methods gave smaller errors. The
INDI controller showed its robustness to uncertainties despite the damage though INDI with SGPR
showed smaller error due to its adaptive term.
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Figure 5 – NDI, INDI and INDI SGPR Control Response of p, q, and r for the GTM with 33 %
severed left wing

7. Conclusion
A damaged fixed-wing aircraft control problem is being discussed. We proposed an INDI SGPR to
attain robustness and adaptiveness. The aircraft model used is a ROM of GTM with 33 % loss of
its left main wings. Changes in mass properties like mass, MOI, and CG shift are considered in the
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Figure 6 – NDI, INDI and INDI SGPR Control Response of p, q, and r for the GTM with 40 %
severed left wing

mathematical modeling together with the aerodynamic coefficient uncertainties due to damage. The
proposed control sought to attain robustness by using incremental dynamics and adaptiveness by
using SGPR which is a non-parametric Bayesian function sparse estimator. Three controllers are
compared: NDI, INDI, and INDI SGPR. The simulation results showed that the proposed controller
performed better than the other two controllers, especially on roll rate control.
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