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Abstract 

Aircraft icing is the essential menace to flight safety. An accurate prediction of the aircraft icing meteorological 

environment, combining geographical features is a critical ingredient to the aircraft de-/anti- icing. In this paper, 

a numerical method to accurately predict icing meteorological parameters is established. The Weather 

Research and Forecasting (WRF) is applied and four microphysics schemes are evaluated to determine the 

optimal parameterization scheme. The results show that the Purdue Lin microphysics schemes yields superior 

performance in predicting both evolution tendency and numerical precision. The BP neural network based on 

the deviation of the observed and predicted icing parameters is established. The icing meteorological 

parameters corrected by the constructed BP neural network are better consistence with observed values than 

values directly predicted by the WRF with the Purdue Lin scheme. The paper is the preliminary work of aircraft 

icing rapid prediction and aims to provide precise input data for follow-up aircraft icing numerical prediction.  
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1. Introduction

Aircraft icing is the essential menace to flight safety [1]. When the aircraft is exposed in high-altitude 

clouds, the supercooled liquid droplets impact the aircraft surface and induce heat and mass transfer, 

further resulting in icing accretion on the windward surface of the aircraft, such as the airfoils, engine 

inlet, sensors, etc., which perhaps causes severe aerodynamic and flight mechanical effects and 

thus threatens aircraft flight safety [2]. The National Transportation Safety Board (NTSB) once 

announced that the natural icing problem is one of the “Most Wanted Aviation Transportation Safety 

Improvements” [3]. According to the statistics of the Federal Aviation Administration (FAA), there 

were 388 flight accidents caused by icing during the decade from 1990 to 2000. With the increase in 

flight density, there were 380 icing-related accidents during the five years from 2003 to 2008. There 

also have been many severe flight accidents recently caused by ice accretion in China, for example, 

the Anhui air crash in 2006 caused 40 deaths. Therefore, it is of urgent practical significance to 

systematically carry out researches on the flight safety of aircraft during icing encounters.  

The intensity of aircraft icing and the hazards to flight safety mainly depend on the icing 

meteorological conditions, such as liquid water content (LWC), water droplet median volume 

diameter (MVD), relative humidity (RH), cloud temperature pressure and cloud range. The 

measurement results of icing meteorological conditions in North America have laid the foundation of 

FAR Appendix C and Appendix O. Appendix C and appendix O specifies atmospheric icing 

conditions and supercooled large droplets (SLD) icing conditions respectively. In appendix C, the 

maximum continuous or intermittent intensity of atmospheric icing conditions are both defined by the 

variables of the cloud LWC, MVD, the ambient cloud temperature and the interrelationship of these 

three variables. In appendix O, SLD icing conditions are defined by the parameters of altitude, 

vertical and horizontal extent, temperature, liquid water content, and water mass distribution as a 

function of drop diameter distribution [4].  

Many researchers have obtained a variety of achievements on numerically predicting icing 

meteorological conditions. Nygaard et al. [5] concluded that the spatial resolution (with grid spacing 

of 0.333 km) used in NWP (Numerical Weather Prediction) models is a decisive factor in the correct 
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prediction of icing at ground level. Davis et al. [6] evaluated nine WRF physics parameterization 

combinations for icing episodes at a wind park in Sweden. Sergio Fernández-González et al. [7] 

indicated moisture, wind direction, temperature, atmospheric stability, and wind shear were decisive 

in the appearance of icing by analyzing a real severe icing case using WRF. Merino et al. [8] used 

four microphysics and two planetary boundary layer schemes, to investigate the capability of the 

WRF model to detect regions containing supercooled cloud drops. Faisal et al. [9] investigated 

weather conditions related to aircraft icing to improve ice prediction. Mei et al. [10] studied the 

application of the High-Resolution Rapid Refresh model in ice accretion prediction and improved it. 

Bowyer et al. [11] used satellite data to infer the icing potential in Europe, Asia, and Australia and 

compared it with the measured results. Wang et al. [12] proposed the icing index algorithm is 

calculated using linear interpolation and based on temperature and relative humidity (RH) curves 

obtained from radiosonde observations in China. 

The cloud and fog parameter envelopes that are consistent with Chinese icing meteorological 

characteristics are of great significance to the airworthiness certification of the domestic large aircraft. 

Therefore, it is urgent to confirm applicative icing weather conditions, in order to provide strong 

support for the airworthiness certification of the domestic large aircraft. Survey results have shown 

that aircraft icing accidents usually occur in coastal, plateau, and water-rich regions. Chengdu 

Shuangliu International Airport (CTU) is located in the southwestern region of China, which is 

climatically characterized by abundant rainfall, high humidity and less sunshine [13]. Civil transports 

are prone to be interfered by fog in winter during the approach and climb stages in such weather 

condition. According to the statistics, in recent five years from 2014 to 2018, there are total of 35 low 

visibility weather occurred during the approach and climb stages in CTU, with an annual average of 

7 times, mainly from October to January of the following year. The icing meteorological environment, 

combining geographical features has become one of the important factors restricting aircraft flight 

performance and threatening aviation safety. 

The aim of present work is to establish a numerical model for accurate prediction of aircraft icing 

situation field near the ground by using the Weather Research and Forecasting (WRF), to provide 

precise input data for follow-up aircraft icing numerical test. Firstly, the two-level nested mesh 

technology considering geographical features, is employed. Further, the multiple combinations of 

microphysics schemes are evaluated, and the optimal physical process parameterized combination 

for the aircraft ice accretion is determined. On this basis, the pressure and temperature fields are 

obtained. Finally, based on the various predicted and measured meteorological values, BP neural 

network is employed to correct the future icing meteorological conditions forecasting by the WRF 

pattern. The paper is the preliminary work of aircraft icing rapid prediction and aims to provide precise 

input data for follow-up aircraft icing numerical prediction. 

2. Numerical Configuration  

The work of this paper is divided into two parts: one part is to determine the optimal physical process 

parameterized combination based on the WRF model and output the predicted icing meteorological 

parameters; the other part is to construct a BP neural network for the deviation between the predicted 

and observed values of the icing meteorological parameter, and to calculate the future predicted 

value. The schematic diagram of aircraft icing situation field prediction is shown in Figure 1. 

2.1 WRF Model Setup 

The mesoscale numerical weather prediction model used in this study is the Advanced Research 

WRF (ARW) modeling system, version 4.1.2. In order to verify with the observed values from 

meteorological observatory, the numerical simulation take the geographic location of Chengdu 

Shuangliu Meteorological Observation Station (103.55°E, 30.35°N) as the center point of the 

simulated area, from 2021-04-10 00:00:00 UTC to 2021-04-16 00:00:00 UTC. Initial and boundary 

conditions were retrieved from National Centers for Environmental Prediction (NCEP) Global 

Forecast System analyses, with 1° horizontal grid spacing and a temporal resolution of 6 h. In order 

to save computation cost, simulations are carried out by applying two levels of nesting, which means 

that the inner model domain with the finer resolution is embedded into the outer model domain with 

the coarser resolution, following a one-way nesting strategy, as shown in Figure 2. Horizontal 
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resolution of the domains was 5 and 1 km, respectively, and vertical resolution was set to 34 sigma 

linear levels.  

 

Figure 1 – The schematic diagram of aircraft icing situation field prediction.  

 

Figure 2 – The nested domain of numerical simulation. 

The selected parameterization schemes were as follows: Dudhia scheme [14] and the Rapid 
Radiative Transfer Model [15] for shortwave radiation and longwave radiation respectively, and 
Yonsei University scheme [16] for Planetary Boundary layer. MM5 similarity surface layer scheme 
described by Fairall [17], and Noah Land Surface Model [18], which is a four-layer soil temperature 
and moisture model with canopy moisture and snow cover estimation, are considered. The Kain-
Fritsch cumulus scheme [19] is employed to both nested domains. 

In order to optimize the parameterization schemes, four microphysics schemes were tested: the 

Purdue Lin microphysics scheme, WRF single-moment six-class scheme, Thompson six-class 

microphysics scheme and Morrison six-class double-moment scheme. Purdue Lin microphysics 

scheme [20], a one-dimensional cloud model, takes in consideration the effects of entrainment, cloud 

microphysics, pressure perturbation, lateral eddy diffusion, and vertical eddy diffusion. WRF single-

moment six-class (WSM6) scheme [21] predicts the rainfall amount becoming larger but rain 
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distribution becoming narrower as the number of classification of hydrometeors is increasing. And 

WSM6 is capable of improving the simulated precipitation by shifting it southward toward the 

observation. Thompson six-class microphysics scheme [22] incorporates prognostic equations for 

the mass concentration of five hydrometeors: cloud water, cloud ice, rain, snow, and graupel, and 

has a great performance in the prediction of LWC, as special attention is paid to the formulation of 

the snow category. The Morrison six-class double-moment scheme [23], based on the full two-

moment scheme, predicts the mass concentration of five hydrometeors (in consistence with the 

Thompson scheme), in addition to the number concentration of four species: cloud ice, snow, rain, 

and graupel. The prediction of both mass mixing ratio and number concentration of four water 

species allows a more robust description of size distributions.  

Three indicators which are employed to evaluate above four microphysics schemes in this work, are: 

(1) mean absolute error, MAE; (2) root mean absolute error, RMAE; (3) Pearson correlation 

coefficient, r. The detailed indicator expressions are demonstrated as follows  

1
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Here, 
measy  and 

predy  are the observed and predicted values of icing meteorology parameters, 
measy  

and 
predy  are the observed and predicted average values of icing meteorology parameters, N  is 

the samples quantity.  

2.2 Neural Network Design 

The BP (Back Propagation) neural network used in this article is a multi-layer feedforward neural 

network with error back propagation. Because of its wide applicability and easy operation, it is 

currently the most widely used neural network model. The schematic diagram of the BP neural 

network is shown in Figure 3. The structure mainly includes input layer, hidden layer and output layer. 

The hidden layer contains one or more layers of neurons. It is learned through inverse retraining and 

the gradient descent algorithm is used. Finally, a non-linear mapping logic between input and output 

is established to minimize the network error. However, BP neural network also has disadvantages 

such as low learning efficiency, requires a large number of sample training, and falling into local 

optimal misunderstandings. At the same time, the determination of the number of network layers and 

neurons in BP neural network lacks theoretical methods and requires manual judgment.  

In this work, the number of hidden layers of BP neural network is determined to be 2, and the number 

of hidden layer neurons is 16, so the constructed BP neural network has a 2-16-16-2 structure. Then 

the final determination is that the learning rate is 0.01, and the iteration error is 1e-6. 

 

Figure 3 – The BP neural network structure diagram. 

Input layer Hidden layer Output layer 
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3. Validation and Results 

The icing meteorological environment in the targeted domain is simulated by means of four 

microphysics schemes, and the optimal parameterization scheme is determined through error 

analysis among four schemes. The pressure and temperature comparison of the observed and 

predicted values at the domain’s center point are demonstrated in Figure 4. In the set of figures, 

black line for observed values, red line for Morrison scheme, olive line for Thompson scheme, 

magenta line for WSM6 scheme and blue line for Purdue Lin scheme, respectively. As shown in the 

pressure comparison in Figure 4, all four parameterization schemes are capability of predicting the  

  

  

  

  
Figure 4 – The pressure (left) and temperature (right) comparison of observed and predicted values.  

(black line for observed values, red line for Morrison scheme, olive line for Thompson scheme, 

magenta line for WSM6 scheme and blue line for Purdue Lin scheme, respectively.) 
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pressure trend accurately. However, it is worth to note that the MAE and RMSE between the 

observed and simulated pressure are approximate to 1521.61~1531.02 Pa and 1.586%~1.596% as 

shown in Table 1. Relative to pressure simulation, all four parameterization schemes have more 

accurate performance in simulating temperature. Apart from the fact that there are three distinct 

deviations between the observed and simulated temperature (approximately at the 34h, 106th, 132th 

time nodes), the predicted temperature values are consistent with observed values in both temporal 

evolution and numerical precision.  

Error analysis of four microphysics schemes is illustrated in table 1. It is considered that two sets of 

variables are statistically strong correlation if Pearson correlation coefficient, r, between these two 

sets of variables is greater or equal to 0.6, and are extremely strong correlation if r is greater or equal 

to 0.8 correspondingly. Despite of distinct deviations of MAE and RMAE between the observed and 

simulated pressure, as shown in Table1, the Pearson correlation coefficients of microphysics 

schemes are approximate to 0.8, and Purdue Lin scheme has the best performance, the r indicator 

reaching up to 0.806. In the aspect of predicting temperature, Purdue Lin scheme still performs most 

accurately (MAE=1.12 and RMAE=0.388%). At the same time, the r indicator of Purdue Lin scheme 

reaches up to 0.845. Therefore, Purdue Lin scheme is determined to the optimal parameterization 

scheme and icing meteorological parameters predicted by Purdue Lin scheme are corrected by the 

following BP neural network.  

Table 1 Error Analysis of four microphysics schemes prediction 

 Pressure Temperature 

 MAE RMAE r MAE RMAE r 

Morrison 1523.96 1.588% 0.798 1.64 0.566% 0.704 

Thompson 1521.61 1.586% 0.789 1.32 0.454% 0.779 

WSM6 1523.53 1.588% 0.795 1.26 0.432% 0.794 

Purdue Lin 1531.02 1.596% 0.806 1.12 0.388% 0.845 

The whole 144 hours data from 2021-04-10 00:00:00 UTC to 2021-04-16 00:00:00 UTC are divided 

into two parts: the first 140 hours data are used to training and validating the BP neural network, the 

rest 24 hours data is employed to test future data predicted by the constructed neural network. As 

shown in Figure 4, the corrected icing meteorological values are better consistence with observed 

values than values directly predicted by WRF with the Purdue Lin scheme. 

The error analysis of Purdue Lin scheme prediction and BPNN correction is demonstrated in Table 

2. The MAE and RMAE of pressure are decreasing from 1495.14 and 1.56% to 85.65 and 0.09% 

respectively. Correspondingly, the MAE and RMAE of temperature are decreasing from 1.41 and 

0.49% to 0.70 and 0.24%. the r indicators of observed and BPNN corrected values are reach up to 

0.831 and 0.900, which mean statistically strong correlation between these two sets of values.  

  
(a) pressure (b) temperature 

Figure 5 – The comparison of Purdue Lin scheme prediction and BPNN correction 
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Table 2 Error Analysis of Purdue Lin scheme prediction and BPNN correction 

 Pressure Temperature 

 MAE RMAE r MAE RMAE r 

Purdue Lin 1495.14 1.56% 0.775 1.41 0.49% 0.709 

BPNN corrected 85.65 0.09% 0.831 0.70 0.24% 0.900 

4. Conclusions  

An accurate prediction of icing meteorological environment, combining geographical features is a 

critical ingredient to the prediction of aircraft icing. In this paper, a numerical method to accurately 

predict icing meteorological parameters is established, by using the WRF pattern. Four microphysics 

schemes are evaluated to determine the optimal parameterization scheme. The results show that 

the Purdue Lin parameterization yielded superior performance in predicting both evolution tendency 

and numerical precision. Despite of distinct deviations of MAE and RMAE between the observed and 

simulated pressure, the Pearson correlation coefficients of pressure and temperature by Purdue Lin 

scheme reaches up to 0.806 and 0.845, which mean statistically strong correlation. The BP neural 

network based on the deviation of observed and predicted icing parameters is established. The icing 

meteorological parameters corrected by the constructed BP neural network are better consistence 

with observed values than values directly predicted by WRF with the Purdue Lin scheme. The MAEs 

of corrected pressure and temperature are dramatically decreasing. The statistical correlations 

between the observed and corrected values of icing meteorological parameters get further 

strengthened. This paper is the preliminary work of aircraft icing rapid prediction and aims to provide 

precise input data for follow-up aircraft icing numerical prediction. 
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