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Abstract

This paper investigates the midcourse guidance problem for velocity maximization with constrained arrival
angle and proposes a learning-based guidance algorithm to solve this problem. A full-envelope training set
is first constructed by optimal state-action pairs generated by nonlinear programming (NLP) software. Then,
the deep neural network (DNN) is trained based on the training set by supervised learning approach. With the
well-trained DNN, optimal guidance command can be directly generated in accordance with the current states.
To improve the transportability of the trained DNN, transfer learning is also used to improve the generalizability
and adaptivity of the proposed algorithm. Compared with the computationally-expensive NLP algorithms, the
proposed approach requires less computational power hence is more convenient for online implementation.
Extensive numerical simulations are conducted to support the proposed algorithm.
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1. Introduction
The main objective of the midcourse phase is to guide the missile to approach the predicted handover
point (PHP) in the required time with favorable terminal constraints. Among all the constraints, the
final velocity and arrival angle are two key elements for the terminal guidance phase: high velocity
enables high survivability and kill-probability in the following terminal guidance phase, and proper
arrival angle can help attenuate the handover effect and guarantee target capture from the onboard
seeker [1, 2]. Therefore, maximizing the final velocity with angular constraint is a worthy goal for the
guidance law design of the midcourse phase.
Since the issue associated with velocity maximization is that one needs to consider state-dependent
gravitational and aerodynamic forces in problem formulation [3], the mathematical model of the
midcourse guidance is nonconvex and highly complicated, and finding the analytical solution is in-
tractable. Hence, NLP methods are usually leveraged to solve this problem. However, NLP methods
generally require iterative calculations to generate the optimal command at each time instant, which
is computationally inefficient for an embedded computer [4–6]. To improve the computational effi-
ciency, some researchers pursued suboptimal analytical guidance laws that maximize the terminal
velocity by simplifying the mathematical model [7, 8]. However, too much assumption might make
the simplified model unrealistic and unable for practical implementation. By ignoring the gravitational
force and using constant aerodynamic coefficients, the authors in [3] revealed that PNG with guid-
ance gain equal to three maximizes the velocity in the terminal guidance phase. However, it is known
that the duration of the midcourse phase is much longer than that of the terminal phase. This implies
that the gravity and dynamic aerodynamic coefficients pose larger influences on the flight speed, and
hence the traditional PNG is no longer optimal in terms of velocity maximization.
Thanks to the rapid development of artificial intelligence, there has been an increasing attention on
the learning-based algorithms in recent years. Different from the traditional model-centric approach,
the learning-based method is a data-centric approach and leverages machine-learning algorithms to
train a given agent to act properly based on adequate amount of training data. Since the training pro-
cess can be performed offline, a well-trained agent is able to generate near-optimal actions according



to its external inputs without consuming too much computational power, which is very practical for em-
bedded computer. The authors in [11] use deep learning approach to design guidance algorithm for
hypersonic vehicle in re-entry process. This method provides fairly high impact accuracy and requires
low computational power hence can be implemented online. The deep deterministic policy gradient
(DDPG) algorithm in deep reinforcement learning (DRL) is used in [12] to develop missile guidance
algorithm with minimum control effort. The authors in [13] uses DRL and feedback guidance methods
to achieve fuel-optimal landing on Mars. In [14], deep learning methods with policy network and value
function network are used to solve the orbit transfer problem of the spacecraft and proves that they
enable to solve this problem with high accuracy.
Motivated by the above observations, this paper proposes a learning-based approach to generate op-
timal guidance command rapidly to realize velocity maximization with constrained arrival angle. The
proposed guidance algorithm consists of two main functional blocks: offline training and online im-
plementation. Numerous trajectories to various possible PHPs for velocity maximization with angular
constraint are first optimized offline by NLP software to generate a complete training set enabling to
cover the flight envelope of the missile. Then, a deep neural network can be trained offline based on
the optimal state-action pairs of the training set by supervised learning approach. Note that the state
is the variable set characterizing the relationship between missile and PHP, and the action indicates
the guidance command. For online implementation, the well-trained DNN will be loaded into the on-
board computer and the optimal guidance command can be directly mapped from the current states.
Compared with the computationally-expensive NLP algorithms, the proposed approach requires less
computational power hence is more convenient for online implementation.
Note that, in practice, especially in design phase, the aerodynamic coefficients of the missile may
alter due to the modification of configuration and the original trained DNN is unsuitable for the new
situation. However, retraining a new DNN from scratch consumes too much time, which is inefficient
for guidance system design. To alleviate this issue, transfer learning is introduced to improve the
generalization ability of the proposed algorithm. By freezing part of layers of the original DNN and
retrain the remaining layers, the retraining process will significantly speed up, implying that a well-
trained DNN can be efficiently generalized to different aerodynamic models with consuming relatively
less time and computational power.
The reminder of the paper is organized as follows. Sec. 2.provides the mathematical model and
formulates the optimization problem. Sec. 3.introduces supervised learning approach with DNN and
leverages this method to recover the optimal behavior, followed by transfer learning to improve the
performance of DNN in Sec. 4.. Analysis and simulation results with these two different approaches
are also presented in Sec. 3.and Sec. 4., respectively. Finally, some conclusions are offered in Sec. 5..

2. Problem Formulation
This paper assumes the missile is equipped with well-developed autopilot that provides roll, pitch and
yaw stabilization so that the guidance command can be readily decoupled into vertical and horizontal
planes. Besides, the missile is assumed to be ideal point-mass model since the autopilot delay is
generally short and negligible in comparison with the time constant of the guidance loop.

2.1 Mathematical Model
Fig.1 depicts the mathematical model studied in this paper, where XOY is the inertial coordinate and
XbMYb is the body frame of the missile. The notations of M and N denote the missile and PHP,
respectively. The symbol of V represents the missile velocity. The variables of ϕ, and λ , α signify the
flight-path angle, line-of-sight (LOS) angle and angle of attack (AoA), respectively. And the lift drag
and thrust acting on the missile are denoted by L, D and T , respectively. The variable of m stands for
the mass and g is the gravitational acceleration.
The governing equations describing the midcourse guidance problem in the vertical plane can be
formulated as

ẋ =V cosϕ (1)
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Figure 1 – Definition of notations and symbols.

ẏ =V sinϕ (2)

ϕ̇ =
L+T sinα

mV
− gcosϕ

V
(3)

V̇ =
T cosα−D

m
−gsinϕ (4)

ṁ =− T
Isp

(5)

where Isp is the specific impulse and the gravitational acceleration g = 9.81m/s2.
Lift and drag forces can be expressed as

L =CLqS = (CLαα)qS (6)

D =CDqS = (CD0 +CDαα
2)qS (7)

where dynamic pressure q = 1
2 ρV 2, CL is the lift coefficient, CD is the drag coefficient and S is the

reference area. CLα represents the derivative of lift coefficient with respect to AoA, CD0 denotes
the parasite drag coefficient and CDα represents the induced drag coefficient. These aerodynamic
coefficients are functions of Mach number Ma and can be obtained from wind tunnel tests. The
required atmospheric density and local sonic speed can obtained with reference to the standard
atmosphere [15].

2.2 Optimization Problem
The objective of this paper is to maximize the final velocity Vf with the constraints of arrival angle
ϕ = ϕ f at a specific time t f . And, at the terminal time, the missile should arrive at the PHP with zero
miss distance. Thus, according to Eqs.(1)-(5), the optimization problem can be expressed as

min
α

J =−V 2(t f )

s.t. ẋ = f(x,α)

x(t0) = [x(t0),y(t0),ϕ(t0),V (t0),m(t0)]T

x(t f ) = [x(t f ),y(t f ),ϕ(t f )]
T

(8)

Where u = α is the control input and x = [x,y,ϕ,V,m]T is the system state. Since AoA is a small angle,
the relationship between α and latax command ac can be expressed as

α ≈ mac +mgcosϕ

qCLαS+T
(9)
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Note that the problem (8) is highly nonlinear and cannot be analytically solved. Hence, its optimal
solution can only be obtained by numerical methods.

3. Supervised Learning with DNN
This section introduces the supervised learning approach with DNN to realize velocity maximization
with constrained arrival angle for midcourse guidance. A training set covering the full-envelope flight
conditions is generated by NLP software. Then, two DNNs are trained with supervised learning
approach by two methods according to different types of guidance command. And the performance
of both DNNs are compared with numerical simulations to support the proposed guidance algorithm.

3.1 Generation of Training Data
3.1.1 Generating Optimal Trajectories
The initial conditions and terminal constraints of the midcourse guidance scenario are listed in Table
1. And the aerodynamic coefficients of the missile are shown in Table 2.

Table 1: Initial conditions and terminal
constraints

Parameter Value

Initial position, (x0,y0) (0m,0m)
Initial flight path angle, ϕ0 [45◦,60◦]
Initial velocity, V0 300m/s
Initial mass, m0 400kg
Final horizontal position, x f [5000m,30000m]
Final vertical position, y f 2000m
Final flight path angle, ϕ f −90◦

Final flight time, t f 0.0045s0 +15

Table 2: Aerodynamic coefficients and
derivatives

Ma CD0 CDα(rad−2) CLα(rad−1)

0.1 0.4298 20.9917 22.7206
0.2 0.4010 21.3565 22.6815
0.3 0.3968 21.6483 22.7522
0.4 0.4014 21.9583 22.7321
0.5 0.4016 22.0860 22.8496
0.6 0.4101 22.4690 23.1427
0.7 0.4229 23.0070 23.3920
0.8 0.4529 23.6362 23.7949
0.9 0.5546 21.0282 24.5455
1 0.6100 19.0345 25.4123

Where s0 is the range between missile and PHP at the initial time. The characteristic area of the
missile is S = 0.06m2 and the thrust is T = 2000N throughout the midcourse guidance. The specific
impulse Isp = 2500N · s/kg, and the AoA of the missile is limited to the range [−20◦,20◦]. Fitting nonlin-
ear relations using a DNN requires a large amount of training data to have good results, hence 15000
initial conditions (ϕ0,s0) are generated using the average distribution. Then 15000 corresponding
optimal control problems are solved by utilizing the well-known Gauss pseudospectral optimization
software (GPOPS). And the maximum error tolerance is set to be 1×10−8.

3.1.2 Sampling Optimal Trajectories
The massive data for training DNNs consists of state-action pairs are extracted from optimal trajec-
tories. This paper uses the discrete points directly as sampling points, which are generated from the
solving process of GPOPS. In detail, the core method of GPOPS for solving optimal control problems
is the pseudospectral method (PSM), which discretizes both the control and state variables over the
entire time range and then transforms them into NLP for solving. There are more discretization points
at locations where the parameters vary drastically to achieve the predetermined maximum tolerance
error, likewise, will result in more training data at these locations, which helps the DNN learn more
adequately. Fig.2 shows the sampling points on the angle of attack profile and the lateral acceleration
profile.

3.2 The Direct Method
The direct method means that the optimal control progress is done entirely by the DNN, i.e., let
the DNN learns the mapping between missile’s states s and the optimal lateral acceleration ac.
Therefore the input of the DNN is the state vector. The expression is s = [r,V,ϕ,λ ,ϕ0,s0]

T , where
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Figure 2 – Sampling points location

r =
√

(x− x f )2 +(y− y f )2 is the distance between the missile and the PHP. ϕ0 is the initial flight path
angle. s0 = x f − x0 is the horizontal distance between the launch point and PHP. The DNN called N1
in the direct method is a feedforward neural network with 3 hidden layers and 12 neurons per layer, as
shown in Fig.4. The first layer L(0) is the input layer with 6 neurons, the same number of dimensions
as s. L(1) to L(3) is the hidden layer. L(4) is the output layer. The former layer is fully connected to the
latter layer. The structure and internal calculations of N1 can be expressed as follows [14]:

N1 =N(s,ac) :


L(0)[s,ac]

L(i+1) = σi(WiL(i)+bi), ∀ i = 0,1,2,3

ac = L(4)

(10)

where Wi denotes the weight matrix and bi denotes the bias matrix, whose size is related to the
number of neurons in each layer. σi is the activation function that enables the DNN to fit the nonlinear
functions. All activation functions in this paper use tanh.

r
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Figure 4 – Structure of N1

However, the direct method has the obvious drawback that it is an open-loop control method. In
practice, model uncertainties and atmospheric disturbances can cause the missile to deviate from the
correct optimal trajectory. At this moment, the s that should be entered as N1 becomes s′, then N1 will
give the wrong control command with no way to correct it. According to Bellman’s optimality principle,
if a process is optimal, then the current strategy must be optimal for the current state. Therefore, the
error of guidance will keep accumulating. Based on this, the indirect method is proposed to overcome
this drawback.

5



3.3 The Indirect Method
There are two possible solutions to the shortcomings of the direct method: one is to add the state
vector s(t−1) or output a(t−1)

c of the previous moment to the input s(t) of the next moment, forming
a closed-loop control. The other is to combine DNNs with traditional guidance methods. With the
stability and mathematical guarantees of traditional methods, the open-loop characteristics of direct
methods can be compensated and the robustness will be better.
Inspired by the biased proportional navigation guidance (BPNG), a trajectory optimization method
combining BPNG and DNN is proposed, i.e., the indirect method. BPNG is generally used in the
terminal guidance process to ensure that the missile hits the target under certain angular constraints.
When the target is stationary, the expression for BPNG is given as follows [19]:

ac = NV λ̇ +
V (ϕ f −ϕ)−N(ϕ f −λ )

tgo
= NV λ̇ +ab = P+ab (11)

The meaning of each physical quantity in Eq.(11) is the same as that described in Fig.1. N is the
artificially set coefficient, usually from 2 to 6. ab is called bias acceleration. tgo is the remaining flight
time, the accuracy of the estimation of this value will directly affect the guidance effect of BPNG.
Although there are many estimation methods [20–22], the estimation of tgo is still difficult. Note that
the first term P = NV λ̇ in Eq.(11) guarantees final miss distance tends to zero; the second term
ensures arrival angle constraint. Therefore, a DNN identical to N1 called N2 is used to learn the
mapping relationship between ab and the state vector s, i.e., N2 = N(s,ab). Then the coefficient N is
fixed as 3 and P is calculated directly. Finally, P works together with N2 to output lateral acceleration
and control the missile to reach the PHP with maximum terminal velocity and specified arrival angle.
Note that in the midcourse guidance process, the angular velocity λ̇ of the line-of-sight angle cannot
be obtained directly from the onboard seeker, therefore it needs to be calculated using the following
equation:

λ̇ =
−V sin(ϕ−λ )

r
(12)

In general, the indirect method is to let N2 work together with the proportional navigation guidance to
complete the midcourse guidance, where N2 outputs the bias acceleration ab that is summed with P

as the lateral acceleration ac. The specific working process is shown in Fig.5. Even if there are errors
in the output of N2 due to external disturbances, the presence of P will offset part of the error to some
extent. Subsequent numerical simulations also prove this.

[ , ]bas

3V Bias Acceleration ba

Dynamical System

ca

GPOPS

s

Offline Training

Online Implementation

Figure 5 – Scheme of the indirect method
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3.4 Training of DNNs
Using the above method, a total of 5442627 optimal state-lateral acceleration pairs [s,ac] are obtained,
which are used as the data set D1 for training N1. The optimal control command ac in D1 are trans-
formed into ab according to Eq.(11) and used as the data set D2 for N2. 70% of the samples in the
dataset are used as the training set, 15% as the validation set, and 15% as the test set. Due to the
large order of magnitude difference between the data, normalization is required. Otherwise the train-
ing time will increase or the training is likely to fail. The normalization method used in this paper is as
follows, mapping data to (−1,1):

xnorm =
2

xmax− xmin
(x− xmin)−1 (13)

where xnorm represents the normalized data, xmax is the maximum value of the data set, and similarly,
xmin is the minimum value.
The loss function reflects how well the DNN fits the data and is also the optimization target of the
DNN during training. Mean square error (MSE) is generally used in the fitting problem, calculated as
follows:

MSE =
∑

N
i=1(u−u∗)2

N
(14)

where u is the predicted value of the DNN and u∗ is the target value.
The existing optimization algorithms are first-order optimization algorithms, represented by stochas-
tic gradient descent (SGD) and Adam. And second-order optimization algorithms, represented by
Levenberg-Marquardt algorithm (L-M) and conjugate gradient method (CG). The second-order opti-
mization algorithms additionally take into account the second-order derivative information. Therefore
they can adjust the parameters more accurately [23–25]. The numerical simulations reveal that the
convergence is faster using L-M for smaller networks like N1 and N2. Therefore DNNs are trained by
the L-M algorithm for 200 epochs. L-M uses the following expression to update the parameters:

xk+1 = xk− (JT J+µI)−1JT e (15)

where J is the Jacobi matrix of the error function, I is the identity matrix, e is the error vector. µ is
the trust-region radius and the initial value is 0.001. When the loss function decreases, let µ ′ = 0.1µ

so that the L-M algorithm is closer to the Newton method resulting in a faster convergence rate.
Otherwise µ ′ = 10µ.

3.5 Simulation Results
3.5.1 Performance of DNNs
The training histories of N1 and N2 are shown in Fig.6. It can be seen that DNNs converge very fast
using the L-M algorithm. Both mean square errors are very low at the end of training progresses.
The histograms of the error distribution of DNNs on the validation and test sets are shown in Fig.8.
To evaluate the performance of DNNs in midcourse guidance, 500 different initial conditions in the
range presented in Table 1 are randomly generated as the test conditions. Then, using the well-
trained N1 and N2 to complete the whole midcourse guidance process. Finally, the performances
are statistically measured in four aspects: horizontal distance error ∆x = |x f n− x∗| (the midcourse
guidance is considered to be finished when the vertical height y of the missile drops to 2km), final
velocity error ∆V = |Vf n−V ∗|, arrival angle error ∆ϕ = |ϕ f n−ϕ∗| and time error ∆t = |t f n− t∗|. The
superscript ∗ represents the optimal value and the subscript f n represents the final state value of the
missile under the control of DNNs. The mean, maximum, median, and standard deviation of the four
types of errors are shown in Tables 3. Since the difference between the performance of N1 and N2
cannot be seen from the pictures, only 20 simulations of N2 are selected to show in Fig.10.
It can be seen that both N1 and N2 can complete midcourse guidance. But the horizontal distance
error of the missile under control of N1 is much larger than that of N2. The two DNNs are very
close in velocity error, but N1 is slightly better than N2. The arrival angle error under control of N2
is slightly better than that of N1, but the time error is significantly larger than that of N1. Since ∆x is
larger for N1 and ∆t is larger for N2, more experiments are conducted to investigate these two errors.
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Figure 6 – Loss functions for N1 and N2

0

0.5

1

1.5

2

2.5

3

3.5

4

In
s
ta

n
c
e
s

10
6 Error Histogram with 20 Bins

-0
.0

0
7
6
6

-0
.0

0
6
7
2

-0
.0

0
5
7
7

-0
.0

0
4
8
3

-0
.0

0
3
8
8

-0
.0

0
2
9
4

-0
.0

0
1
9
9

-0
.0

0
1
0
5

-0
.0

0
0
1

0
.0

0
0
8
4
5

0
.0

0
1
7
9
1

0
.0

0
2
7
3
6

0
.0

0
3
6
8
1

0
.0

0
4
6
2
7

0
.0

0
5
5
7
2

0
.0

0
6
5
1
7

0
.0

0
7
4
6
3

0
.0

0
8
4
0
8

0
.0

0
9
3
5
3

0
.0

1
0
3

Errors = Targets - Outputs

Training

Validation

Test

Zero Error

(a) Error of N1

0

0.5

1

1.5

2

2.5

3

3.5

In
s
ta

n
c
e
s

10
6 Error Histogram with 20 Bins

-0
.0

0
9
8
4

-0
.0

0
8
6
6

-0
.0

0
7
4
7

-0
.0

0
6
2
9

-0
.0

0
5
1

-0
.0

0
3
9
2

-0
.0

0
2
7
3

-0
.0

0
1
5
5

-0
.0

0
0
3
6

0
.0

0
0
8
2
3

0
.0

0
2
0
0
8

0
.0

0
3
1
9
3

0
.0

0
4
3
7
8

0
.0

0
5
5
6
3

0
.0

0
6
7
4
8

0
.0

0
7
9
3
3

0
.0

0
9
1
1
8

0
.0

1
0
3

0
.0

1
1
4
9

0
.0

1
2
6
7

Errors = Targets - Outputs

Training

Validation

Test

Zero Error

(b) Error of N2

Figure 8 – Error histograms of N1 and N2

By making the distribution of ∆x and ∆t with s0, it is found that as s0 increases, the ∆x for N1 tends
to increase, while the ∆t for N2 also has a trend to increase, as shown in Fig.12. As discussed in
Chapter 3.2, using N1 for midcourse guidance, errors will accumulate with the total distance, leading
to a continuous decrease in the accuracy of missiles, which seriously affects the use of long-range
missiles in practice. Using N2 substantially reduces the horizontal distance error but the time error
also increases meanwhile. This shows that although N2 can correct for errors during flight, the
time error caused by the missile deviating from its optimal trajectory cannot be compensated for in
subsequent flights. This problem also exists in conventional methods. Therefore the indirect method
is effective. Its time error can be reduced by minimizing the prediction error of N2. While the prediction
error of N2 can be realized by increasing the size of the training set, optimizing the network structure,
and adjusting hyperparameters.

3.5.2 Robustness Analysis
Robustness describes a system’s ability to survive adverse situations. Therefore a reliable system
must have a high level of robustness. Although DNN-based optimal control methods have excellent
performance, the flight process is ideally noiseless. So the performances of N1 and N2 under noise
are tested as a measure of their robustness.
For the DNNs input s = [r, V, ϕ, λ , ϕ0, s0]

T , the last two parameters ϕ0 and s0 are initially given and
will not be disturbed during the flight. The first four parameters are measured and calculated by the
sensors and GPS. So there will be noise interference in actual use. The White Gaussian Noise is
added with mean 0 and standard deviation 0.5, 0.5, 0.005, 0.005 to the four parameters r, V , ϕ and

8



0 5 10 15 20 25 30

X(km)

0

2

4

6

8

10

12

Y
(k

m
)

Optimal Solution

DNN-2

(a) Trajectory

0 50 100 150

Time(s)

150

200

250

300

350

400

450

500

V
(m

/s
)

Optimal Solution

DNN-2

(b) Velocity

0 50 100 150

Time(s)

-100

-80

-60

-40

-20

0

20

40

60

fl
ig

h
tP

a
th

A
n
g
le

(d
e
g
)

Optimal Solution

DNN-2

(c) Flight path angle

0 50 100 150

Time(s)

-10

-8

-6

-4

-2

0

2

4

6

8

10

a
lp

h
a
(d

e
g
)

Optimal Solution

DNN-2

(d) Angle of attack

0 50 100 150

Time(s)

-35

-30

-25

-20

-15

-10

-5

0

5

10

a
c
(m

/s
2
)

Optimal Solution

DNN-2

(e) Lateral acceleration

0 50 100 150

Time(s)

-5

0

5

10

15

20

25

a
b
(m

/s
2
)

Optimal Solution

DNN-2

(f) Bias acceleration

Figure 10 – The midcourse guidance performance of N2
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Table 3 – The absolute errors of the two DNNs after the midcourse guidance

DNN Error Mean Max Median Standard Deviation

N1

∆x (m) 2.3638 10.5005 1.5304 2.1827
∆V (m/s) 0.1176 0.5069 9.2802×10−2 9.5298×10−2

∆ϕ(rad) 2.2218×10−3 1.0113×10−2 1.9481×10−3 1.7564×10−3

∆t (s) 2.1413×10−2 7.0500×10−2 1.9978×10−2 1.4635×10−2

N2

∆x(m) 1.4916×10−2 0.1482 6.7419×10−3 2.1154×10−2

∆V (m/s) 0.1563 0.8726 0.1292 0.1307
∆ϕ(rad) 1.8503×10−3 7.5579×10−3 1.4152×10−3 1.5307×10−3

∆t (s) 7.9789×10−2 0.8736 3.1015×10−2 0.1388
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Figure 12 – Distribution of errors with distance

λ , respectively. Then 500 test cases are randomly initialized to evaluate the performance of the two
DNNs under noise and the comparison results with the optimal solution are shown in Fig.14, where
the error is obtained by subtracting the optimal solution from the actual performance of the DNNs.
It can be seen that there is a considerable increase in the position error of N1 after adding noise,
indicating that the direct method is not very resistant to interference. However, excluding some indi-
vidual angular errors that are large, the last three errors are kept at a very small value. This indicates
that N1 can maintain the overall shape of the optimal trajectory, although it cannot correct the in-flight
errors. All four errors of N2 change very little after adding noise, indicating that the indirect method
is more resistant to interference than the direct method. The proportional guidance term P plays an
important role which can compensate the errors of the output of N2 to a large extent.
In general, both the direct method and the indirect method have certain anti-interference ability as
well as perform very well in the final velocity and arrival angle. However, for tasks requiring high
positional accuracy, the indirect method is much better than the direct method. On the contrary, for
tasks with high time accuracy requirements, it is better to choose the direct method.

4. Transfer Learning under Different Aerodynamic Coefficients
4.1 Deep Transfer Learning Overview
The performance of deep neural networks outside the scope of the training set is generally uncer-
tain. In practice, not only the noise, but also the DNN working environment or initial conditions may
change. For example, in the missile design phase, the aerodynamic parameters will change due to
the modification of the missile configuration, and the previously trained DNN will be unsuitable to the
current situation. Fig.15 shows the performance of DNNs after changing the aerodynamic parame-
ters in Table 2, which are increased by 10%. N1 deviates severely from the optimal solution with very
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Figure 14 – Performance of two DNNs under noise

large position errors (over 250m) and arrival angle errors (over 7deg). While N2 reaches the PHP
more accurately but has large errors in other parameters as well. The best way is to retrain the DNN,
but the production of a new training set and the learning process are quite time-consuming, which
can seriously slow down the design efficiency. And for more complex tasks, generating a training set
that encompasses all cases will become extremely huge [14]. Transfer learning can reduce training
samples and learning time by combining knowledge learned from previous tasks to new tasks, where
DNN-based transfer learning is called deep transfer learning (DTL). Its most notable application is in
the field of computer vision. Large networks require days to weeks of training time which ordinary
users cannot afford. DTL on these networks allows them to learn new classification tasks in a day.
Thus the advantages of DTL are obvious and significant.
A more precise definition of DTL is as follows: The domain D = {X,P(X)}, where X is the feature
space, P(X) is the edge probability distribution, and X = {x1, ...,xn} ∈ X. The task T = {y, f (x)},
consists of two parts: label space y and target prediction function f (x), which is a non-linear function
that reflected DNN. Next, given the source domain Ds and the learning task Ts, the target domain Dt

and the learning task Tt . DTL utilizes the knowledge in Ds and Ts to improve the predictive function
fT (·). Note that Ds = Dt and Ts = Tt do not hold simultaneously, and generally Ds is much larger than
Dt [26,27].
There are currently four categories of DTL:

• Instances-based. When there is some similarity between two tasks, the method assigns certain
weights to some instances in the source domain and utilizes them as part of the target domain.
The representative method is TrAdaBoost.

• Mapping-based. This method considers that the instances in the source and target domains
will be more similar when mapped to some new data space and transfer learning is performed
on this basis. The representative method is transfer component analysis (TCA).

• Network-based. This method retains the trained part of the network structure and parameters,
and trains on this basis to complete transfer learning. A method known as Fine-tune is widely
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Figure 15 – Performance of N1 and N2 with new aerodynamic coefficients

used in the field of computer vision. It enables very good transfer learning between two tasks
with similar data features [28].

• Adversarial-based. This method uses DNNs to extract features from two domains firstly and
then uses the generative adversarial network (GAN) to find migratable features between two
domains.

Changing the aerodynamic coefficients, the flight trajectory and optimal control profile of the missile
are similar to the previous shapes. This indicates a high similarity of midcourse guidance missions
with different aerodynamic coefficients. The Fine-tune method is chosen for DTL which considers
that the structure and parameters of the well-trained DNN contain the knowledge of the previous
task. Therefore some structure and parameters of the DNN are used as part of the new network and
are not involved in the subsequent back propagation process, i.e., the parameters in it are frozen and
only the rest are trained. The implementation of Fine-tune is shown in Fig.17.

4.2 Preparation for Deep Transfer Learning
All the aerodynamic coefficients in Table 2 are increased by 10% as a new task scenario. Using N1
and N2 from the previous chapter as the initial networks for DTL. We attempt all possibilities without
changing structures of the original networks, with a fixed number of layers from 0 to 3, using Fine-tune
for DTL respectively. The number of fixed layers is always counted from front to back, i.e., the fixed
layers must be in front of the free layers, otherwise, backpropagation is not available. Being fixed
means that the Wi and bi in these layers are no longer updated.
Then, 2000 initial conditions are randomly generated and solved the corresponding optimal control
problems by GPOPS. The optimal state-action pairs are extracted as in the previous chapter to form
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Figure 17 – Implementation of Fine-tune

Table 4 – Performance of N1 after transfer learning

Error
Fixed number

of layers
Mean Max Median Standard Deviation

∆x (m)

3 39.1595 78.0597 39.8762 21.9910
2 16.4219 77.6405 14.0368 11.6863
1 4.8678 25.1094 3.0978 5.0036
0 5.4615 51.6793 4.1743 6.3752

∆V (m/s)

3 8.9060 15.0183 9.2083 2.8790
2 0.1792 0.5486 0.1494 0.1340
1 0.1371 0.3637 0.1204 9.6052×10−2

0 9.3082×10−2 0.3158 7.8056×10−2 7.2538×10−2

∆ϕ (rad)

3 6.1871×10−3 1.7720×10−2 4.6691×10−3 5.0217×10−3

2 4.8114×10−3 1.5359×10−2 4.3848×10−3 3.2006×10−3

1 2.0876×10−3 5.7058×10−3 1.8368×10−3 1.3646×10−3

0 2.1257×10−3 1.0644×10−2 1.9517×10−3 1.6188×10−3

∆t (s)

3 0.1060 0.4408 9.8758×10−2 7.2904×10−2

2 8.2548×10−2 0.3204 6.7232×10−2 6.6772×10−2

1 3.8367×10−2 0.2592 3.5833×10−2 3.1030×10−2

0 3.0445×10−2 0.2092 2.8112×10−2 2.5597×10−2

a training set with a total of 717723 samples. The optimization algorithm uses Adam and the learning
rate is set to 0.0001, with 1000 epochs trained.

4.3 Simulation Results
4.3.1 Performance of DNNs
After training, 500 initial conditions are randomly generated for numerical simulations. The errors
between the simulation results and the optimal solution are shown in Table 4 and Table 5. A total of 8
networks are trained and tested, and these networks are denoted by N

(i)
1 and N

(i)
2 , with i representing

the fixed number of layers. Also to demonstrate the effectiveness of transfer learning, two brand new
DNNs (randomly initialized with all parameters) without fixing any parameters, using the same training
set and initial conditions for training and testing. It is found that the midcourse guidance results of the
new DNNs are far from the optimal solution, regardless of whether the direct or indirect method is
used. This indicates that the new DNNs cannot adequately learn the mapping relationship between
states and optimal actions at the size of the training set used for transfer learning.
It can be seen that N(1)

1 has the smallest position error and arrival angle error, and conversely N
(0)
1 has
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Table 5 – Performance of N2 after transfer learning

Error
Fixed number

of layers
Mean Max Median Standard Deviation

∆x (m)

3 5.5535×10−2 0.2235 4.0610×10−2 5.2726×10−2

2 3.6694×10−2 0.1556 2.5375×10−2 3.6728×10−2

1 2.6827×10−2 0.2498 1.3022×10−2 3.6085×10−2

0 1.4306×10−2 9.7927×10−2 6.6408×10−3 1.7571×10−2

∆V (m/s)

3 0.8291 3.6870 0.6645 0.6042
2 0.2927 0.9092 0.1861 0.2503
1 0.2376 1.0197 0.1951 0.2120
0 0.1650 0.5625 0.1599 0.1110

∆ϕ (rad)

3 6.0194×10−3 2.2771×10−2 5.3680×10−3 4.3127×10−3

2 4.5723×10−3 1.5008×10−2 4.3258×10−3 3.0499×10−3

1 3.0562×10−3 1.2350×10−2 2.5263×10−3 2.3292×10−3

0 1.9629×10−3 8.1339×10−3 1.2980×10−3 1.6473×10−3

∆t (s)

3 0.5541 3.2908 0.4118 0.6230
2 0.2286 0.9159 0.1275 0.2397
1 0.1689 1.0159 8.7714×10−2 0.2174
0 8.4987×10−2 0.5659 5.3646×10−2 0.1067

a smaller velocity error and time error. Overall, N(1)
1 outperforms N

(0)
1 because the position error is the

smallest and the other three errors are within acceptable limits. In contrast, the transfer learning of N2
presents a different result. As the number of training layers increases, the error gradually decreases.
N

(0)
2 reaches the minimum error and even performs comparably to N2. The training sets used in the

transfer learning of both DNNs are the same except for the different outputs, but the performance of
N1 after DTL is considerably worse than that of N2, probably because both DNNs are in underfitting
states under the current training data volume, but the special mechanism of the indirect method leads
to a good performance when the learning of N2 is not so adequate.
Numerical simulations demonstrate that DTL with Fine-tune is feasible and that DTL with N2 is more
practical and reliable. Therefore, whether using DNN for midcourse guidance or transfer learning,
the indirect method performs no worse than the direct method. Thus, it is necessary to study how to
combine DNN with existing methods, rather than giving the task to DNNs exclusively.

4.3.2 Robustness Analysis
DNNs are expected to be practically feasible after transfer learning, so it must be as robust as a
retrained network. Fig.18 shows the performance of N(1)

1 and N
(0)
2 before and after the addition of

noise. These tests are modeled after the method in Chapter 3., and the number of tests is still 500.
It can be seen that the N

(1)
1 , although performing well overall, has some cases of large errors. On

the contrary, N(0)
2 still manages to maintain very high accuracy. This result proves that the transfer

learning of N2 is more feasible and practical than that of N1.

4.3.3 Time consumption analysis
To demonstrate the real-time characteristics of DNN-based guidance and the effectiveness of transfer
learning, we counted the time consumed by the related work, displayed in Table 6. All simulations
are performed in Matlab 2020b and PyTorch 1.7.1, with a laptop using Intel i7-7700HQ processor
at 2.8 GHz and GTX1050Ti. It takes close to 2 hours to train a DNN that can accurately complete
midcourse guidance, but transfer learning takes less than 10 minutes, which is more than 10 times
faster than retraining a new DNN. When DNN works, it takes about 0.9 ms to generate an optimal
control instruction. Throughout this paper, our simulations use a time step of 0.05s, which is far from
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Figure 18 – Performance of two DNNs under noise

the response time of DNN. If a shorter time step is used, the accuracy of the guidance will be further
improved.

Table 6 – Performance of N2 after transfer learning

Tasks Approaches Time consumption

Training of N1 and N2 L-M, 200 epoch 110 min
Fine-tune (N(0)

1 and N
(0)
2 ) Adam, 1000 epoch 10 min

Fine-tune (N(0)
1 and N

(0)
2 ) L-M, 100 epoch 7 min

Solving the optimal control problem GPOPS Average 0.85 sec
N1 and N2 generate an optimal instruction / 0.0009 sec

5. Conclusion
This paper proposes a deep learning-based approach to solve the missile midcourse guidance prob-
lem for velocity maximization with a constrained arrival angle. A training set covering the full-envelope
conditions is first established by NLP software. Then, a supervised-learning approach is utilized to
train the DNN based on the training set. To improve the transportability of a trained DNN, trans-
fer learning is introduced to promote the adaptivity of the proposed algorithm. The main advantage
of the proposed approach lies in its ability of generating optimal behaviors with requiring relatively
lower computational power, which is suitable for practical implementation. Numerical simulations are
performed to support the proposed algorithm.
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