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Abstract

The understanding of the vibro-acoustic behaviour of the aircraft structure is an important step in order to
reduce the noise and vibration (N&V) of aircraft itself. A powerful tool is the well-known Finite Element Method
(FEM), which allows to study the vibro-acoustic problem in the low frequency range. The FEM applied to
vibro-acoustic has a limitation: to increase the frequency range, it is necessary to decrease the size of the
elements. Therefore, in order to study complex model as an aircraft structure, the maximum frequency is
often too low to have useful results. Moreover, the exploitation in the aeronautical field of multi-layer and
sandwich materials with visco-elastic core, leads to the decrease of accuracy of classical shell elements and
the need to often adopt solid elements, further increasing the size of the FEM problem. In this work we exploit
a powerful notation for shells, the Carrera’s unified formulation (CUF), to reduce the size of the vibro-acoustic
problem. Curvilinear shell elements are applied to a cylindrical structure, similar to a fuselage, to study different
materials, without increasing the size of the problem or losing accuracy in the solution. In this way it will be
possible to reach higher frequency in the vibro-acoustic analysis, still describing the behaviour of sandwich
and composite structures with the same accuracy of the solid elements.
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1. Introduction
The acoustic footprint of a commercial passenger aircraft depends on several parameters and con-
ditions, from the flight phase to the most specific characteristics of each component. Although, there
are no doubts about the importance of a correct understanding of the aircraft’s acoustic behaviour
and sure enough several works study this field [1, 2]. The aim is to obtain reliable methods and
tools in order to improve the aircraft’s acoustic efficiency, thus, to reduce noise and vibrations (N&V)
generated by the aircraft. If external noise is considered an environmental problem, which affects
the near airport areas, internal noise is related to the passenger’s comfort. In this work we will focus
on the internal noise since comfort is becoming an important driving factor in commercial aircraft
design. Moreover, high level of vibrations inside the aircraft can damage the structures and reduce
their operating life and efficiency.
Internal noise is generated by several components in an aircraft [3]. Although, it usually follows two
paths from the source to the receiver (e.g., the passenger or the crew): an airborne path or/and a
structural one. The former is described by the Wave equation and Helmholtz equation in the time and
frequency domain respectively. Therefore, the noise, as an acoustic pressure, spreads through the
acoustic cavity (e.g., the passenger cabin or other aircraft cavities filled with air). The latter stands
for the interaction of the acoustic waves with solid materials (e.g., the aircraft primary and secondary
structures). The sound travels through vibrations, which are displacements in a rigid body. These
variables are described by the structural models depending on the structures itself and on the other
parameters, as the computational cost and, the needed accuracy. In order to have a complete acous-
tic model, the interactions between the two paths must be considered, integrating vibro-acoustic



VIBRO-ACOUSTIC ANALYSIS VIA CUF FINITE ELEMENTS

theories to describe the fluid-structure coupling. As a matter of fact, numerical methods are the
strongest tools to solve the vibro-acoustic equations and thus, to study complex systems in a reli-
able and flexible way. The Finite Element Method (FEM) is commonly exploited for vibro-acoustic
problems in the low and medium frequency range. Classical materials and structures (e.g., single
layer plate or beam) can be modelled with classical structural theories and numerical models based
on the Equivalent Single Layer (ESL) approach, where the structure is supposed to be an integral
equivalent layer. Although, new advanced materials and multi-layer plates have taken hold in the air-
craft structures since several decades: not only composite material in aircraft primary structures, but
also sandwich plates with honeycomb core play an important role in the aircraft secondary structure
and in the acoustic behaviour of the fuselage. Moreover, new advanced solution are understudying
by researchers; some of this solution can not be studied with ESL method because involve multi-
layer visco-elastic materials, as acoustic metamaterials , or layer-embedded piezo-electric systems.
In order to have a reliable numerical model able to understand the complex kinematic behaviour of
these structures, we can choose between solid models, which use three-dimensional elements, and
refined two-dimensional models, the so called Layer Wise (LW) approach. This numerical approach
supposes the structure composed by independent layers. In this way it is possible to have a three-
dimensional description of stress–strain state in the material.
Vibro-acoustic FEM model accuracy strongly depends on the elements size, which are inversely pro-
portional to the maximum frequency of the problem. Moreover, a fully coupled vibro-acoustic model
we need to model both the structure and the fluid cavity. These considerations strongly increase the
number of degree of freedom (DoF) of the problem, limiting the FEM analysis for complex structure,
as aircraft, to the very low frequency range, usually for a fuselage FEM model it is difficult to over-
come the 200-300 Hz. Moreover, if we exploit a solid model for particular multi-layer structures and
acoustic solutions, we obtain a further increase in the DoF of the problem. This increase is partially
avoidable with LW model. To summarize, FEM model need high computational power to solve the
vibro-acoustic problem of coupled complex system also in the low-medium frequency range, where
other method, as the Statistical Energy Analysis (SEA), are not still reliable.
In this work we exploit the Carrera’s Unified Formulation (CUF), which enhance a new class of beam
and shell models [4]. The advantages of this formulation were already demonstrated in other works,
both for the structural and the vibro-acoustic part [5, 6, 7]. The formulation theory will be described in
Section 2.2. In the vibro-acoustic field, we limit the CUF to simple plane problem, due to the difficulty
to use the through the thickness interpolation on complex three-dimensional structures, as an aircraft
fuselage. In particular, in this work [6] we discovered an important difference between ESL model
and LW one, also for single layer plate made of an orthotropic material.
In the following sections, an enhancing of this formulation in curvilinear coordinates is developed.
The formulation of the shell finite elements used in this work is based on the merging of FEM shape
functions and CUF approximating functions in unique 3D approximating functions employed for both
displacements and geometry of the shell element, following the philosophy of non-conventional 2D
elements presented in [8]. The resulting 3D approximation is then exploited for the derivation of
3D elements in general curvilinear coordinates, as explained in [9], which the shell elements are
particular case of. Therefore, a study case is solved: the study of a multi-layer cylindrical shell (a
quasi-fuselage structure) coupled to an internal cavity. This example want to be on of the first steps
in the exploits of CUF for studying the vibro-acoustic behaviour of complex structure, following the
work by Cinefra [10].
Several studies solve the vibro-acoustic response of a cylindrical structure, of a cylindrical cavity or to
the coupled problem. The results can be applied to several real problems, as the reduction of vibration
of fuselage, studying the both the modal and the frequency response of the structure. Moreover,
this geometry has an quasi-analytical solution of the free-vibration problem, both the shell and the
cavity, based on the Bessel function. In particular Rona [11] calculated the eigen-frequencies of a
cylindrical cavity with free surfaces. Cylindrical shell and cavities are widely exploited as simplified
model of fuselage, as in the work by da Rocha et al. [12] and by Missaoui et al. [13], or to study
unconventional materials, as the visco-elastic or porous materials, in the work by Boily et al. [14].
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2. Governing equation and FEM approximation
2.1 A brief overview of the vibro-acoustic problem
The vibro-acoustic problem can be briefly described as the coupling between the structure and a
fluid cavity. Therefore the well-known structural and acoustic systems are exploited to mathematically
represent this problem. Moreover, in order to take in account the coupling, two coupling equations,
one for each system, are added to connect the two systems. The unknown of the acoustic problem
is the fluid pressure p, while for the structure system it is the displacement vector ui, where the
Einstein’s notation is applied (ui represents the components of the vector u = {u1 u2 u3}T in which
the components are the displacements in the three directions). For sake of simplicity, we report the
variational formulation for the coupled system obtained in terms of virtual displacement δui and virtual
pressure δ p: { ∫

Ωs
δuiσi jdV +

∫
Ωs

δuiρsüidV =
∫

Γs
N

δui fids+
∫

Γ f s
δui pnids∫

Ω f
δ p,i p,idV + 1

c2
f

∫
Ω f

δ pp̈dV =−ρ f
∫

Γ f s
δ pünids (1)

Therefore, the vibro-acoustic system is built by three parts:

• the fluid cavity (subscript f ) is defined by the domain Ω f . The cavity is filled by a fluid, whom
properties are the density ρ f and speed of sound c f . The cavity is closed by rigid walls applied
on the domain Γ

f
N ;

• the plate, so the elastic structure, is defined by the domain Ωs and made by a material defined
by the stress tensor σi j and so by the matrix of the elasticity coefficient C. On the plate there
are regions where can be applied loads, as fi, Γs

N and set displacements Γs
D;

• the two regions have a common interface defined by Γ f s. On this interface the fluid-structure
coupling happens.

We neglected the body force as assumption.

2.2 Carrera’s Unified Formulation
Considering a local curvilinear reference system as represented in Figure 1, a generic shell lays on
the local plane α1 −α1 plane and the local perpendicular axis to its midsurface is α3. Along the axis
α3, the thickness h (from −h/2 to h/2) develops on different layers, each pointed by the index k, so the
thickness of each layer is hk. According to the CUF the three-dimensional field of the displacement of
a shell can be split in a two-dimensional field on the shell plane and an expansion on the thickness.
The in-plane field is described by the chosen shell model uτ

(
α1, α2

)
, while the expansion on the

thickness by the function Fτ(α
3), called the thickness function:

Figure 1 – Local curvilinear reference system and rectangular Cartesian reference system.
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u
(
α

1, α
2, α

3)= Fτ

(
α

3)uτ

(
α

1, α
2) (2)

In Equivalent Single Layer (ESL) model the thickness functions are expressed on the through-the-
thickness domain of the multilayered shells. These theories are usually accurate to estimate the
global laminate response, but they became unsuitable if stresses at ply level are required. Moreover
they can be inaccurate when there are localized loads or in case of high anisotropy. These inaccu-
racies are amplified for sandwich structure, where the central layer is much thicker than the faces.
In order to correctly estimate the vibro-acoustic response of a vibrating shell, the thickness functions
change according to the layer:

uk (
α

1, α
2, α

3)= Fk
τ

(
α

3)uk
τ

(
α

1, α
2) (3)

where α3
k ∈ hk. The displacement continuity conditions have to be enforced at the layer interfaces in

this case.
In a ESL model the thickness functions are based on Taylor expansion Fτ = (α3)τ where in a finite
expansion the highest order is N and so τ = 0, ...,N with N +1 functions.
In a LW model the thickness functions are expressed by Lagrange e interpolation polynomials through
the thickness of layer k:

Fk
τ

(
α

3
k
)
=

N

∏
i=0,i ̸=τ

α3
k −α3

ki

α3
kτ
−α3

ki

(4)

in which α3
k is the adimensional thickness coordinate within layer k (the bottom for α3

k =−1 and the top
for α3

k = 1). The interpolation points are usually equally spaced in the layer k. In order to guarantee
the displacement continuity at the interfaces between the layers, the following condition is imposed:

uk
t = uk+1

b , k = 1, ...,Nl −1 (5)

so the displacement at the top of a layer must equal to that at bottom of the following layer, for the
total number of layers Nl. The stress continuity can be obtained if enough Lagrange expansion term
are used.
In a vibration analysis, the displacement field is time-dependent and Eq. 3 has the following formula-
tion:

uk (
α

1, α
2, α

3, t
)
= Fk

τ

(
α

3
k
)
uk

τ

(
α

1, α
2, t

)
(6)

2.3 FEM approximation
In the FEM approximation the physical domain is divided in elements defined by nodes. In order to
build the continuous field for the unknowns from the discrete nodal unknowns, the shape functions Ni

are introduced. For the shell elements, the displacement field obtained in Eq. 3 is two-dimensional.
The continuous variable of the vibro-acoustic problem, displacement uk

τ and pressure p, are calcu-
lated from the nodal displacement U k

τi and pressure Pi:

uk
τ

(
α1, α2, t

)
= Ni

(
α1, α2

)
U k

τi(t)
i = 1, ...,mu τ = 1, ...,nk

i
(7)

p
(
α1, α2, α3, t

)
= Ni

(
α1, α2, α3

)
Pi(t)

i = 1, ...,mp
(8)

in which i is nodal index inside the element, mu and mp the number of structural and fluid nodes
respectively, nk

i is the number of adopted LW expansions in layer k on the corresponding node i. Note
that a classical 3D approximation based on 3D Lagrange polynomials is adopted for the acoustic
pressure.
On Eq. 7, we apply the CUF approximation:

uk (
α

1, α
2, α

3, t
)
= Ni

(
α

1, α
2)Fk

τ

(
α

3
k
)
uk

τi(t) (9)
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In a similar way is possible to obtain δuk and δ p:

δuk (
α

1, α
2, α

3, t
)
= Ni

(
α

1, α
2)Fk

τ

(
α

3
k
)

δuk
τi(t) (10)

δ p
(
α

1, α
2, α

3, t
)
= N j

(
α

1, α
2, α

3)
δPj(t) (11)

where indices j and s have the same meaning of i and τ, respectively.

2.4 A new class of shell finite elements
The formulation of the shell finite elements used in this work is based on the merging of FEM
shape functions and CUF approximating functions in non-conventional 3D approximating functions
employed for both displacements and geometry of shell element, following the philosophy of non-
conventional 2D elements presented in [8]. The resulting 3D approximation is then exploited for the
derivation of 3D elements in general curvilinear coordinates, as explained in [9], which the shell el-
ements are particular case of. In the following, the authors try to summarize the main steps of this
derivation but the readers are invited to refer to the works [8, 9] for more details.

2.4.1 Non-conventional 3D modelling
In the framework of FEM, it is possible to extend the models of Carrera Unified Formulation to the
modelling of generic curvilinear geometries by incorporating the CUF kinematic assumption and the
FEM discretization in a unique 3D approximation, as follows:

uk(α1,α2,α3) = (Fk
τ Ni)U

k
τi = Lk

τi(α
1,α2,α3)U k

τi (12)

where Lk
τi(α

1,α2,α3) = (FτNi). In this expression, Lτi represents a non-conventional 3D shape func-
tion in which the order of expansion can be different along one of the spatial directions. Similarly, the
virtual variation δ of displacements, that will be used in the derivation of governing equations below,
can be approximated by:

δuk = (Fk
s N j)δU

k
s j = Lk

s j(α
1,α2,α3)δU k

s j (13)

Considering this formalism, the volume integrals involved in the governing equations will be not split
in 1D and 2D integrals as usual, but the functions (Ni Fτ) and (N j Fs) will be handled as regular 3D
shape functions; consequently, the Jacobian matrix relative to the transformation from natural coordi-
nates α1,α2,α3 to global coordinates x,y,z will be computed in 3D form. However, a formal separation
of the coordinates as in Equation (3) is still possible and the choice CUF FE approximations follows
the same principles as in conventional shell elements based on CUF, that is functions with higher
polynomial order are employed along the larger directions.
The results will demonstrate that this particular approach allow us to save degrees of freedom with
respect to the use of meshes based on classical 3D finite elements. Indeed, conventional 3D ele-
ments employ the same order of expansion in the three spatial directions and this usually implies
some limitations on the choice of the aspect ratio of the element by leading to a detrimental increase
of the number of elements used.

2.4.2 Interpolation of geometry
The interpolation of solid geometry is easily accomplished using an isoparametric procedure. The
position vector of the generic point P in the discretized domain is given by:

xk(α1,α2,α3) = Lk
iτ(α

1,α2,α3)xk
iτ (14)

where the Einstein notation has been adopted and a summation on the repeated index i = 1, ...,n
is implicit; n is the number of the nodes of the solid element. Hexahedral elements are considered
in this work and Li is the Lagrangian shape function corresponding to node i. xiτ = {x1

iτ ,x
2
iτ ,x

3
iτ}T is

the position vector for the node iτ, corresponding to the nodal displacement Uiτ in Eq.7. The basis
of the Cartesian coordinate system, in which xiτ is defined, is given by the usual unit base vectors
(i1,i2,i3). From this point on, the formulation of present shell elements follows the same derivation
presented in [9] for 3D finite elements in curvilinear coordinates.
Note that, the number of degrees of freedom in these elements is not increased with respect to
classical shell elements formulated in the framework of CUF [15, 16].
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2.5 Fundamental matrices
Applying the finite element approximation and the CUF, defined in Eq. 7 and Eq. 8, in the system 1,
we obtain the following matricial system:[

M 0
−ρ fS

T Q

]
·
{

Ü
P̈

}
+

[
K S
0 H

]
·
{

U
P

}
=

{
Fs

Fp

}
(15)

This system has as unknowns the displacements vector U and the pressure vector P , the first term
represents the mass matrix of the system, while the second the stiffness matrix. The mass matrix is
not diagonal due to the coupling term, although for low density fluid can be neglected, simplifying the
resolution of the system. The mass and stiffness matrix of the structure M and K, and those of the
fluid Q and H, the coupling matrix S and the structural and acoustic external loads Fs and Fp (this
last term is not included in Eq. 1, but it can be added depending on the chosen boundary conditions).
This matrices are written using the fundamental nuclei formulation. A fundamental nucleus does
not depend on the problem unknown, but only on the thickness and shape functions, the materials
properties and on the differential operators. The formulation of these nuclei is referred to those
reported in several works [4, 6, 10].
The system can be transformed in the frequency domain through the Fourier transform:[

−ω2M +K S
−ρ f ω

2S −ω2Q+H

]
·
{

U
P

}
=

{
Fs

Fp

}
(16)

The damping terms is absent, but it can be included as the imaginary part of the stiffness matrix,
multiplied by ω, the pulsation directly linked to the frequency f = 2πω .

3. Method validation
3.1 Fluid cavity
The fluid cavity is a cylinder, Figure 2(b), with a radius equal to 0.5 m and an eight to 2 m. It is filled with
air (speed of sound c = 346 m/s and density ρ = 1.225 kg/m3). The cavity is modeled by 6000 Hexa27
elements. A rigid wall on the cylinder’s bases and on the lateral surface is automatically imposed. On
a rigid wall the normal velocity is zero, and so the acceleration, we obtain a the following boundary
condition p,i = 0 (Neumann boundary condition). The first 6 modes are compared with those obtained
by an ESL method in Table 1. The results for this simple case show the high similarity between the
frequencies and the shapes do not present any difference.

Table 1 – The first six eigen-frequencies for the cylindrical cavity calculated exploiting the CUF theory
(MUL2) and an ESL one.

Mode CUF-LW3 ESL Difference [%]

1 86.55 86.5 0.058
2 173.10 173 0.058
3 220.59 220.46 0.057
4 220.59 220.46 0.057
5 259.66 259.5 0.061
6 266.70 266.55 0.058

3.2 Cylindrical shell
In order to validate the shell in Figure 2(a), we compare the first 6 modes obtained by a LW approach
to those obtained by an ESL approach. We use a cylinder with the following characteristics:

• radius 1 m, height 2 m, thickness 1 cm;

• material Aluminum (Young’s modulus E = 71 GPa, Poisson’s ratio ν = 0.33 and density ρ = 2770
kg/m3);
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• clamped on the two edges.

The numerical model is made of 2480 Quad9 shell elements. The first 6 modes are compared in
Table 2. The results for this case show the high similarity between the frequencies and the shapes
do not present any difference. We choose a LW3 model for the thickness expansion, according to [6].
The differences are low and due to the difference kind of elements, from the plane elements exploited
by the ESL approach to the curvilinear one of MUL2.

Table 2 – The first six eigen-frequencies for the cylindrical shell calculated exploiting the CUF-LW3
theory (MUL2) and an ESL one.

Mode CUF-LW3 ESL Difference [%]

1 133.28 129.91 2.596
2 133.28 129.91 2.596
3 137.18 135.3 1.393
4 137.18 135.3 1.393
5 149.43 145.94 2.388
6 149.43 145.94 2.388

Figure 2 – The FEM geometry on which the natural mode are extracted. (a) Shell structure. (b)
Cylindrical fluid cavity.

3.3 Multi-layer shell
In order to exploit the LW model, we consider a similar cylindrical shell validated in Section 3.2, but
with a different material and radius, equal to 0.5 m, in order to wrap the cavity in the next analysis.
We choose a sandwich material composed by three layer:

• two thin faces made by aluminum and a thickness equal to 1 mm each one;

• a core made by an orthotropic honeycomb material and thickness equal to 8 mm and the damp-
ing terms is neglected (E1 =E2 = 1.0 MPa, E3 = 0.255 GPa, ν12 = 0.49, ν13 = ν23 = 0.001, G12 = 0.1
MPa, G13 = 37 MPa and G23 = 10 MPa).

These materials are chosen to show the limit of an ESL theory with a multi-layer material, where the
thicknesses of the layer are very different and the materials properties too. Traditionally these mate-
rials are studied through three-dimensional elements in the core [17]. In order to validate the model
(and the elements) we use a plate made by 3D elements in the core and 2D (with ESL approach) on
the faces.

7
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Table 3 – The first six eigen-frequencies for the cylindrical multi-layer shell calculated exploiting the
CUF theory (MUL2) and an ESL one.

Mode CUF-LW ESL -3D Difference [%]

1 8.15E+01 7.91E+01 3.048
2 8.15E+01 8.20E+01 0.572
3 8.58E+01 8.30E+01 3.344
4 8.58E+01 8.80E+01 2.469
5 8.89E+01 8.81E+01 0.965
6 8.89E+01 8.82E+01 0.841

Firstly, the modal solutions of the multi-layer shell is compared in terms of frequencies to those
obtained by an ESL-3D model in Table 3.

4. Frequency response
In order to study the frequency response of the coupled model (cavity and shell in Figure 2), we
use the same shell and cavity previously validated and coupled. The same boundary conditions are
applied and we add an external load: a local force (F = −1 N on the y direction) on the cylindrical
shell placed a the centre (x = 0 m, y = 0.5 m and z = 1 m). The frequency range starts from 1 Hz and
ends to 500 Hz with a step equals to 5 Hz. The frequency response is calculated on two points in the
cylindrical cavity (A = (0.10, 0.11, 0.65) m and B = (0.30, 0.13, 1.5) m). The material of the shell is the
core of multi-layer sandwich described in Section 3.3, while the cavity is filled with air. We compare
the results to those obtained for an aluminum shell.

4.1 Results
The results are reported in Figure 3 for Point A and Figure 4 for Point B, they show the pressure
in a logarithmic scale as a function of the frequency for the coupled model. The main goal of the
work is to reduce the DoF of the problem, for the structure, with respect to a 3D shell model. In
our analysis we have 80000 DoF (3 for each structural nodes, the three displacements, and 1 for
each fluid nodes, the acoustic pressure). Almost 50000 DoF are used to model the fluid. Therefore,
we obtain the results with 30000 DoF in the structure compared to the 100000 DoF necessary to
build a 3D shell for the same structure, this number is obtained assuming the 3D elements of a size
similar to the thickness of the shell. Therefore there is a reduction of almost of the 70% of the DoF
and on the coupled model around the 45%. The exploitation of CUF increases its importance in
multi-layer structures and honeycomb materials, because according to [4, 6, 18, 7] . Compared to
the aluminum shell, as expected, the honeycomb material has an increase in the vibration due to the
lower mechanical properties and therefore an increase in the acoustic pressure in the low frequency
range. Moreover, we neglect the damping, the stiffness matrix is real. The differences between the
two materials decrease, rising the frequency.

5. Conclusions
In this work we exploit a new class of curvilinear shell elements for a Layer Wise approach. In this
way it is possible to study cylindrical structures, as an aircraft’s fuselage, in the boundaries of the
Carrera’s Unified Formulation. The elements and the model are validated through a modal analysis.
The results show the frequency response of the structure, obtained with a decreasing in the number
of DoF compared to a 3D shell model. Advantages of this formulation increase if we consider the size
of a aircraft fuselage, our model has an height equal to 2 m and a diameter of 1 m. In particular we
refer to the multi-layer material in passenger cabin lining panel, usually made of composite material
and Nomex, which requires a 3D formulation of the core. This component plays an important role in
the N&V absorption.
The next step will be the study of several configurations of multi-layer materials with visco-elastic
core and therefore a complex stiffness matrix, in order to validate the formulation and to study new
acoustic solutions. Finally, the creation of a FEM model, based on CUF, of an aircraft fuselage will be
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the last step of this work, in order to expand the frequency range, without a decrease in the accuracy
or an increase in the computational cost of the problem.

Figure 3 – The frequency response of the cylindrical cavity coupled to a cylindrical shell for Point A,
the results show the comparison between an honeycomb material, similar to Nomex, and aluminum.

Figure 4 – The frequency response of the cylindrical cavity coupled to a cylindrical shell for Point B,
the results show the comparison between an honeycomb material, similar to Nomex, and aluminum
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