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Abstract 

The optimization of ascent phase trajectory for a single-stage-to-orbit, air-breathing hypersonic 

vehicle is investigated using improved Particle Swarm Optimization (IPSO). The strong coupling 

relationship of trajectory, aerodynamics and propulsion system is examined, which makes the 

problem notoriously difficult. Aerodynamic and thrust model are developed in couple with trajectory 

state. The optimal problems are hence formulated as fuel-optimal control problem and time-optimal 

control problem. This paper presents transformation of such optimal control problem into parameters 

optimization problem by analytic function expression with several parameters providing advantages 

for PSO solution. Traditional PSO has advantages in complicated optimization problem in terms of 

global optimization, and does not need any gradient information to solve optimization problem 

numerically, while tends to evolve to local optimum. To handle constraints imposed by trajectory 

state and propulsion system, a modification in the fitness function of particles is executed through 

penalty function. To avoid local optimum, a novel mechanism of neighbor component in PSO is 

proposed. The basic scheme of improvement is to increase a dimension from which the particles 

can learn. After balancing learning process, diversity of particles in swarm is increased during the 

process of searching optimization solution by the improved algorithm which is capable to avoid local 

optimum where diversity is relatively small. Neighbor component model is calculated by K-means 

algorithm, an effective algorithm consuming less time, during each iteration. Time complexity of 

improved PSO algorithm is O(2n
2
), which is very close to traditional PSO algorithm with O(n

2
). 

Hence, IPSO method is implemented to determine the optimal solution without consuming more 

time significantly. The numerical example demonstrates that IPSO is superior to other PSO variants 

in terms of better solution and larger diversity of particles. Also in comparison with finite difference 

method, performance index of IPSO is nearly the same as finite method within error of 0.74%. 

Additionally, three sets of optimization simulation results for varied initial conditions with regard to 

initial altitude, velocity and weight are presented, which demonstrates the validation of proposed 

optimization algorithm. Initial altitudes are varied in the first set of solutions with constant initial 

velocity of 2500 m/s, and along the minimum-fuel trajectory, minimum fuel usage is reached at the 

cost of bigger amount of flight time. The second set of solution is determined when initial velocity is 



varied，and as the initial velocity increases, fuel usage increases and the final time decreases. The 

condition of third set of solutions is varied initial weight of vehicle. In the early stage of climbing, light 

vehicle will obtain larger velocity due to larger acceleration, and consequently larger thrust due to 

bigger velocity. Whereas in the later stage, increase of altitude results in decrease of thrust, which 

counteracts the influence caused by increase of velocity. 
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1. Introduction 

The payload cost for space shuttle comes out to $7000 to $8000 per pound [1] . In order to reduce 

the expensive cost, development of single-stage, air-breathing and reusable vehicle has been sought 

after for many years, which is powered by turbine engine and dual-mode scramjet engine that can take 

off horizontally. Such kind of engine utilizes air as the oxidizer, thus the specific impulse can reach 

approximately 3000s saving plenty of propulsion cost when compared with the rocket. Whereas, series 

of such vehicle characteristics e.g. thrust and fuel consumption, are influenced by vehicle altitude, 

angle-of-attack, and Mach number, especially during the ascent phase. Additionally, such vehicle often 

covers a large range and the ascent phase will last for several minutes. Thus, tremendous difficulty will 

be encountered in the design of the ascent trajectory. 

Studies on supersonic vehicle trajectory optimization can retrospect to 1980s. Paris and Joosten 

[2]  examined the coupling relationship between propulsion system and trajectory characteristics of a 

ramjet propelled missile. Transformation of continuous optimal control problem to discrete parameter 

optimization was done via Chebyshev polynomial representation of the state and controls. 

Subsequently, Paris and Hargraves [3] employed cubic polynomials to substitute Chebyshev 

polynomial and used collocation to satisfy the differential equations. It’s noted that this method is easy 

to program, and become one of mainstream approach in 1990s. 

Some earliest researches of trajectory optimization were done by Corban and Calise in 1990s. 

Methods of singular perturbation and energy-state approximation were applied to solve ascent 

trajectory optimization problem [4] -[7] . These researches were not faultless and the state constraints 

were hard to handle. Another important branch of methods for trajectory optimization is inverse 

dynamics developed by Lu [8] [9] . By employing this approach, original optimal problem is reduced 

into a NLP (Nonlinear Programming problem).   

A large stride was made after 2000 indicated by development of a kind of novel trajectory 

optimization method, namely, Gauss pseudo-spectral method (GPM). With regard to this 

pseudo-spectral method, control and state variables are discretized by global polynomials, and the 

differential-algebraic equations are estimated via orthogonal collocation [10] [11] . This method is still 

dominant and efficient today in research of various trajectory optimizations [12] -[15] .  

While in recent years, PSO (Particle Swarm Optimization) is applied to trajectory optimization 

successfully [16] -[19] . As a novel heuristic algorithm, PSO is of high efficiency to convergence and 

easy to programming. However, PSO algorithm quite tends to evolve to local optimization. Accordingly, 

improvements of PSO are proposed in this paper to avoid local optimum.   

Generally, numerical algorithms for optimal control problem can be divided into two categories: 

direct method and indirect method. The former, direct method, transcribes the optimal control problem 

to NLP, and the resulting NLP problem can be addressed numerically. Direct methods can be divided 

into several categories: state and control parameterization [2] -[6] , pseudo-spectral method [12] -[13]  

and direct shooting method. In indirect methods [20] [21] first-order necessary condition is derived from 

the optimal control problem via calculus of variations and Pontryagin maximum principle. Then 



Hamiltonian boundary value problem is obtained to determine optimal solutions.  

This paper makes efforts to develop suitable PSO algorithm to treat trajectory optimization 

problem. Ref. [22] mentioned that among heuristic method, PSO is of superiority due to its fast 

convergence speed, convenience, robust and effectiveness. PSO algorithm, as heuristic method, does 

not suffer from the discontinuity of the optimal problem, i.e. propulsion system’s switching.  In this 

paper, the optimal control problem is transformed into parameters optimization problem. Parameters 

required to be optimized are the inputs of the Improved PSO (IPSO). 

The structure of this paper is organized as follows. The single-stage-to-orbit vehicle model and 

equation of motion are described in Sec. 2. Trajectory optimization problems aiming at minimum-fuel 

and minimum-time-to-climb are formulated in Sec.3. Numerical solution via improved particle swarm 

optimization and corresponding verification are presented in Sec.4. In Sec.5, three sets of simulation 

results and discussion are shown.  

2. Hypersonic vehicle model and kinetic model 

The equations of motion of the three-degree freedom point mass system over a spherical and 

non-rotating earth are used to describe the dynamics of the hypersonic vehicle. 
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Where, v is the velocity of the vehicle,  is the flight path angle, h is the flight altitude, m is the 

mass of the vehicle, T is the thrust,  is the angle-of-attack, and L and D are lift force and drag force 

respectively. 

The single-stage-to-orbit vehicle model used in this paper was based on Ref. 21. The GHAME 

(Generic Hypersonic Aerodynamic Model Example) model provides some important kinetic and 

propulsion parameters. The reference area refS is 6000 2ft , and the area of the intake of the engine CA  

is 300 2ft , and the initial gross weight to take off has been estimated to 300,000 pounds. 

The lift force and drag force for the GHAME model are calculated as following equation: 
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Where ( )h is the atmospheric density that decreases dramatically when the altitude increases. The 

lift and drag coefficient, 
L

C  and 
D

C respectively, are actually the function of Mach number Ma  

and angle-of-attack . 
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In order to cover the range for both Mach and altitude, a combined cycle engine system, refer to 

as TBCC, is used to provide the propulsion of the hypersonic vehicle incorporating turbojet, ramjet and 

scramjet. And the switch points for different propulsion systems are: turbojet, 0 2Ma  ; ramjet, 

2 6Ma  ;scramjet, 6 Ma . 

Thrust was formulated neatly in this research through the following equation: 
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Where  is the throttle command associated with fuel flow varying from 0 to 2, and =0.029  is the 

stoichiometric fuel/air ratio of the engine. , )
T

C Ma （ , capture-area coefficient, was also introduced to 

handle the situation when the engine switches into the scramjet. , )
T

C Ma （ is the function of Mach 

number and angle-of-attack, which is used to describe the effective weight flow under different 

condition of Mach and angle-of-attack since the air does not enter the cowl uniformly.  

According to the eq. (5), the surface diagram of thrust with respect to Mach and height is shown 

in Fig. 1. It can be detected that the thrust decreases strongly as the flight height increases, which is 

mostly caused by the dramatic reduction of local atmosphere density to the extent of several orders of 

magnitude especially in the proximity space. While the height is beyond 30 km, the decease of thrust 

caused by reduction of atmosphere density becomes slowing down due to the steady tendency of 

atmosphere density in the proximity space, and the results reveals inherent connection between 

atmosphere density and thrust of air-breathing hypersonic vehicle. Large thrust provided by engine 

during the low altitude benefits the maneuver of climbing out in initial stage of trajectory. This is 

achieved by accelerating the vehicle to some extent when the lift force obtains enough dynamic 

pressure q . Benefiting from the increase of lift force, the vehicle can be able to climb out fast before 

leveling out at the final altitude.  



 

 

Fig 1. Surface diagram of thrust Fig 2. Surface diagram of thrust coefficient 

In order to reveal the relationship between Mach and thrust, thrust coefficient is defined as follow. 
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The surface diagram of thrust coefficient with respect to Mach and height is shown in Fig 2.At the 

low Mach number, the thrust coefficient increases as Mach increases. However, the trend changes 

apparently when the Mach exceeds 3. Increase of Mach number brought about reduction of thrust 

coefficient.  

    In Fig 3 (a) & (b), the surface diagram of lift force with respect to Mach and angle-of-attack at the 

altitude of 20 km and 30 km are shown, respectively. And in Fig 4 (a) & (b), the information of drag 

force under the same situations is given. 

  

Altitude of 20 km Altitude of 30 km 

Fig.3 Lift of GHAME vs. Mach and angle-of-attack 

0

5

10

15

0

2

4

6

x 10
4

0

1

2

3

x 10
8

MachH/km

T
/N

0

5

10

15

0

2

4

6

x 10
4

0

1

2

3

4

MachH/km

C
F

0

5

10

15

-10

0

10

20
-5

0

5

10

x 10
7

Mach/°

L
/N

0

5

10

15

-10

0

10

20
-5

0

5

10

15

x 10
6

Mach/°

L
/N



  

Altitude of 20 km Altitude of 30 km 

Fig. 4 Drag of GHAME vs. Mach and angle-of-attack 

    In general, the lift and drag force at lower altitude are both larger than at higher altitude due to the 

dense air. When the angle-of-attack is negative, the lift force is also negative, and with the increase of 

Mach number, the absolute value of lift force increases. 

3. Trajectory optimization problem statement 

3.1 Optimal objectives  

Based on the GHAME vehicle model, several variables depicting the dynamic characteristics of 

vehicle i.e.
T( , , , , )h l v mx were chose as the state variables and the angle-of-attack  was chose as 

the control variable. Details of these variables were presented in Table 1 denoting boundary values 

and constraints.  

Table 1 Parameters constraints and boundary values 

Types 

Control 
parameter 

State parameters Time 

/ st  / deg  / mh  / deg  / (m/ s)v  / ml  / kgm  

Initial 
free 0h  0 0v  0 0m  0 

Min 
-3 0 -90 minv  0 free 0 

Max 
21 free 90 maxv  free free maxt  

Final 
free  ch  c  fv  fl  fm  ft  

The optimization objectives in this research are minimum-fuel and minimal time-to-climb trajectory. 

Consistent with the objectives, optimization variables were formulated by Eq. (7) and Eq. (8).  
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3.2  Constraints  

    Considering optimization problem of hypersonic air-breathing vehicle in real world, variables must 

be regulated within appropriate value.  

3.2.1 Dynamic pressure constraint   

Dynamic pressure,
2

( ) /2q t v , needs to be regulated within boundary value because it can 
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contribute large structural load in process of climbing as well as heat stress.  

Constraints are defined as follows. 

 
1 max

0S q q    (9)  

 
2 min

0S q q     (10)  

3.2.2 Angle-of-attack constraint 

The boundary values of angle-of-attack were given in Table 1. For control variables, examination 

of its boundary value is vital.  
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3.2.3 Terminal constraints 

The details of terminal constraints were also shown in Table 1, which were formulated by Eq. (13) 

and Eq. (14). 
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3.3 Summary of the optimization problem 

According to optimal control theory, the trajectory optimization problem can be summarized 

through following equations. Determine the state,
5

( )t x , control, ( )u t  , initial time 0t , and final 

time, ft , that minimize the cost function: 
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For minimum-fuel objective, 0 fJ m m   (16)  

For minimum time-to-climb objective, fJ t  (17)  

Subject to the constraints of Eq. (18) to Eq. (20): 
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Obviously, this equation denotes Eq. (1) to Eq. (5). 
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4 Numerical solution via IPSO 

PSO, falling into the category of swarm intelligence methods [23] , was introduced by Eberhart 

and Kennedy in 1995. PSO is famous for its simplicity and convergence performance. The main 

advantage of traditional PSO is the unique information sharing mechanism to find optimal solution 



benefiting the fast convergence and convenience when treating constraints and discontinuities within 

physical model. This unique mechanism denotes cooperation of all particles in finding the best solution 

which will be formulated in subsequent section. Ref. [24] claims that particle swarm technique is more 

efficient with respect to generic algorithms. And it was mentioned in Ref. [25] that PSO outperforms the 

differential evolution algorithm also. Despite its performance and advantages, only a few of research 

aiming at trajectory optimization were developed via PSO. Because there are two main difficulties will 

be encountered when implementing PSO. Firstly, treating equality and inequality constraints is 

troublesome. Second, PSO algorithm quite tends to evolve to local optimum.  

With regard to the two difficulties, penalty function and improvements of structure of PSO are proposed 

in this paper.   

4.1 Traditional particle swarm optimization 

During the iteration, a certain number of particles are involved to find the best solution together. 

Each particle owns two kinds of properties. One is solution property, referred to as position vector x , 

and the other is mutation property, referred to as velocity vector v . Parameters in optimal control 

problem constitute position vector and every particle can be recognized as a possible solution. The 

velocity vector includes the information of each particle’s mutation which helps the particle to find 

better solution.  

Without loss of generality, this paper assume M to be size of the swarm and D to be the 

dimension of parameters. Position vector and velocity vector can be formulated as 1 2( , , )Dx x x x

and 1 2( )Dv v ,v , ,v . For each particle the previous best solution property in history will be remarked 

as bestp , while the global best solution is bestg .Obviously, bestg is of superiority with respect to bestp . 

Particles’ mutation in single iteration follows: 
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Where 
1

,

t

i jv


 denotes thi particle’s mutation with regard to thj parameter in ( 1) tht   iteration; 

w is the inertial weight; 1c and 2c  are acceleration coefficients; represents the cognitive 

self-adjustment component, while represents the social influence on particle; 1r and 2r are random 

numbers, which are uniformly distributed on the interval between 0 and 1.  

The time-dependent control variable angle-of-attack ( )t is defined through the following 

function. 
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(22)  

 

Position vector is regulated within the range as follows:  

1c

2c



1 2 3 4 5 7 6 8
[ 0.001,0.001], [ 0.1,0.1], [ 1,1], [ 3,25], , [ 5,5], , [ 1,1]x x x x x x x x             

(23)  

4.2 Equality and inequality constrains 

The most popular approach to handle equality constraints is penalty function adding to the 

objective function [26] . In this research, equality constrains include final constrains Eq. (19).  

The penalty function is: 

1( ) | |f ck    x  (24)  

2( ) | |h f ck h h  x  (25)  

Where 1k  and 2k are used to normalize the parameters in the same numerical order, c  and ch are 

set to be constant. 

Inequality constrains include state constraints indicated by Eq. (20). State constraints associated 

with state variables of angle-of-attack, and dynamic pressure should be regulated more strictly. Once 

the state variables exceed the range, this solution is recognized as failure. The penalty function is 
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Considering the final constraints, the fitness function for PSO is defined as follows. The pseudo-code is 
shown in Table 2. 
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Table 2 Pseudo-code of PSO   

For M  particles: 

    Determine initial value of x and v  

end 

1. Repeat for thj iteration 

2. For 1, 2, ,i M  do 

3.    Calculate min

j

fuelJ   and min

j

timeJ   for M  particles according to Eq. 30 and Eq. 31 

4.     For thi particle, find its minimum fitness function in history by comparing min

j

fuelJ  and

min

j

timeJ   with its historical best value, i.e. bestp . Determine the global minimum fitness by 

comparing it with bestg  which denotes the global historical best solution. 

5. End for  



6. Obtain the minimum fitness min

gbest

fuelJ   and min

gbest

timeJ   globally. 

7. For 1, 2, ,i M  do 

8. Update v and x a for thi particle according to Eq. 21 which will be inputs in next iteration 

9. End for     

10. While j  is still below maximum iteration G  

4.3 Improvement of PSO 

    Premature convergence exists in heuristic methods commonly [27] . Topological improvement is 

surveyed in this section. The basic idea underlying the improvement is to increase particles’ diversity 

thus avoiding falling into local optimum exploration. 

Traditional PSO (t-PSO) algorithm conducting in an intuitive and simple way where each particle 

utilizes the prior best solution itself bestp and the other particle with global best solution bestg actually 

wastes information of those particles with relative better solution. These particles represent different 

direction of exploration in search space which benefits the global exploration while being neglected in 

t-PSO often leading to stagnation in local optimum. A strong and efficient way to avoid premature 

convergence is increasing particles’ diversity, which can be accomplished by learning from more 

particles.  

The origin of PSO mimicking the process of searching for food of bird swarm indicates the difficulty 

for each particle to always follow the best particle. Note that in natural life, bird swarm’s action is 

influenced by neighbors in a more direct way. However, this natural process wasn’t considered in 

t-PSO model.  

 A considerable amount of references developing neighborhood topology are presented in Ref. 

[28]  to utilize the neighbor particle information. Obviously, learning from all particles is unnecessary 

and will cost too much computational load. The distinct approach is to learn from each particle’s cluster 

corresponding to the proverb that birds of feather flock together. Clustering algorithm, used to 

determine several categories for particles via particles’ solution property, i.e. position vector, will be 

discussed in this section. Once the cluster is determined, it’s easy for each particle to learn from best 

particle bestn  from the cluster by adding term to Eq. 21 as follows.  
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where 3c is the cluster component depicting the influence of the cluster, 3r is the random number 

uniformly distributing on the interval between -1 and 1. 

 In order to find bestn , K-means algorithm [30]  is used in this paper to partition particles into 

several clusters for iterations. The reasons for choosing k-means are its simplicity and efficiency. For 

each particle, neighbor component bestn will be determined by specific particle with best solution within 

the cluster. In most situations, these two particles are not identical. This algorithm is performed to 

partition M particles in D dimensions into k clusters  1 2, , , kC C C .To keep the consistency and 

continuity with PSO algorithm as described before; pseudo-code for k-means method is shown in 



Table 3.  

Table 3 K-means algorithm  

Inputs: M particles’ position during tht iteration,  1 2, , , MD x x x  k cluster centers. 

Process: 

Initially, choose k particles as mean-value vector randomly  1 2, , , k    and clustering
 

(1 k)iC i     

Repeat 

For 1, 2, ,j M  do 

    Calculate the distance between particle jx and every mean value vector i : 

    2|| ||ji j id x   ; particle jx  will be divided into the cluster where the jid is the closest 

one:  i i jC C x  

End 

 For 1,2, ,i k do 

Update the mean value vector: * 1

| | i
i x C

i

x
C




   

If *

i i  then *

i i   

 Else i won’t be changed 

End if 

End for 

Until all ( 1,2, , )i i k  do not need to be changed 

Output: clusters  1 2, , , kC C C  

    For each particle j ix C , it’s easy to find the bestn particle with the best fitness function within iC , 

which will be used in Eq. 26 to update particles’ velocity vector. During iteration, k-means algorithm will 

be implemented to find bestn and calculate Eq.26 until all calculations of PSO algorithm are done. Note 

that, the clusters result will be changed every time following the iteration of particles. Details of each 

particle’s bestn will be presented in the remainder of this paper.  

4.4 Summary of Improved PSO (IPSO) 

Based on improvements of neighbor component bestn and acceleration coefficients above, the 

summary pseudo-code for IPSO is shown in table 4. Since the main contents are identical to PSO, with 

an exception for line 8 in Table 2, unnecessary lines are hided in Table 4.  

Table 4 Summary algorithm flow of Improved PSO  

For M  particles: 

    Determine initial value of x and v  

end 

1. Repeat for thj iteration 

2. (Identical lines with that in Table 2)  

3. Obtain the minimum fitness min

gbest

fuelJ   and min

gbest

timeJ   globally. 

4. For 1, 2, ,i M  do 

5. Update acceleration coefficients 1 2 3, ,c c c according to Eq. (27), which will be used to 

calculate v and x  for thi particle according to Eq. (26). 



6. End for     

7. While j  is still below maximum iteration G  

5.  Verification and validation 

In order to check the validity of the improved PSO algorithm, results of ascent trajectory 

optimization of GHAME are compared with that in reference. Accordingly, initial and terminal 

conditions were set as the Ref. [21] : reference area, 2 2
6000 557.42 m

ref
S ft   and area of intake of the 

engine
2 2

300 27.87 m
C

A ft  , initial velocity of 800 m/s, initial altitude of 23000m, initial weight of 12000 

kg. Final flight path angle of 3°, final altitude of 32 km. Other regulations of parameters and boundary 

values are shown in Table 5 

   Table 5 Parameters constraints and boundary values 

Types 

Control 
parameter 

State parameters Time 

/ st  / deg  / mh  / deg  / (m/ s)v  / ml  / kgm  

Initial free 16764 0 1676.4 0 12701 0 

Min -3 0 -90 minv  0 Free 0 

Max 21 free 90 maxv  free 12701 maxt  

Final Free 39624 3 free free fm  ft  

As a verification of proposed IPSO, comparisons of solution results via IPSO and that in Ref. [21] 

were listed in Table 6 incorporating altitudes, velocities, fuel usage, time consumption etc. Ref. [21] 

employs the finite difference method to determine the minimum-fuel trajectory of the same vehicle 

model. British units were used in that reference, and transformations between international units and 

British units were done in Table 6.  

Given the same innitial conditions, final time for IPSO method is 96.6 seconds, while that in the 

reference determined by finite difference method is 101.3 seconds with relative error of 4.64%. Column 

corresponding to fm shows that the objective function run by IPSO performed nearly the same as 

reference with 0.74% difference. Although trajectory profiles determined by two methods are quite 

different (trajectory profiles and solutions can be found in Ref. [21] ), the main tendency of variebles via 

two methods show great consistency. Especially, final time needed for optimization with respect to 

IPSO is smaller than that in reference.  

Table 6 Minimum-fuel trajectories comparison and verification 

Types 
Initial conditions 

 
Terminal conditions 

ih  im  iv  fh  fm  ft  

IPSO method 
16764 m 

(55000 ft) 

127010 kg 

(280000 ft) 

1676.4 m/s 

(5500 ft/s) 
 

39624 m 

(130000 ft) 

104970 kg 

(231420 lb) 
96.6 s 

Reference 55000 ft 280000 ft 5500 ft/s  130000 ft 233138 lb 101.3 s 

Relative error — — —  — 0.74% 4.64% 

100 particles are used to determine optimal trajectories via 200 iterations. Best solution of the 

bestg particle is:  

  -2.5397e-05,0.0053, -0.3042,14.6462, -0.0217,   -1.1344,  0.1472,0.5118
gbest

x   (33)  



Based on Eq. 33, ( )t and trajectory profile are presented in Fig. 5 (a). Fig.5 (b) provides profiles 

of thrust of engine and dynamic pressure. Weights and speeds are drawn in the Fig. 5(c). 

Duiring the early stage, angle-of-attack is relatively larger than subsequent phases shown in Fig.5 

(a), which is because the current low thrust shown in Fig.5 (b) and current low lift force corresponding 

to low dynamic pressure are not able to overcome great gravity to climb out. The initial phase of 

climbing out could sustain for a long time to accelerate speed untill that is large enough to provide 

sufficient thrust and lift force to overcome drag force. Moreover, lower altitude allows vehicle to 

accelerate faster due to dense atmosphere. Thus, this phase has to proceed  almost horizontally.  

After early stage of ascent trajectory, speed accelerates dramatically as shown in Fig.5 (c). As the 

speed accelerates, lift force and thrust increase, thus smaller angle-of-attack would be needed to climb 

out, which benefiting acceleration for speed. Increase of speed and decrease of angle-of-attack during 

climb-out phase are consequenses of how vehicle’s propulsion system matches trajectory. After this 

phase, enough speed gained to support pulling up of vehicle thus no need for speed to accelerate 

drammatically, and this tensency is shown in Fig.5 (c). Decrease of density caused by increase of 

altitude and slow change of speed result in decrease of dynamic pressure and thrust, which are 

presented in Fig.5 (b). Note that this tendency is consistent with that in Fig.1.   

 

(a) Altitude and angle-of-attack 

 

(b) Dynamic pressure and thrust 
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(c) Velocity and weight 

Fig. 5 Variables profiles of optimization trajectory 

Superiority of IPSO is demonstrated by comparison with traditional PSO (t-PSO) and linearly 

decreasing inertial weight PSO (w-PSO)[32]  showed in Fig. 6. In the very beginning of the algorithms, 

both methods reached nearly the same fitness value. However, IPSO determined better solution fastly 

and converged to smaller fitness value than t-PSO and w-PSO in the subsequent search stages. 

During the entire implementation process of IPSO, profile of fitness value decreases uniformly, and to 

this point, performance of exploration is quite stable. Note that, t-PSO method falled into local optimum 

during the iterations from 20 to 50 resulting in gentle change of fitness value. In each iteration, particles 

can learn to its best “neighbor” without confining to global best partile. This approach strongly 

increases particles’ diversity to determine best solution avoiding premature.   

 

Fig.6 Fitness value comparion of IPSO and t-PSO  
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High diversity means dispersive particle distributed over the whole search space. Figure 7 shows 

three PSO variants’ diversity performance. In the beginning of algorithm, particle’s position are 

initialised randomly, and thus three PSO methods are all at high level in the beginning. When 

premature accurs, particles tend to explore better solutions around one local optimum leading 

swarms’s diversity becoming small. After the beginning stage, diversity of IPSO algorithm is greater 

than t-PSO and w-PSO. Hence, IPSO algorithm is more convincible to avoid premature.   
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Fig. 7 Three kinds of PSO methods’ diversity 

6 Simulation results 

This section provides several simulations of minimum-fuel trajectories and minimum-time-climb 

trajectories to gain some insights into the mechanism between propulsion and optimal trajectories for 

hypersonic vehicle.  

6.1 Simulation with varied initial altitudes 

Initial weight and final altitude are held constant as previous. While initial altitudes are varied in the 

first set of solutions with constant initial velocity of 2500 m/s. Table 7 provides 4 different initial altitudes 

for each run, as well as fuel usage and final time for both minimum-fuel and minimum time-to-climb 

trajectories.    

Table 7 Initial altitude comparison with constant 2500 m/ siv  , 40kmfh   

Initial altitude 
Minimum-fuel 

 
Minimum time-to-climb 

fm ,kg ft ,s fm ,kg ft ,s 

20 km 108420 133  107560 128 
22 km 112570 150  111790 140 
25 km 116760 154  116550 142 
27 km 118120 174  118110 160 

 
Fig.8 Flight altitude 
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Fig.9 Weight of vehicle 

 
Fig.10 Thrust  

It can be concluded from Table 7 that as the altitudes increase, fuel usage decreases (i.e. fm

increases) while final time increases for both kinds of optimum trajectories. The explanation can be 

induced from Fig. 8 to 10. Lower altitude means dense air to provide larger thrust, shown in Fig.10, 

resulting in greater acceleration for vehicle to speed, and thus cutting down the final time. Note that 

mass flow is associated with thrust in Eq. (5), and as a consequence, higher altitudes with smaller 

thrust result in smaller mass flow，i.e. greater fm as shown in Fig.9. The main tendency for both two 

kinds of objective trajectories is regular. Along the minimum-fuel trajectory, minimum fuel usage is 

reached at the cost of bigger amount of flight time. Similarly, minimum final time is determined at the 

cost of more fuel used.  

6.2 Simulation with varied initial velocity 

The second set of solution is determined when initial velocity is varied and other initial conditions 

are held constant: initial altitude 25kmih  shown in Table 8. The simulation results are presented in 

Fig.11 to Fig. 13.   

Table 8 Initial velocity comparison with constant 25kmih  , 40kmfh   

Initial velocity 

,m/s 

Minimum-fuel 
 

Minimum time-to-climb 

fm ,kg ft ,s fm ,kg ft ,s 

2000 117097 163  117041 148 
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2500 116760 154  116550 142 

2700 116625 151  116347 141 

3000 116421 147  116095 138 

 

Fig.11 Altitude 

 

Fig. 12 Thrust 

 

Fig.13 Weight  

Results of varied initial velocity with respect to minimum fuel and minimum time-to-climb trajectory 

are presented in Table 8. As the initial velocity increases, fuel usage increases and the final time 

decreases. Larger velocity can provide larger thrust as shown in Fig. 12 consequently allowing the 

vehicle to climb up faster as shown in Fig. 11. Again, since thrust is associated with mass flow, the 
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weight profiles of larger velocity in Fig. 13 will descend faster and lower.  

6.3 Simulation with varied initial weight 

The conditions of third set of solutions are: varied initial weight of vehicle im , initial altitude and 

velocity are held constant, 2500 m/ siv  , 25kmiH  , and other terminal conditions are regulated as 

previous.  

Table 9 Initial weight comparison with constant 25kmih  , 40kmfh   

Initial weight, kg 
Minimum-fuel 

 
Minimum time-to-climb 

fm ,kg ft ,s fm ,kg ft ,s 

80000 72222 107  71830 105 

100000 91169 127  90829 121 

120000 110125 147  109865 137 

140000 129060 167  109870 152 

 

Fig.14 Altitude 

 
Fig. 15 Thrust 
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Fig.16 Weight 
Optimal solutions with varied initial weight are determined via IPSO. Data in Table 9 indicates that 

heavier vehicle require more time and more fuel to climb up to the same altitude, which is quite intuitive. 
Fig.14 shows that, for a lighter vehicle, it’s much easier to gain enough acceleration to maneuver to 
climb up when given the same initial velocity and altitude and as a consequence, saving time and fuel. 
However, what is counterintuitive is that during the early stage of climbing, thrust of the lighter vehicle 
is beyond heavier ones, as shown in Fig. 15. In the early stage of climbing, light vehicle will obtain 
bigger velocity due to larger acceleration, and consequently larger thrust due to bigger velocity. 
Whereas in the later stage, increase of altitude results in decrease of thrust, which counteracts the 
influence caused by increase of velocity. Ultimately, thrust begins to decrease after about 20 seconds. 
What is intuitive is that the weight profiles of the heavier one in Fig. 16 will descend lower, consuming 
more fuel.     

7 Conclusions 

This paper investigeted the relationship of trajectory performance and propulsion system of 

GHAME hypersonic airbreathing vehicle. The kinetic model of 3DOF point-mass system is established. 

Multi constraints and control parameter are considered in this optimization model, and the optimal 

objectives are minimum fuel and minimum time-to-climb trajectories. The optimal control problem is 

transformed into parameters optimization problem through expression for control parameter. 

In order to treat shortcoming of traditional PSO, namely premature that leads to local optimum, a 

novel mechnism based on clustering idea is proposed. Sets of penalty functions are added to handle 

constraints. The idea underlying IPSO is increasing particles’ diversity by learning from neighbors, 

which has been testified to be valid and efficient.  

A trajectory optimization example of identical vehicle model is solved by finite difference 

method[21] , IPSO and other two PSO variations. Optimal solutions of fuel consumption, velosity and 

flight time between finite difference method and IPSO are nearly the same. Convergence and diversity 

of IPSO and other two PSO variations are contrasted, that global optimizing ability and effectiveness of 

IPSO precedes other PSO variations. Lastly, Three sets of simulations are presented regarding to 

varied initial altitude, velocity and weight. Numerical simulations demonstrate that the optimization 

method of IPSO is valid and efficient. 
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