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Abstract 

The disturbance region update method (DRUM) provides a framework for accelerating the simulation of 
compressible flows, solving the governing equations in dynamic computational domains (DCDs). The DCDs 
merely include disturbed cells with non-convergent solutions, and treats the viscous flows in a dynamic zonal 
way, to eliminate the worthless computational effort in the conventional global-update solution process as 
much as possible. In this paper, we propose some improvements on the algorithms of updating DCDs. 
Numerical test demonstrates that, benefiting from the reduction in the computational effort per iteration and 
the decrease in the total number of iterations, DRUM could accomplish remarkable convergence speedup for 
solving steady compressible flows; DRUM can be conjunction with spatial parallelism, capable of achieving a 
total speedup much higher than the linear speedup of the conventional global-update method. 

Keywords: computational fluid dynamics; acceleration techniques; dynamic computational methods; zonal 
methods; 

1. Introduction
NASA’s Computational Fluid Dynamics (CFD) Vision 2030 Study [1] indicated that CFD has 
fundamentally changed the aerospace design process, and the performance in terms of numerical 
efficiency and solution accuracy of CFD is of critical importance. The development of acceleration 
techniques for CFD is still an active field since there is an ever-lasting demand for efficient numerical 
tools for the flow simulation. At present, the time-marching method is the most popular one for solving 
steady compressible flows. It has unified mathematical characteristics in time for both subsonic and 
supersonic flows, and thus attains good applicability in the full speed range of compressible flows. 
The time-marching method solves unsteady governing equations in a preassigned computational 
domain (PCD), starting from an arbitrarily assumed initial flowfield, and advances in time until the 
iterative update of flowfield can be neglected. 

Acceleration techniques for the time-marching method can be classified into three categories, which 
are concentrated on the schemes, on the implementation and on the grid, as illustrated in Figure 1. 
The first category attempts to enhance the convergence per iteration by improving spatial and 
temporal schemes, such that the total number of iterations required for convergence could be 
lessened. Successful examples are the multigrid methodology [2], the large time step schemes [3], 
the implicit time-marching schemes [4], and so forth. The second category relies on parallelization. In 
CFD, parallelization based on domain decomposition is appealing and efficient [5]. Parallelization 
assigns the computational work to multiple threads (processes), and thus reduces the sequential 
execution time. The third category is drawn based on limiting the number of grid cells to decrease the 
computational effort per iteration, e.g., the adaptive mesh refinement (AMR) technique [6]. Besides, 
we proposed a method named the disturbance region update method (DRUM) that also belongs to 
the third category. 

In the time-marching produce, the operations to discretize the spatial and temporal derivatives are 
termed the residual estimation and the time integration, respectively. In a conventional way, the two 
operations are conducted in a static PCD, and update all grid cells belonging to the PCD in every 
iteration for easy implementation, i.e., by a global-update method (GUM). Therefore, these two 
operations become the most two time-consuming ones, taking almost 99% of the total execution time. 
Disadvantages in GUM are twofold. Firstly, the selection of the PCD would play a crucial role in the 
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numerical result but be highly dependent on experience, in which an inadequate PCD may lead to a 
failure of computations while a redundant one would waste computational resources. Secondly, a 
static PCD cannot take the dynamic characteristics of the flowfield evolution into account, thus 
resulting in the worthless computational efforts. 

 
Figure 1  Principles of acceleration techniques for the time-marching method 

To circumvent the problem, we propose an acceleration methodology named the disturbance region 
update method (DRUM), The idea of DRUM is inspired in accordance with the observation on solution 
processes of the time-marching method, which hold the following features: (1) disturbances are 
produced from where the governing equations cannot be satisfied, e.g., for the solution initialized from 
the freestream conditions, discontinuities in flow properties develop from the wall boundaries. (2) 
disturbances would propagate gradually to the surrounding flow as the pseudo time evolves, and flow 
properties in the region that have not been disturbed yet would maintain the initial states. (3) in 
compressible flows, the upstream region would not converge slower than its downstream since the 
flow speed is orders of magnitude equal to or greater than the speed of sound. (4) for viscous flows, 
viscous effects are solely dominant in a finite zone near the surface, no matter whether the flow is 
attached or separated. Therefore, a rational computational domain used by the time-marching method 
should be built from where disturbances are generated, extend with the propagation of disturbances 
and then contract and move downstream along with the convergence of solution. And the viscous-
dominated region characterized by large velocity and temperature gradients should merely be part of 
the computational domain. 

Obviously, compared with GUM, DRUM solving the governing equations in DCDs equips the capacity 
of reducing the worthless computational effort as much as possible, thus accelerating the 
convergence per second. DRUM defined two kinds of DCDs, named the advective and the viscous. 
The advective DCD contains all non-convergent disturbed cells in the PCD, while the viscous one 
covers part of the advective DCD where viscous effects are dominant. The extension and contraction 
of DCDs are implemented by two operations, namely, the insertion and the removal. The insertion 
operation is responsible for adding disturbed cells into the two DCDs separately. The removal 
operation is in charge of deleting converged cells from the two DCDs and misjudged viscous-
dominated cells from the viscous DCD. 

Noted that although DRUM shares the same acceleration principle with the AMR technique, jet they 
implement the principle in different ways. The AMR technique is to control the size and location of grid 
cells, making them refine, coarsen and deform. In contrast, grid cells remain unchanged in DRUM. 
DRUM distinguishes the active and inactive cells, thereby adapting the computational domain 
dynamically.

 

2. Time-Marching Method in Finite-Volume Framework 
In DRUM, the inviscid, laminar and turbulent flows are governed by the Euler, the Navier-Stokes (N-
S) and the density-weighted Reynolds-averages Navier-Stokes (RANS) equations, respectively. The 
integral form of these three governing equations can be unified as 
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where the notations of Reynolds and Favre averaging are omitted. t represents the time variable; a 
structured control volume is denoted with Ω, the boundary of Ω with ∂Ω, and a surface element on ∂Ω 
with dS. Neglecting body forces and heat sources, the conservative variables W, convective fluxes Fc, 
viscous fluxes Fv and the source term Q in Cartesian coordinates have the following components 
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Here, ρ, p, T, E stand for the density, pressure, temperature and the specific total energy, respectively, 
which satisfy the equation of state for calorically perfect gas. xi denotes a Cartesian coordinate, ui a 
velocity component, τij a component of the stress tensor (i, j =1, 2, 3). The thermal conductivity 
coefficient χ is a function of the dynamic viscosity μ. The subscript T denotes the turbulence model. 
In this work, Menter’s k-ω shear stress transport (SST) turbulent model is adopted, in which the 
working variables WT, the convective fluxes Fc,T, viscous fluxes Fv,T and the source term QT read 
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where k, ω denote the turbulent kinetic energy and the specific dissipation rate, respectively. The 
closure coefficients β and β* are modified by the Wilcox compressibility correction [9]. Details of 
other closure coefficients a1, cω, f1, f2, σk, σω, σω2 can be found in [10]. 

If all terms involving viscosity or related to the turbulent model are dropped, then Eq. (1) degrades as 
the Euler equations, suitable for the inviscid flow. If all terms related to the turbulent model are omitted 
and μ is equal to the molecular viscosity μL, then Eq. (1) becomes the N-S equations governing the 
laminar flow, in which μL obeys Sutherland’s law. If all terms are kept and μ is the sum of μL and the 
eddy viscosity μT, the Eq. (1) is the RANS equations closed with the Boussinesq eddy-viscosity 
models. 

DRUM is implemented in a cell-centered finite volume solver on structured grids. Assuming that the 
conservative variables as well as the source term are constant inside a control volume, and the 
surface integral can be approximated by a sum of the fluxes crossing the faces of the control volume, 
Eq. (1) can be discretized as 
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where the right-hand side terms are collectively termed the residual, denoted by R; |Ω| and ΔS denote 
the volume and the face area of Ω, respectively, and Nf stands for the face number of Ω, equal to 4 in 
two-dimensional (2-D) cases and 6 in three-dimensional (3-D) cases. In general, the discretization of 
the left-hand side and the right-hand side terms are treated separately, namely, the method of lines. 
Their corresponding operations are the residual estimation and the time integration. The residual 
estimation is to evaluate R with spatial discretization schemes, while the time integration is to 
approximate dW/dt by time-marching schemes, estimating the correction of the solution ΔW. The 
purpose of a time-marching method for steady compressible flow is to make every grid cell in the PCD 
satisfy ||ΔW||<εc by means of an iterative process. 

The time integration is accomplished based on the implicit lower-upper symmetric Gauss-Seidel (LU-
SGS) scheme [4], in which Eq. (4) can be discretized further as 



DISTURBANCE REGION UPDATE METHOD

4

 

 

 
   

     

  
     

+1

+

= +

n n

n n n

t

R
W R

W

W W W

  (5) 

in which Δt is the time step and the superscript (n) denotes the present step. Let each cell of a 
structured grid be uniquely identified by the indices I, J, K. The LU-SGS scheme splits the solution of 
Eq. (5) into two steps, a forward and a backward sweep, i.e., 
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where ω denotes an overrelaxation factor; Λc and Λv are the spectral radii of the convective- and the 
viscous-flux Jacobians in a certain grid direction, respectively;      1

c c c
n n n  F F F . For clarity, the cell 

indices I, J, K are omitted where not required. Here, the forward sweep is carried out from the minimum 
to the maximum of the sum of grid indexes, while the backward sweep is in a converse order. 

3. Disturbance Region Update Method 
3.1 Basic Principles 
Taking a supersonic flow at Mach 2.5 over a 2-D wedge as an example, Figure 2 illustrates the 
principle of DCD evolution in DRUM, in which N stands for the number of iterations, ΔW represents 
the correction of the solution, ηc, ηv denote the cell-number ration of the advective and the viscous 
DCDs to the PCD, respectively. When the flowfield is initialized from the freestream conditions, wall 
conditions are enforced on the cells adjacent to the wall and thus both DCDs are created based on 
the wall, as shown in Figure 2 a). At the early stage, the insertion operation gradually adds cells into 
the two DCDs. At the 330th step, both DCDs reach their peak, where the advective one covers the 
region near and downstream of the oblique shock while the viscous one shaped like a long strip lies 
next to the wall, as displayed in Figure 2 b). Then, the removal operation would exclude converged 
cells in compressible flow from both DCDs, starting from the upstream, like the cases in Figure 2 c) 
and d). At the end of the solution, only the near-wall cells stay in the DCDs and all cells in the PCD 
achieve the steady-state solution. 

3.2 Procedure of DRUM 
The execution procedure of a finite-volume solver with DRUM for steady compressible flow is 
carried out as follows: 

(1) Loading input files, including the user-defined grid, boundary conditions and computational 
settings. 

(2) Initializing the flowfield, which can be performed from freestream conditions or based on a 
specific flowfield. 

(3) Creating the advective and the viscous DCDs in terms of the initialization way of flowfield. 
If the flowfield is initialized from freestream conditions, then both DCDs are built based on the wall 
conditions. If the flowfield is initialized based on a specific flowfield, then the advective DCD is the set 
of cells with flow properties different from freestream conditions while the viscous DCD is the viscous-
dominated part of its advective counterpart. 

(4) Imposing boundary conditions. Two layers of dummy cells are adopted in this work. 
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(5) Estimating the inviscid terms of the residual (performed in the advective DCD). 

(6) Estimating the viscous terms of the residual (performed in the viscous DCD). 

(7) Time integration (performed in the advective DCD). 

(8) Extending and contracting the advective DCD in grid blocks. 

(9) Extending and contracting the viscous DCD in grid block. 

(10) Extending the advective and the viscous DCDs between grid blocks. 

(11) Judging whether the convergence criteria are satisfied. If so, continuing the step (12); if 
not, repeating the steps (4)-(10). 

(12) Outputting results. 

Among these steps, steps in bold characters are exclusively owned by DRUM. The residual estimation 
is divided into two parts, i.e., the steps (5) and (6), which are performed in the advective and the 
viscous DCDs, respectively. The other time-consuming operation, the time integration, is also 
performed in the advective DCD. Since the advective DCD may merely be part of the PCD and the 
viscous DCD may only be part of the advective one, DRUM could achieve savings in terms of the 
computational cost, as compared with the conventional GUM. 

 
Figure 2  Examples of the update sequences of DRUM 

3.3 Creation of DCDs 

3.3.1 Flowfield Initialized from Freestream Conditions. 
In this case, disturbances are generated because of the existence of wall, and would propagate from 
the wall. Therefore, both DCDs are built based on wall boundaries. Let lini,a and lini,v be the layer number 
of cells added into the initial advective and the viscous DCDs, respectively. In our previous work, both 
lini,a and lini,v are set to 1 in all cases. However, it is found that small values of lini,a may make the 
convergence history of DRUM at the initial stage different from that of GUM. The value has no 
influence on a solution with thousands of iterations, but may slightly delay the convergence for a 
solution with hundreds of iterations. In order to avoid this detrimental effect, we increase lini,a from 1 
to 10 in this work, so that the maximum norm of ||ΔW||max at the first step calculated by DRUM can be 
the same with that of GUM. Contrary to lini,a, the convergence is insensitive to the value of lini,v. Thus, 
lini,v remains 1 for less computational work, i.e., the cells immediately next to the wall are regarded as 
the initial elements of the viscous DCD. 
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3.3.2 Flowfield Initialized Based on A Specific Flowfield. 
An advective DCD should be the part of the PCD containing all disturbed cells with non-convergent 
solutions. In our previous work, we determined the initial elements of an advective DCD by two sub-
steps: 1) sifting disturbed cells from all the cells of the PCD; 2) sifting converged cells out the set of 
disturbed cells. However, it is found that the step 2) is unnecessary, since converged cells could be 
removed from the DCDs immediately at the first step. This step has no beneficial effect on the solution 
process, instead of bringing extra computational work. Hence, we omit this step in this work. Disturbed 
cells are characterized by having flow properties different from freestream conditions. Hence, 
disturbed cells can be identified by 

 cε W W   (8) 

with the subscript ∞ being the freestream. All cells satisfying Eq. (8) are added into the initial advective 
DCD. For an initial viscous DCD, it should be the viscous-dominated part of its advective counterpart. 
The way to identify a viscous-dominated cell in the creation and the update of the viscous DCD is the 
same, which will be introduced in Section 3.5. 

3.4 Extension of the Advective DCD 
After the update of the solution, extending the advective DCD in terms of the updated information is 
a top priority so as to allow the propagation of disturbances. Considering a particular cell (I, J, K) 
adjacent to the boundary of an advective DCD, the insertion operation executes the following two sub-
steps in sequence: (1) judging whether disturbances affect the cell; (2) Determining potential disturbed 
cells among the surrounding cells. 

For the sub-step (1), a disturbed cell can be identified in terms of its correction that cannot be 
neglected, which can be expressed as 

       1
a

max

nW W   (9) 

where ||ΔW(n)|| corresponds to the value of the cell (I, J, K) at the present step and ||ΔW(1)||max denotes 
the maximum norm of ΔW at the first step, and εa is a preassigned advective insertion threshold, 
recommended to 10-5. ||ΔW(1)||max is a new factor introduced in this work to normalize ||ΔW(n)|| so as 
to avoid the adjustment of εa for different cases. If the cell (I, J, K) satisfies Eq. (9), the insertion 
operation continues working for it; if not, the operation will skip the cell and continue to judge other 
cells adjacent to the boundary of the advective DCD. 

For the sub-step (2), assume that there is at most one layer of surrounding cells that would be 
disturbed at the next time step. Except the one adjacent to the PCD’s boundaries, a disturbed cell 
owns two adjacent cells in each grid direction, e.g., the cell (I±1, J, K) in the I direction. This sub-step 
is aimed at determining which adjacent cell must be added into the advective DCD. The maximum 
wave speed in any direction is the sum of a and the velocity component along the specified direction. 
Let q be a unit direction vector, and then the condition that disturbances can propagate along a 
specified direction can be given by 

   0au q   (10) 

For a subsonic flow, sound waves move faster than the flow so that disturbances could propagate in 
all directions away from the disturbance source. That is to say, all the next neighboring cells of the 
disturbed cell satisfy Eq. (10) by nature and thus spDRUM must insert all of them into the advective 
DCD. However, for a supersonic flow, Eq. (10) becomes the key to limiting the advective DCD to cover 
the upstream of the leading-edge shock. Here, the choice of q is of significance. In our previous work, 
q is defined as a unit vector pointing from the centroid of the cell (I, J, K) towards that of a surrounding 
cell, but Eq. (10) with it may fail in certain cases. 

Figure 3 sketches a 2-D case to illustrate the reason why Eq.(10) may fail. For the disturbed cell (I, 
J), q is directed from the centroid of the cell (I, J) towards that of the cell (I, J+1) to measure whether 
disturbances transmit along the positive J-direction. If uiqi < -a, then the cell (I, J+1) would not be 
defined as a potential disturbed cell. If all cells at the J index satisfy uiqi < -a, then the advective DCD 
would never extend to the row at the J+1 index. In [8], we proposed to search more surrounding cells 
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like the cell (I+1, J+1) to address this failure, since a disturbed cell should propagate disturbances to 
its downstream indeed. However, this way may be time-consuming to search a lot of surrounding cells 
when uiqi is much lower than -a. 
In this work, we provide a new definition of q to encounter this failure. q is defined as the unit vector 
directed from the centroid of the disturbed cell towards one of its vertices. If q pointing from the 
centroid of the cell (I, J ) towards the vertex (i+1, j+1) satisfies Eq. (10), then the cells (I, J+1) and (I+1, 
J ) would be regarded as potential disturbed cells and inserted into the advective DCD. Although the 
new definition of q allows more cells join the advective DCD, undisturbed cells will be removed 
immediately at the next time step. Hence, the new definition not only has no harm to the computational 
efficiency but also avoids the time-consuming search. 

 
Figure 3  Schematic of the failure and the definition of q 

3.5 Contraction of the Advective DCD 
After the extension of the advective DCD, the removal operation would try to remove cells from the 
rows without new-added cells. Considering a particular cell (I, J, K) adjacent to the boundary of an 
advective DCD, the removal operation measures whether to delete it from the advective DCD or not 
in terms of the following four conditions: (1) the cell and its surrounding cells converge to the steady 
state; (2) the cell is located at the most upstream; (3) the cell has little influence on the update of the 
solution; (4) neighboring cells have little influence on the update of the cell. If all of the four conditions 
are satisfied, then the cell (I, J, K) would be removed from the advective DCD. Note that the viscous 
DCD must be included in its advective counterpart. Hence, the cell (I, J, K) would be excluded from 
the viscous DCD as well if it is also a viscous-dominated cell. 

Regarding the condition (1), it is similar to the convergence condition, i.e., 

    1
d

max

n   W W   (11) 

with εd being a preassigned removal threshold, recommended to εd≤10-7. A smaller εd achieves better 
accuracy but also results in loss of efficiency. Eq. (16) would be performed in the cell (I, J, K) and two 
layers of its surrounding cells. 

Regarding the condition (2), the removal operation is constructed based on the characteristic of the 
time-marching solution process that the upstream region of the PCD may converge to the steady state 
faster than its downstream counterpart. Hence, a new-deleted cell must lie at the most upstream. Let 
x0 and u0 be the centroid’s coordinates and velocity of the cell (I, J, K), respectively, x1 be the 
centroid’s coordinates of its neighboring cell. If the cell is the most upstream one, then all of its 
neighboring cells that remain in the advective DCD must be located downstream, which should satisfy 
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with θd being a preassigned angle tolerance of the upstream cell. θd is a tolerance aimed at avoiding 
a misjudgment between lying upstream and at the same flow station. Here, different values of θd are 
recommended for supersonic and subsonic flows. A supersonic flow is governed by the hyperbolic 
nature, and its advective DCD should contract from the upstream to the downstream strictly. Therefore, 
a small range of 5°≤θd≤15° is preferred for supersonic flows. In contrast, the outer boundary of a 
subsonic PCD must stay far away from the wall in all directions to eliminate the influence of a finite 
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boundary domain. It is found that the region that lies downstream but far away from the wall has little 
influence to the convergence and accuracy of the solution. Therefore, a large range of 40°≤θd≤50° is 
recommended for supersonic flows. 

Regarding the condition (3), it stems from addressing the phenomena that low-speed cells lying the 
upstream and the downstream may converge at the same pace, especially for the viscous cells. Given 
that the wall is a dominated source of disturbances, we define a condition in terms of the distance to 
the nearest wall dw, to measure whether the cell to be deleted continues having an effect on the 
solution. Assume that in a subsonic or viscous flow, disturbances generated by the wall decay with 
the increase of dw. Let dw,c be the maximum dw of the cells satisfying Eq. (11). If a cell no longer has 
an influence on the update of the solution, then it must have a dw satisfying 

 w w,cd d   (13) 

Here, dw is a parameter prepared and stored in the flowfield initialization; dw,c is updated at every 
iteration along with the time integration, and would increasingly decrease with the convergence of the 
solution. 

Regarding the condition (4), it can be skipped for a cell in the supersonic inviscid flow. This is because 
that the hyperbolic nature of the flow stipulates that the flow at any given point depends merely upon 
the properties at other points upstream of it. Thus, a supersonic inviscid cell can be immune to the 
update of others by nature if it lies at the most upstream. 

Differentiating the residual defined in Eq. (4) with respect to W results in 
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1

=
N
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S

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
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n
W W W W

  (14) 

Here, Fc can be split into a positive and a negative part, i.e., Fc=Fc
++Fc

-. The derivatives ∂Fc±/∂W can 
be approximated by (∂Fc±/∂W)ꞏnΔS=(AcΔS±ΛcI)/2, with Ac being the convective flux Jacobian and I 
being the identity matrix. The derivatives ∂Fv /∂W can be approximated by the viscous spectral radii 
Λv, satisfying (∂Fv/∂W)ꞏnΔS≈Λv. The effect of the next neighboring cells in the I-direction on RI,J,K can 
be given as 

 
c, +1 1/2 1/2 c, +1 v, +1 1
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1
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I I I I I I

I I I I I I
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R F n W

F n WR
  (15) 

For clarity, the cell indices I, J, K are omitted where not required. Similar expressions of Eq. (15) hold 
for the J- and K-direction. With the Euler approximation, i.e., ΔW=ΔRꞏCCFLꞏΔt/|Ω|, the condition 
representing the cell (I, J, K) immune to the cells in the advective DCD can be described as 

  
CFL d

, ,

+n m

m I J K

t
C 




    

W R   (16) 

Here, CCFL is the CFL number, which is new-added in this work to take the factor of different CFL 
numbers into account. Eqs. (15) and (16) also hold for the inviscid transonic case where terms 
associated with Λv can be ignored. 

3.6 Extension of the Viscous DCD 
The adjustment of the viscous DCD follows the update of its advective counterpart. Consider a 
particular cell (I, J, K) lying next to the boundary of a viscous DCD, the insertion operation to 
manipulate the viscous DCD follows only one criterion, i.e., measuring whether the cell is viscous-
dominated. If so, all neighboring cells adjacent to the cell (I, J, K) would be inserted into the viscous 
DCD. This is because the elliptic behavior of the governing equations’ viscous terms allows both the 
upstream and downstream propagation of disturbances via viscosity and thermal conduction. 

Regarding the measure of viscous effects, a criterion in terms of Fc, Fv is the most intuitive way. 
Unfortunately, the cost in extra computation or storage of these two vectors is high. Fc, Fv include the 
information about the mass flow, momentum flow and the energy flow. To save the computational 
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cost, a criterion only related to the mass flow of the inviscid and the viscous disturbances across a 
cell was employed in our previous work. The largest wave speeds of the inviscid and the viscous 
disturbances can be evaluated by the eigenvalues of the Jabobians of Fc and Fv. Hence, the mass 
flow of the inviscid and the viscous disturbances across the cell can be expressed in terms of Λc and 
Λv. As a result, we defined a variable, Ψ=Λv /Λc, and a preassigned viscous insertion threshold, εa,v, 
as well as a criterion, Ψ>εa,v, to identify the viscous-dominated cells. However, in our previous work, 
εa,v had to be adjusted for different cases, which degrades the universality of DRUM.  

In order to adopt a constant εa,v in all cases, in this work, we adopt a new criteria with self-adaptive 
thresholds to assess whether viscous effects can be ignored in a cell. It is known that the total enthalpy 
h0 is constant in a steady inviscid flowfield, even across a shock wave. Hence, a viscous-dominated 
cell can be identified in terms of its h0 that is different from the value of the freestream, i.e., 

 0, 0 a,v1 h h     (17) 

Here, the setting of εa,v is similar to the definition of a boundary-layer thickness. It is recommended 
that εa,v =5×10-3, i.e., h0=1.005h0,∞ is defined as the edge of the boundary layer. Although Eq. (17) is 
a perfect condition to distinguish the viscous-dominated cells in a real flowfield, h0 is incorrect during 
the time-marching solution process of a steady flow, especially for the early stage. Therefore, Eq. (17)
cannot be imbedded in DRUM in a direct way. 

It is found that conditions combining flow properties with grid parameters would be more stable and 
robust for a numerical algorithm. Hence, the variable Ψ that includes flow properties, thermal 
properties and grid sizes is a proper option. However, as mentioned above, the threshold of Ψ is 
difficult to preassign for various cases. Besides, numerical results in [8] indicate that a condition in 
terms of Ψ may misjudge a small cell as a viscous-dominated one, even if it is very far away from the 
wall and should be inviscid. 

To avoid the disadvantages of our previous work and take advantage of the physical nature expressed 
by Eq. (17), we would combine a new condition in terms of dw with the original condition in terms of Ψ 
to limit the maximum dw of the viscous DCD. Let Ψvis and dw,v be the thresholds of Ψ and dw, 
respectively, in which Ψvis represents the maximum of Ψ on the cells satisfying Eq. (17) and dw,v 
corresponds to the minimum of dw on these cells. Similar to the search of dw,c, the search for Ψvis and 
dw,v are also embedded in the time integration to avoid extra gird-cell traversal. The new criteria can 
be given by 

 vis vis w vis w,v  d d       (18) 

with φvis being a scaling factor to avoid the instability stemmed from an inadequate viscous region 

    
vis max min max

max 1.0, log log n      
W W   (19) 

where ||ΔW(n)||max denotes the maximum of ||ΔW|| on all cells at the present step, and (||ΔW||max)min is 
the minimum of ||ΔW||max during the convergence history. As can be seen, in the new-defined criteria, 
Ψvis and dw,v are self-adaptive based on Eq. (17) at every iteration; φvis would be greater than 1.0 if 
the convergence history shows a growth trend, i.e., ||ΔW(n)||max is greater than (||ΔW||max)min, and thus 
the viscous DCD would be further enlarged; the only preassigned threshold εa,v has clear physical 
implication so that one value could be suitable for various cases. 

3.7 Contraction of the Viscous DCD 
In [8], the contraction of viscous DCD could only be driven by that of the advective DCD rather than 
by itself. In an attempt to improve the flexibility of the viscous DCD, an extra step manipulating the 
contraction of the viscous DCD is integrated into spDRUM. In this step, the removal operation is 
responsible for sifting out the cells misjudged as viscous-dominated ones, and follows the opposite 
conditions defined in the extension of the viscous DCD, i.e., 

 0, 0 d,v

vis vis w vis w,v

1

  

h h

d d



 
 

   
  (20) 
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3.8 A Summary of Improvements in DRUM 
For better understand, we summarize the improved algorithms that are different from their original 
versions, as tabulated in Table 1. 

Table 1  Improvements on algorithms in DRUM 
Operations Improvements Purpose 

Creation of the 
advective DCD 

from 
freestream 

Increasing lini,a from 1 to 10 
Avoiding an adverse effect on 
the convergence 

from a 
flowfield 

Omitting the evaluation of ||R|| 
Decreasing the computational 
effort 

Extension of the advective DCD in 
blocks 

Introducing ||ΔW(1)||max in Eq. (9) 
Applying one value of εa for all 
cases 

Defining a new direction vector in Eq. (10) 
Avoiding the failure of the 
original 

Contraction of the advective DCD 

Introducing ||ΔW(1)||max in Eq. (11) 
Applying one value of εd for all 
cases 

A new inequality in terms of θd (12) 
Improving the computational 
efficiency 

Replacing the original Mach-number limit with a 
new criterion in terms of dw (Eq. (13)) 

Making the algorithm more 
rational 

Adding the factor of CCFL in Eq. (16) 
Avoiding the difference caused 
by CCFL 

Extension of the viscous DCD in 
blocks 

Introducing a new definition of εa,v and new 
criteria in terms of h0, dw (Eqs. (18)) 

Applying one value of εa,v for all 
cases 
Defining a more rational 
viscous-dominated region 

Contraction of the viscous DCD A new step in spDRUM 
Defining a more rational 
viscous-dominated region 

4. Validation and Discussions 
The test case considers a supersonic inviscid flow at Mach 6 over a 3-D wedge whose upper and 
lower wedge angles are both 6°. The preassigned grid with 6.2×104 cells consists of 18 blocks, 
including typical grid topologies, e.g., the Y-, C- and H-grid topology. Solutions solved by DRUM with 
6 threads are displayed in Figure 4. The advective DCD is built initially on the wall boundary, and 
extends to the surrounding flowfield as disturbances propagate, as shown in the case at the 10th step. 
When the cell number of the advective DCD reaches its peak, the region near the leading edge of the 
wedge has been removed from the DCD, as shown in the case at the 85th step. Even though the 
preassigned grid is divided into 18 blocks, the insertion operation could add all disturbed cells into the 
advective DCD while the removal operation could delete converged cells, starting from the upstream. 
Solution in the regions with large flow gradients is more difficult to approach the steady state. Hence, 
the part of the advective DCD near the wall contracts faster than that in the vicinity of the shock, and 
one near the low-pressure side surface of the wedge contracts much faster than that near the upper 
and the lower surfaces.  

Numerical results attained by spDRUM and the shock-fitting method [11] at a constant z plane are 
compared in right-bottom panel of Figure 4. As can be seen, the shock is well resolved and the results 
of two methods agree well. Therefore, the capacity of simulating compressible flow for DRUM is 
validated. 

Figures 5 and 6 display cell-number evolutions of the advective DCDs and convergence histories, 
respectively. As compared in Figures 5, spatial parallelism has little effect on the advective DCD. The 
maximum of ηc equal to 0.594 means that there is at most 59.4% of the preassigned cells updated at 
one iteration, and thus DRUM achieves a nearly 17% reduction in the maximum memory requirements. 
Figure 6 demonstrates that spDRUM has no harm for the convergence of the time-marching method, 
and it could accomplish remarkable convergence speed. 
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Figure 4  Solutions of the 3-D supersonic wedge (6 threads) 

 

 
Figure 5  DCD evolutions for the 3-D 

supersonic wedge 

 
Figure 6  Convergence histories for the 3-D 

supersonic wedge 

Let the parallelism speedup be the CPU-time ratio of serial and parallel cases cost by the same 
method, the DRUM speedup be the CPU-time ratio of GUM and DRUM performed with the same 
number of CPUs, ΔCL/CL and ΔCD/CD denote relative lift- and drag-coefficient discrepancies between 
GUM and DRUM performed with the same number of CPUs, respectively. Table 2 lists the accuracy 
and efficiency of DRUM for the 3-D supersonic wedge. The results demonstrate that spatial 
parallelism has no detrimental effect on the accuracy of DRUM. For all cases, ΔCL/CL and ΔCD/CD are 
both on the order of 10-6. Therefore, numerical results provided by spDRUM are valid. Comparison 
between the CPU time cost by the serial GUM and DRUM indicates that the speedup of DRUM is 
almost equivalent to that of 6-thread parallelism. Owing to the load balancing, the speedup ratio of 
DRUM would decrease with the increase of the thread number. However, the total speedup of 
spDRUM for both 6- and 9-thread cases is above twice and even trice as high as the linear speedup 
of GUM with the same number of threads. 

Table 2  performance comparison of GUM and DRUM for the 3-D supersonic wedge 

Methods 
Number of 

threads 
Parallelism 
speedup

DRUM 
speedup

Total 
speedup

ΔCL/CL ΔCD/CD 

GUM 1 -- -- -- -- --
 6 

9 
4.346 
5.997

-- 
--

-- 
--

-- 
-- 

-- 
--

DRUM 1 -- 4.166 -- 1.63×10-6 3.57×10-6

 6 
9 

4.106 
4.394

3.935 
3.053

17.105 
18.305

1.63×10-6 

1.63×10-6 
3.57×10-6 

3.57×10-6

5. Conclusion 
The present work introduces some improvements on the algorithms of updating dynamic 
computational domains under the framework of the disturbance region update method, which make 
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DRUM more robust, efficient and universal. Numerical test demonstrates that spDRUM could achieve 
considerable speedup for compressible flow simulation, and also may accomplish savings in terms of 
the maximum memory requirements. The total speedup of DRUM conjunction with spatial parallelism 
would be much higher than the linear speedup provided by the global update method with the same 
thread number. It is proven that spatial parallelism has no harm to the accuracy of DRUM. 
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