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Abstract 

The wing kinematics of a flapping-wing air vehicle (FWAV) should be designed considering the unsteady 

aerodynamics so that the FWAV can achieve high flight efficiency. This study proposes an approach to search 

for the optimal hovering wing kinematics by using reinforcement learning. The unsteady vortex method based 

on potential flow is modified to estimate the contribution of leading-edge vortices and is used to simulate the 

unsteady aerodynamics of the flapping wing model. The environment for reinforcement learning of the flapping 

wing model is established based on a deep neural network. The transfer learning is introduced to reduce the 

time cost, and the reward function is designed for learning. The optimal wing kinematics that leads to maximum 

lift and lift/drag ratio is found. The aerodynamic efficiency of the optimal wing kinematics is validated by 

applying it to the dynamically scaled-up robotic model.  
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1. Introduction 

Biological flyers in nature, such as insects, birds, and bats, utilize flapping-wing motion and active 

morphing to achieve efficient flight [1, 2]. For example, swift birds morph their wing backward to 

achieve high maneuverability, and bats use their stretchable membranes to avoid the obstacles in 

caves. Unlike conventional aircraft, these biological flyers fly at the low Reynolds number range due 

to their inherent size. And, their flight is specialized in such Reynolds number range by utilizing the 

unsteady aerodynamic effects of the flapping motion [3]. 

In order to mimic the flight characteristics of biological flyers, such as acrobatic maneuvers, disguise, 

and environmental adaptation, there have been a lot of efforts on flapping-wing air vehicles (FWAVs) 

developments [4-6]. The FWAVs can be classified into avian- or insect-scale ones according to their 

size and operating range. Typically, the main flight mode of the avian-scale FWAVs is forward flight. 

Their endurance and payload are relatively longer and larger than those of insect-scale ones. On the 

other hand, the insect-scale FWAVs have a better performance in hovering flights than avian-scale 

ones, and they can carry out indoor mission flights similar to those of quadcopters. 

Although various FWAVs have been developed, their flight performance and efficiency are still 

inferior to those of conventional aircrafts. One of the reasons is that the wing kinematics of the 

FWAVs was designed without proper consideration of the unsteady aerodynamic loads induced by 

flapping-wing [7, 8]. In order to overcome this issue, this study focuses on the design of optimal wing 

kinematics with an appropriate aerodynamics model. 

There are many numerical methods for estimating the unsteady aerodynamics of a flapping-wing: 

computational fluid dynamics (CFD), quasi-steady (QS) aerodynamic model, and vortex method. 

CFD is a high-fidelity method that gives a precise prediction of the aerodynamics of the flapping-

wing [9, 10]. However, CFD is unsuitable to solve optimization problems since it requires a very long 

computation time. On the other hand, the QS aerodynamic model is a low-fidelity method with a low 

time cost. Although the accuracy of the QS model can be improved by using the aerodynamic 

coefficients which are experimentally determined [11-14], it has the limitation that the coefficients are 
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highly dependent on the flapping motion and the flow condition. The vortex methods based on 

potential flow theory, such as unsteady discrete vortex method (UDVM), unsteady vortex-lattice 

method (UVLM), and unsteady vortex panel method (UPM), have moderate fidelity and computation 

cost. Since these vortex methods are fast and reliable methods, they have been used to estimate 

the unsteady aerodynamics of flapping-wing motions [15-17]. 

This study introduces an approach to search for the optimal hovering wing kinematics of the flapping-

wing model by using neural network-based reinforcement learning. The UVLM is modified to 

estimate the contribution of leading-edge vortices (LEVs) and is used to simulate the unsteady 

aerodynamics of the flapping-wing model. The simulation environment for reinforcement learning is 

established based on a deep neural network and the transfer learning is introduced to reduce the 

time cost of the learning. The reward function is designed, and the optimal hovering wing kinematics 

that leads to maximum lift and lift/drag ratio is investigated. The trained wing kinematics is applied 

to the dynamically scaled-up robotic model, and its aerodynamic characteristics and performance 

are analyzed. 

 

2. Aerodynamic Model of Flapping-Wing 

2.1 Numerical Method 

In order to compute the aerodynamic loads induced by the flapping motion, unsteady vortex lattice 

method (UVLM) based on the potential flow theory is used. The flow around the flapping-wing is 

assumed to be incompressible, inviscid, and irrotational. When a velocity potential ( ) is described 

in the body-fixed frame which is fixed on the wing, the continuity equation becomes the Laplace 

equation expressed as: 

 

 2 0  = . (1) 

 

Vortex flow elements are used for the solution of Laplace equation, and complicated flows around 

the moving wing can be represented by superpositioning the vortex elements [18]. 

Figure 1 shows a schematic of the modified UVLM. A plate wing model whose chord and span 

lengths are respectively c and b is discretized into M number of chordwise and N number of 

spanwise panel elements. Vorticity of uniform strength is replaced with a bound vortex ring of 

strength i j located at the edge of each element. The collocation point, whose normal vector to 

each element is i jn , is located in the middle of each element where the zero normal flow boundary 

Figure 1 – Schematic diagram of the modified UVLM 
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condition is enforced. The wakes are modeled as free vortex ring of strength 
k jW where k is an 

index of the time step, and its shedding starts at one-third of the distance between the trailing-edge 

and the last free vortex ring. The current shedding location can consider not only the wing motion 

but also the convection of the previous shed vortices [19]. 

To consider the time dependency of the unsteady motions, the zero normal flow boundary condition 

is modified and expressed as: 

 

 0( [ ]) 0B W rel + − + +  =V v r n , (2) 

 

where 
0V is the velocity of the origin of the body-fixed frame, 

relv is the relative motion in the body-

fixed frame,  is the rate of rotation of the body-fixed frame, r is the position vector of the body-

fixed frame, and n is the normal vector to the wing body’s surface in the body-fixed frame. The wing 

is assumed rigid, hence, the normal vector i jn takes a value [0, 0, 1] at each collocation point. Also, 

the additional relative motion is equal to zero. The wing kinematics during each time step is 

prescribed, and the wing is moved along the kinematics. Each trailing-edge vortex ring sheds a free 

vortex ring with a strength equal to its circulation in the previous time step. Kelvin’s circulation 

theorem, which gives the conservation of total circulation around a closed fluid link, is inherently 

fulfilled in the model. 

The strength of each vortex ring is obtained by solving a set of algebraic equations derived from the 

zero normal flow boundary condition expressed in Eq. (2). When m is equal to M N , the algebraic 

equations can be expressed as: 
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where the body influence coefficient ( KLa ) is defined as the normal velocity component at the 

collocation point L due to the unit strength 
K . In this case, K and L are indices of the (i, j)th 

component in Figure 1. The right-hand side (RHSK
) consists of velocity terms and can be expressed 

as: 

 

 ( ) ( ) ( )( ) ( )RHS , , 1, 2, ...,K W W W KK
U t u V t v W t w K m= − + + +  =n , (4) 

 

where ( ) ( ) ( )( ), ,
K

U t V t W t represents the kinematic velocity due to the motion of the wing, and 

( ), ,W W W K
u v w represents the induced velocity due to the wake panels. 

Vorticity vectors are used to obtain the pressure difference (
Kp ) that is computed using the 

unsteady Bernoulli equation expressed as: 

 

 ( ) 
1 1

1
( ) ( ( ) , , ( ) ) ( ) ( )

m m

K W W W K K K K
K

K K

p t U t u V t v W t w t t t
t


= =

 
 = + + +   +  −  −      

 n , (5) 

 

where 
K is the vorticity vector of the K th panel element and  is the flow density. The 
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aerodynamic forces are obtained by integrating all the pressure differences along the wing’s surface. 

Flapping motion induces a high angle of attack to the wing, and it makes LEV around the wing that 

is one of the lift augmentation mechanisms [20]. Since the aerodynamic effects induced by the LEV 

play an important role, they should be considered in the unsteady aerodynamic simulation. If the free 

vortex rings shed from the leading-edge are included to consider the LEV, the strong interactions 

among the free and bound vortex rings can make a numerical instability in the simulation [21]. To 

solve this problem, in this study, the simplified leading-edge suction analogy is introduced [22]. The 

lift augmentation by the LEV is considered by introducing the leading-edge suction force expressed 

as: 

 

 
( )

2

16 cos

s LE

s

LE

F
x

  
=

 
, (6) 

 

where s is the suction efficiency, LE is the vortex strength of the leading-edge, x is the 

chordwise panel length, and LE is the local leading-edge sweep angle. 

 

2.2 Aerodynamic Simulation and Experimental Validation 

Some insects’ wing kinematics, such as dronefly and hawkmoth, show a small deviating motion. In 

this case, the flapping motion can be simplified to be a two-dimensional problem with sweep and 

pitch motions. For the aerodynamic simulation, a single-articulated flapping-wing model is used. The 

schematic of the model is shown in Figure 2 where  is the sweep angle,  is the pitch angle, R is 

the distance between the center of sweeping motion and wingtip, and 2R is the radius of gyration to 

the sweeping motion.  

An experiment was conducted to validate the unsteady aerodynamic simulation of the flapping wing 

model that uses the modified UVLM. A two-degree-of-freedom (2-DOF) dynamically scaled-up 

Figure 2 – Flapping-wing model: rigid rectangular plate wing (acryl) 

Figure 3 – (A) CAD of the robotic model, (B) scaled-up robotic model in the 

water tank, (C) wake pattern in the modified UVLM simulation 
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robotic model was used to generate the continuous flapping motion of the wing. The sweep and pitch 

motions were independently achieved with two servo motors as shown in Figure 3 (A) and (B). 

Insects’ hovering wing kinematics can be approximated by using periodic functions that have non-

dimensional durations as shown in Figure 4. The piecewise wing kinematics was proposed by Sun 

and Tang [23] and was adopted in this study. The non-dimensional time ( ) is defined as /t T = , 

where t is the actual time and T is the total time for one flapping cycle. For a given sweep and pitch 

amplitude, the shapes of the wing kinematics profile are determined by the non-dimensional sweep 

duration (  ) and the pitch duration (  ). For the experimental validation, a total of nine wing 

kinematics was used by selecting the following non-dimensional sweep and pitch durations: 

   0.16 0.32 0.50 0.16 0.32 0.50    =  . When the value of the non-dimensional 

duration is equal to 0.50, the motion becomes sinusoidal. 

For the flapping-wing model, the acryl plate wing with rectangular shape was used. The span length  

( b ) is 250mm, the aspect ratio ( AR ) is 4, R is 275mm and 2R become 0.605R for this rectangular 

wing. The flapping frequency ( f ) of 0.2Hz and sweep amplitude ( 0 ) of 60° gave Re value of about 

Figure 4 – Sweeping and pitching function profiles of wing kinematics 

Figure 5 – Lift coefficient comparison (3-5 cycle average value) 
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1.4 104 based on Equation (7) where  is the kinematic viscosity of the fluid. 

 

 04
Re

f R c


=  (7) 

 

Figure 5 shows the lift coefficient ( LC ) of the modified UVLM, the quasi-steady (QS) aerodynamic 

model, and the experimental results. Also, the percent errors of cycle average lift coefficient and 

lift/drag ratio are shown in Figure 6. Most analysis results based on the modified UVLM have less 

errors than those of using the QS aerodynamic model. In the case of lift/drag ratio, the percent errors 

are less than 5% for all wing kinematics; we can conclude that the modified UVLM can give a good 

estimation for the unsteady aerodynamics of the flapping-wing model.  

 

3. Optimal Hovering Wing Kinematics 

3.1 Reinforcement Learning Environment 

Reinforcement learning (RL), which is one of the types of machine learning, is used to find the optimal 

hovering wing kinematics. It is an algorithm that actively responds to the environment by learning the 

action in a way that the agent maximizes the expected reward in a given state. The RL environment 

can be defined by constructing the Markov decision process (MDP) whose components are state 

(S ), action ( A ), transition probability ( P ), reward (R ), and discount factor ( ). The wing kinematics 

(sweep and pitch motions) for RL is generated using a third-order Fourier series and is expressed 

as: 

 

 ( ) ( ) ( )
3

*

1

cos sinn f n f

n

t a n t b n t   
=

 = +  , (8) 

 ( ) ( ) ( )
3

*

1

cos sinn f n f

n

t a n t b n t   
=

 = +  . (9) 

 

The sweep and pitch motions ( * , * ) are normalized as expressed in Equations (10) and (11) to 

always have the same amplitude ( 0 , 0 ) even if the values of the Fourier coefficients are varying 

during the RL simulation. 

 

 ( )
( ) ( )

( )*0

* *max min
t t


 

 
=

−
  (10) 

Figure 6 – Percent error of cycle average lift coefficient (left) and lift/drag ratio (right) 
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 ( )
( ) ( )

( )*0

* *max min
t t


 

 
=

−
  (11) 

 

The normalized motion profiles are observed by the actor and critic networks and used as states 

(S ). The action ( A ) is the variation of the coefficients ( na , nb , na , nb ), and the next action 

is taken according to the neural network-based policy ( P ). For the reward value, we used the value 

of the reward function designed for learning and it is expressed as Equations (12) and (13) where 

N is the number of simulation time steps during the one cycle and M is half of N . The ir are the 

reward function parameters and they are chosen as 1 0.1r = , 2 12r = , 3 10r = , 4 2.5r = , and 5 2r =

in this model. 
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 ( ) ( )5 max max, if max or maxR r    = −    (13) 

 

The reward function gives a higher value when the wing kinematics generates a higher lift and 

lift/drag ratio. To limit the maximum driving torque for the flapping motion, the simulation boundary 

condition of the maximum flapping acceleration (
max , 

max ) and its penalty are introduced.  of 0.99 

commonly used for RL was used. 

Proximal policy optimization (PPO) was used for the RL algorithm [24]. PPO is an algorithm that is 

easy to implement and has a fast learning speed in the continuous action space. A schematic 

diagram of the final reinforcement learning environment is shown in Figure 7. When the initial flapping 

kinematics is determined in the environment, the motion profile is observed and stored as a state. 

After that, the unsteady aerodynamic simulation using the modified UVLM is performed based on 

the wing kinematics, and it is checked whether the simulation condition and results deviate from the 

learning boundary condition. If the learning boundary condition is exceeded, the learning is stopped 

Figure 7 – Schematic diagram of RL environment 
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and a penalty expressed in Equation (13) is sent to the RL agent. If not, a reward value based on 

the reward functions expressed in Equation (12) is sent to the RL agent. After receiving the state 

and reward, the RL agent takes the next action according to the policy based on the actor and critic 

networks, and this is sent back to the environment. 

The flapping motions used in the RL simulation have 100 data points during the one flapping cycle, 

hence, a total of 200 data are observed as the states. As a result, this RL model learns the 

relationship between 200 observation states and 12 actions; the 6 actions for sweep motion and the 

other 6 actions for pitch motion. 

The modified UVLM has a relatively short simulation time compared to using CFD. However, it 

requires a quite long time compared to using the QS aerodynamic model. Therefore, in order to 

reduce the total time cost, the transfer learning using the modified UVLM model was performed after 

initial learning using the QS aerodynamic model.  

 

3.2 Results 

Figure 8 shows the comparison between the initial sinusoidal wing kinematics and trained one. The 

RL was performed for a total of 1000 episodes, and there are two kinds of trained wing kinematics: 

Case A and Case B. Case A used the QS aerodynamic model for the whole episodes. In Case B, 

the initial 500 episodes were trained with the QS aerodynamic model and the subsequent 500 

episodes were trained with the modified UVLM model. As shown in the trained results, for both cases, 

the time duration for constant angles of sweep and pitch motion becomes longer than those in the 

sinusoidal wing kinematics. 

Although the wing kinematics profile of Case A and B are similar, they have differences in cycle 

average lift and lift/drag ratio. As shown in Table 1, Case A shows a 25.8% higher lift and 24.3% 

higher lift/drag ratio than the sinusoidal wing kinematics. On the other hand, Case B shows a 35.6% 

higher lift and 27.0% higher lift/drag ratio than the sinusoidal wing kinematics. It means that the wing 

kinematics with a higher lift and lift/drag ratio can be searched when the transfer learning using the 

modified UVLM model is performed rather than learning with only the QS aerodynamic model. 

 

4. Conclusion 

In this study, the approach to search for the optimal hovering wing kinematics by using reinforcement 

learning is proposed. The UVLM was modified to effectively consider the effects of LEVs induced by 

Table 1 Comparison of lift coefficient and lift/drag ratio (experimental results) 

Figure 8 – Trained wing kinematics; Case A: trained with only QS; Case B: trained with QS + UVLM 
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the flapping motion. The modified UVLM was validated through the comparison with water tank 

experimental results using the dynamically scaled-up robotic model, and it was found that the 

modified UVLM can give a good estimation for the unsteady aerodynamics of the flapping-wing 

model. The RL agent and environment of the flapping-wing model were established by constructing 

the proper MDP. The transfer learning is introduced to reduce the time cost, and the reward function 

is designed for learning. The optimal hovering wing kinematics that generates maximum lift and 

lift/drag ratio was found. The developed aerodynamic model and the RL environment can be 

extended to the various FWAVs considering the practical component such as body effect and wing 

flexibility. 
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