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Abstract 

Due to the small load and the limited energy supply ice accretion on the unmanned aerial vehicles 

(UAVs) has limited the UAVs flight in good weather conditions. To take advantage of the energy of 

the UAVs as the anti/de-icing energy source may improve the UAVs application. The engine exhaust 

has a potential as a hot air source used for the anti-icing system. The hot air anti-icing chamber is 

designed and optimized. The most critical in-flight icing conditions is identified and the basic hot air 

anti-icing chamber is designed. The location of the piccolo tube, the angle between the jet holes are 

set as the design variables. The optimized latin hypercubic sampling (OLHS) is utilized and the 

numerical simulations are conducted. The surrogate model is built based on the proper orthogonal 

decomposition (POD) and Kriging interpolation. The hot air anti-icing chamber is optimized with the 

genetic algorithm (GA). The methodology can greatly reduce the time cost of the optimization and 

successfully results in optimal configurations of the anti-icing chamber. 
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1. Introduction

When the aircrafts fly through the cloud which contains the supercooled droplets, ice accretion may 

occur on the wing surface, the windshield and the inlet of the engines, etc. Aircraft icing has been 

considered as one of the most serious hazards to impact flight safety since early in the development 

of aviation [1]. Although many efforts have been made to solve the icing problems over the past 

decades, ice accretion on aircraft is still a big threat to flight safety [2]. The statistics from the National 

Transportation Safety Board (NTSB) shows that from June 1, 1982 to December 31, 2019, a total of 

2,833 icing-related accidents occurred, including 2,362 deaths, 652 serious injuries and 922 minor 

injuries [3]. The anti/de-icing system of the transport aircraft has been developing for a long time and 

can keep the aircraft from accidents to a large extent. However, with the development of the 

unmanned aerial vehicles (UAVs), ice accretion poses greater challenges to the design of UAVs’ 

anti-icing systems.  

In recent years, UAVs play an important role in many fields, such as military investigations, sea ice 

monitoring [4-5], ship-based iceberg detection [6], search and rescue [7-8] and icing detection on 

wind turbines or power lines [9-10], etc. However, the icing imposes restrictions on the application 

of the UAVs. Literatures note that during the Kosovo War the U.S. Army’s UAVs were grounded from 

October to April of the following year, precisely because UAVs were prone to freezing during this 

period [11]. UAVs have a smaller load and provide less energy for the use of anti/de-icing. Comparing 

with the conventional transport aircraft, there are some differences between the UAVs and the 

transport aircraft: the speed of the UAVs is lower, the scale of the UAVs is smaller and the energy 

resource used for the anti-icing is limited. However, the temperature of the engine exhaust is about 

600 ℃。Therefore, the engine exhaust has a potential as a hot air resource used for the anti-icing 

system. 



In the conventional transport aircraft the hot-air anti-icing system is mounted on the leading edge of 

wing [12-13]. The hot air is introduced from the compressor of the engine and ejects from the jet 

holes which are located on the piccolo tube. Hot air anti-icing/de-icing system utilizes the 

impingement jet to transfer heat from the hot air to the inner concave skin of the aircraft. 

Many researches has focused on the hot air anti-icing system and impingement jet. Mattos [14], Liu 

[15] numerically simulated the heat transfer in the anti-icing chamber of the wing. Papadakis [16], 

Santos [17] experimentally and numerically studied the geometrical and operational parameters of 

hot air anti-icing system and the results indicated that the anti-icing performance is sensitive to the 

hole patterns of piccolo and the position of the piccolo related to the leading edge. Yang [18] 

experimentally and numerically investigated the heat transfer of impingement jet in an airfoil of NACA 

0015. Wright [19] evaluated the applicability of the correlations added to the LEWICE, an icing 

accretion software, to simulate heat transfer of the hot air anti-icing system. Fregeau [20][21] 

numerically investigated the impingement jet on a 3D concave surface and studied the effects of 

pitch between the jet holes, the distance from the jet hole to the surface and Reynolds number on 

heat transfer. However, the researches mostly related to the hot air from the compressor of the 

engine. The temperature is relative low compared with the engine exhaust. To investigation of the 

engine exhaust as the hot air resource of the anti-icing system of the UAV may help improve the 

UAVs’ application in the icing conditions. 

In the present paper the exhaust gas of the engine is used as the heat resource of the hot air anti-

icing system. The basic configuration of the hot air anti-icing chamber is designed. The location of 

the piccolo tube, the angle between the jet holes are set as the design variables. The numerical 

simulations are conducted with the optimized latin hypercubic sampling (OLHS). The wall 

temperature of each simulation is extracted. With the proper orthogonal decomposition (POD) and 

the Kriging interpolation, the surrogate model is established. The genetic algorithm is used to search 

the optimal configuration. 

2. Method procedure 

Figure 1 illustrates the basic flow chart of the present paper. First the most critical icing condition is 

identified and the basic anti-icing chamber configuration is designed. With the OLHS the three design 

variables are sampled. Based on the validation cases, the numerical simulations are validated and 

conducted. Then the wall temperature distributions of the each configurations are extracted. The 

POD and the Kriging interpolation are used to build the surrogate model. Finally, the optimal 

configuration is obtained with the GA. 
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Figure 1 - Optimization methodology diagram  

 



2.1 Optimized latin hypercubic sampling (OLHS)  

Latin hypercubic sampling (LHS) is a stratified sampling method that was first proposed by McKay 

et al [22]. Compared with the simple random sampling method, LHS guarantees equal coverage of 

the cumulative probability range using non-overlapping sampling intervals and sample data in each 

interval. Thereby the LHS has good space-filling properties on any single dimension. However, it 

may have bad space-filling properties over the whole sampling space when it is randomly selected 

[23]. OLHS is a method that introduce an optimal criterion into the LHS process, selects the optimal 

Latin hypercube design on this criteria and then samples randomly based on this Latin hypercube 

design [24]. In the Optimal Latin hypercube technique the design space for each factor is divided 

uniformly (the same number of divisions, n, for all factors). These levels are randomly combined to 

generate a random Latin hypercube as the initial design matrix with n points (each level of a factor 

studies only once). An optimization process is applied to the initial random Latin Hypercube design 

matrix. By swapping the order of two factor levels in a column of the matrix, a new matrix is generated 

and the new overall spacing of points is evaluated. The goal of this optimization process is to design 

a matrix where the points spread as evenly as possible within the design space defined by the lower 

and upper level of each factor. One widely used optimality criterion is the maximin distance criterion 

if it maximizes the minimum inter-site distance [25]: 
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Morris and Mitchell [26] proposed an intuitively appealing extension of the maximin distance criterion. 

For a given design, by sorting all the inter-sited distance di,j, a distance list (d1, d2…ds) and an index 

list (J1, J2 … Js) can be obtained, where di is distinct distance value with d1＜d2＜…＜ds, Ji is the 

number of pairs of sites in the design separated by di, and s is the number of distinct distance values. 

A design is called a p  optimal design if it minimizes: 
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where p is a positive integer. With a very large p the p  criterion is equivalent to the maximin distance 

criterion. 

2.2 Proper orthogonal decomposition (POD) 

Reduced-order modelling, such as POD, has already been applied in the field of CFD [27-28] and is 

increasing in popularity, especially in the context of CFD-based optimization. POD seeks to 

reconstruct an intermediate solution from a set of previously computed solutions or snapshots. Any 

snapshot can be decomposed as a linear combination of basis functions and associated coefficients: 
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The basis functions or eigenfunctions are extracted from the eigenvalue problem associated to the 

cross-correlation matrix related to the combined snapshots. As the vector space spanned by the 



basis functions is orthonormal by definition, each coefficient is simply the dot-product of the 

corresponding eigenfunction with the snapshot itself. The target solution is also expressed as a linear 

combination of the basis functions: 
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2.3 Kriging interpolation 

Kriging is a method of interpolation for which the interpolated values are modeled by a Gaussian 

process governed by prior covariance. Under suitable assumptions on the priors, Kriging gives the 

best linear unbiased prediction of the intermediate values. Kriging combine a global model plus 

localized departures: 

( ) ( ) ( )y x f x Z x                                                             (6) 

where ( )y x  is the unknown function of interest, ( )f x  is the known approximation function and ( )Z x  

is the realization of a stochastic process with mean zero, variance 
2  and nonzero covariance. The 

( )f x  provides a global model of the design space. While ( )f x  globally approximates the design 

space, ( )Z x  creates localized deviations so that the Kriging model interpolates the sampled data 

points. The covariance matrix of ( )Z x  is given by the following equation: 

2[ ( ), ( )] ([ ( , )])i j i jCov Z x Z x R R x x                                               (7) 

R is the correlation matrix, and ( , )i jR x x  is the correlation function between any two of the sampled 

data points ix  and jx . R is a symmetric matrix with ones along the diagonal. ( , )i jR x x  is the Gaussian 

correlation function: 
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where k  are the unknown correlation parameters used to fit the model and 
i
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where y is the column vector that contains the sample values of the response, and f is a column 

vector that is filled with ones when ( )f x  is taken as a constant. Tr  is the correlation vector between 

an untried x and the sampled data points {x1, x2 … xns}. 
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The estimate of the variance 2


 is estimated by  
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where ( )f x  is assumed to be the constant 


. The maximum likelihood estimates for the k  used 

to fit a Kriging model are obtained by solving following equation: 
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where both 2


 and R are functions of k . While any value for the k  creates an interpolative 

kriging model, the best kriging model is found by solving the k-dimensional unconstrained nonlinear 

optimization problem given by equation (13). 

2.4 Genetic algorithms (GA) 

In computer science and operations research, a genetic algorithm (GA) is a method inspired by the 

process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic 

algorithms are commonly used to generate high-quality solutions to optimization and search 

problems by relying on biologically inspired operators such as mutation, crossover and selection [29]. 

In a genetic algorithm, a population of candidate solutions (called individuals, creatures, or 

phenotypes) to an optimization problem is evolved toward better solutions. Each candidate solution 

has a set of properties which can be mutated and altered. The evolution usually starts from a 

population of randomly generated individuals, and is an iterative process, with the population in each 

iteration called a generation. In each generation, the fitness of every individual in the population is 

evaluated; the fitness is usually the value of the objective function in the optimization problem being 

solved. The more fit individuals are stochastically selected from the current population, and each 

individual's genome is modified to form a new generation. The new generation of candidate solutions 

is then used in the next iteration of the algorithm. The algorithm terminates when either a maximum 

number of generations has been produced, or a satisfactory fitness level has been reached for the 

population. The present paper uses the GA in the matlab optimization toolbox to find the optimal 

configuration. 

In the present paper the GA module was configured in the following manner. The reproduction 

method relies on a single point cross-over fraction of 80% (thus a 20% mutation rate) and an elite 

count of two. The population size is 30 for the three design variables. No subpopulations were used 

and the number of generations was set to 50. Thus a GA population of 30 individuals for 50 

generations leads to 1500 evaluations and 1500 associated computations. The Papadakis [30] 

indicates that to achieve an full evaporation the wall temperature needs to exceed 322.15K。

Therefore，the objective function would be to maximize the average value of the wall temperature. 

3. Numerical simulation  

3.1 Governing equations 

The governing equations include the mass, momentum and energy conservation equations, as 

shown as follows: 
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where   is the air density, iu  is the air speed; 
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where P is the pressure, Sij  is the stress tensor and 
' '

u ui j  is the turbulent stress tensor; 
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where ' '
uiT  is the turbulent heat flux. The SST -k   turbulence model is used to simulate the flow, 

which has been proved that the turbulence model can give a good result of the heat transfer of the 

impingement jets [31-33]. The turbulent kinetic energy k  and the turbulent dissipation rate 𝜔 can be 

obtained by the following equations: 
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where kG  is the generation term of turbulent kinetic energy due to the average velocity gradient, 

G  is the generation term of dissipation rate, k  and   are the effective diffusion of k  and   

respectively and kY  and Y  are the dissipation due to turbulence, respectively. The details of the 

SST k -𝜔 turbulence model can refer to Menter [34]. 

In this paper, the SIMPLE algorithm is used to solve the basic equations. The pressure, momentum, 

turbulent kinetic energy and energy terms are discretized in a second-order manner. The pressure 

and momentum relaxation is 0.4 and the convergence accuracy is set as 1e-5. 

3.2 Validation 

The HAARP (Hot Air Anti-icing Research Project) is dedicated to developing low-cost experimental 

methods for the evaluation of the hot air anti-icing systems, conducting the parameter studies of the 

hot air anti-icing systems and using commercial software to simulate the anti-icing system and 

validate experimental data to determine the usability of the commercial software in the design and 

the performance analysis of the hot air anti-icing systems [35-36]. The HAARP project has obtained 

rich achievements and the experimental conditions and results in the literature are relatively 

complete. Therefore, this paper adopts parts of the HAARP operating conditions for validation.  

The model of the HAARP project includes two parts: internal flow part and external flow part. The 

external flow part includes the airfoil and the wind tunnel. The internal flow part contains an anti-icing 

chamber with a piccolo tube. The model of the HAARP project is shown in the Figure 2 to Figure 5. 

Figure 2 is a schematic diagram of the external flow part and the grid; Figure 3 is a schematic diagram 

of the anti-icing chamber at the leading edge of the airfoil, in which two circular jet holes are arranged 

in the middle of the piccolo tube and the other two semicircular jet holes are arranged in the middle 

of the two ends of the piccolo tube. Figure 3 also shows three sections in the anti-icing chamber, 

which are section AA, BB, and CC, where AA section is the section in the chord direction at the 

center of the two jet holes which are located in the middle of the piccolo tube and BB section is the 

section in the chord direction at the one end of the piccolo tube, the CC section is the spanwise 

section at the center of the two semicircular jet hole at both ends of the piccolo tube. Figure 4 and 



Figure 5 are schematic diagrams of the grids at the AA and BB sections respectively and the grids 

in the jet impingement direction are refined. 

 

 
Figure 2 - Sketch of model and grid of 

external flow part of the HAARP project 
Figure 3 - Anti-icing chamber model and 

partial enlargement of the HAARP project 
 

  
Figure 4 - Grid sketch of the AA section Figure 5 - Grid sketch of the BB section 

The dry air condition of Run26 and the wet air condition of Run39 are chosen as the validation cases. 

The conditions of the two cases are nearly the same except that the Run39 is sprayed with the 

supercooled water droplets. The conditions of the Run26 and the Run39 are shown in Table 1 and 

the icing conditions of the Run39 are shown in Table 2. 

Table 1 - Boundary conditions of the validation cases 

 External Internal 

Inlet total pressure/Pa 99112 166508 

Inlet total temperature/K 268.15 463.15 

Outlet static pressure/Pa 96526 111350 

Turbulence intensity/% 1 4 

Hydraulic diameter/m 2.195 0.03175 

Angel of attack/° 3  

Table 2 - Icing conditions of Run39 

Parameters Values 

T/K 266.45 

MVD/μm 29 

LWC/(g/m³) 0.87 

The internal flow and external flow are calculated separately and the wall temperature distribution is 

obtained through internal and external coupling. The simulation is validated by comparing the 

temperature distribution of BB section with the experimental data in the literature The wall 



temperature distributions of the BB section are shown in Figure 6 and Figure 7. It can be seen that 

the highest temperature is at the stagnation point where the jet impinges directly and the temperature 

gradually decreases along the surface distance from the leading point. The Figure 6 and the Figure 

7 indicate that the numerical simulation results are in good agreement with the experimental results. 

 

Figure 6 - Temperature distribution comparison of Run26 

 

Figure 7 - Temperature distribution comparison of Run39 

3.3 Model and sampling 

The heat transfer in the anti-icing chamber depends heavily on the distance between the jet hole 

and the leading edge and the angles between the jet holes. Therefore the ratio s/d and the angles 

are set as design variables. The s is the distance between the jet hole and the leading edge and the 

d is the diameter of the jet hole. The sketch diagram of the anti-icing chamber is showed in the Figure 

8. Figure 8 illustrates the basic configuration of hot air anti-icing chamber. The piccolo tube is located 

in the center of the chamber. And three rows jet holes are set on the piccolo tube. The two 

semicircular jet holes which are in the middle row are directly facing the leading edge of the wing. 

The area near the leading edge usually has a large droplets collection. The distance between the 

hole and the leading edge is s. The other rows of the jet holes are located in the two sides of the 

middle row. The angles between holes are 1  and 2  . In the present paper the two angles and the 

distance ratio s/d are set as design variables. The diameter of the piccolo tube and the jet holes are 

fixed. The distance ratio s/d s is in the range of 3-15, where the d is the diameter of the jet holes. 

The angle range is 0-45°. The design variables are illustrated in the Figure 9. 



With the OLHS, 30 configurations are numerically simulated. The 30 configurations is showed in the 

Table 3. 

Table 3 - The 30 configurations of the anti-icing chamber 

No. 1 2 3 4 5 6 7 8 9 10 

1  41.9 6.21 34.14 20.17 43.45 9.31 35.69 45 10.86 38.79 

2 6.21 12.41 43.45 41.9 32.59 3.1 4.66 21.72 45 13.97 

s/d 10.86 12.93 7.97 11.69 5.48 8.38 6.72 8.79 5.07 3.41 

No. 11 12 13 14 15 16 17 18 19 20 

1  3.1 18.62 4.66 24.83 32.59 40.34 26.38 21.72 31.03 15.52 

2 38.79 34.14 9.31 10.86 1.55 20.17 31.03 7.76 23.28 24.83 

s/d 10.03 7.55 4.24 9.62 14.17 13.34 15 4.66 6.31 3 

No. 21 22 23 24 25 26 27 28 29 30 

1  12.41 0 23.28 29.48 37.24 7.76 17.07 1.55 13.97 27.93 

2 26.38 17.07 15.52 27.93 40.34 35.69 0 29.48 18.62 37.24 

s/d 11.28 9.21 13.76 10.45 12.52 14.59 12.1 5.9 7.14 3.83 

4. Result and discussion  

The ice accretion on the UAVs is related to the flight conditions (angle of attack (AOA), velocity, 

height) and the icing conditions (mean volume diameter (MVD), liquid water content (LWC) and 

temperature (T)). Besides, MVD, LWC and temperature are related to the height and the droplets 

impingement property is related to the AOA and velocity. Zhao [11] noted that the holding condition 

is considered as one of the most critical icing condition for the maximum total catch rate. Therefore, 

the holding condition is set as the design point in the present paper. The Table 4 illustrates the icing 

and flight conditions in the holding condition.  

Table 4 - Icing and flight conditions 

LWC(g/m³) MVD(μm) T(K) Height(m) V(m/s) AOA(°) 

0.429 20 263.35 3000 100 0 

  

Figure 8 - The sketch diagram of the anti-icing 

chamber 

Figure 9 -  The sketch diagram of the design 

variables 



As the same in the validation cases, the external and the internal parts are simulated separately and 

the wall temperature is obtained with coupling. The temperature contours of case 20, 13, 28, 29, 22, 

11 and 27 and case 17 are shown in the Figure 10, corresponding to s/d of 3, 4.24, 5.9, 7.14, 9.21, 

10.03, 12 and 15, respectively. It can be seen that with the increase of s/d, the temperature of the 

area directly opposite the two semicircular jet holes on the leading edge of the wing first increases 

and then decreases. This is because the heat transfer ability of the impingement jet has a strong 

relationship with the distance between the jet hole and the impinging wall. After the impinging jet 

flows out of the jet hole, the jet and the surrounding fluid are continuously mixed. The core of the jet, 

which is also called potential core area, decreases with the increase of the jet distance. At the same 

time, the overall turbulence of the jet increases gradually. The potential core area disappears when 

s/d is about 6 and the overall turbulence intensity increases to the maximum which leads to a strong 

heat transfer between the hot air and the wall. After that, with the increase of jet distance and the 

mixing of surrounding fluid the turbulence intensity of the jet decreases gradually and the heat 

transfer ability also decreases. 

  

a) Case20  b) Case 13 

 
 

c) Case28 d) Case29 

 
 

e) Case22 f) Case11 



  

g) Case27 h) Case17 

Figure 10 - The temperature contour with different configurations  

The wall temperature distributions of the 30 configurations are extracted to build the surrogated 

model. In the process of the POD, the basis functions are extracted from the eigenvalue problem 

associated to the cross-correlation matrix related to the combined snapshots. Solving the eigenvalue 

problem provides an eigenvalue-eigenvector pair for each mode, sorted form the highest to the 

lowest in terms of energy content, the principal features being contained into the most energetic 

modes. Thus, a few of modes (corresponding to a cumulative energy content of 99%) would usually 

suffice to obtain the target computed solution, decreasing to some extent the computational cost. 

Figure 11 illustrates the maximum error between POD prediction and the CFD results of the 30 

configuration. It can be seen that with the increase of eigenvalue, the maximum error decreases 

rapidly to a certain level. With the help of the first fifteen eigenvalues the maximum error can 

decrease to 5K. As a result, the present paper chooses the first fifteen eigenvalues to build the 

surrogated model. 

 

Figure 11 - The max error  with cumulative eigenvalues  

The optimum anti-icing chamber configuration is obtained with the GA. The optimum s/d is 4.5 and 

the optimum 1  and 2  are 38° and 37.92°, respectively. The average wall temperature is 333.9K. 

The whole process of the surrogated model optimization is about 5 hours, which is much less than 

the time in the numerical simulation. Figure 12 illustrate the wall temperature contour and the Figure 

13 illustrates the ice accretion of the wing in the holding condition in 5min. It can be seen that there 

is no ice accretion on the surface which indicates that the anti-icing system is effective and the 

exhaust gas of the UAVs can be used as the hot air resource for the anti-icing system. 



  

Figure 12 - Wall temperature contour of the 

optimum configuration 

Figure 13 - Ice accretion on the wing 

comparison with and without hot air anti-icing 

5. Conclusion  

The application of the UAVs are becoming more and more extensive in many fields. However the 

ice accretion poses a serious threat to the safe flight of the UAVs. To utilize the engine exhaust gas 

as the hot air resource for the anti-icing system provides a possible method for the anti-icing system 

of the UAVs. With the help of OLHS, numerical simulation, POD and Kriging interpolation the 

surrogated model of the hot air anti-icing chamber is built. The optimum configuration of anti-icing 

chamber is obtained with the GA. The method can reduce the time cost of the optimization greatly. 

In the present paper the objective function of the GA is chosen to maximize the average wall 

temperature. However, the droplets collection decreases with the distance from the stagnation. It 

means that the heat requirement is different along the surface of the wing. The objective function of 

the GA needs optimization further. This work will be added in the future work.  
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