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Abstract 

A method for calculation of dynamic response to gust and control surface excitations, which allows the inclusion 

of nonlinear terms such as nonlinear control laws, without the need to use rational function approximation, is 

presented. This method is based on characteristic responses obtained with frequency domain equations, which 

associated with Fourier transforms, can be used to calculate time domain dynamic responses via Duhamel 

Integrals. The Duhamel Integral method is demonstrated for a typical airfoil section with three degrees of 

freedom, making use of frequency domain equations and direct and inverse Fourier Transforms for the 

characteristic response computation. In addition, applications where this method presents advantages, such 

as in the application of non-linear control laws and analysis of Oscillatory Malfunction (OMF), are 

demonstrated. 
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1. Introduction 

The calculation of the aircraft's dynamic responses with respect to gust, excitation of control 

surfaces, failure of these surfaces, failure of the laws that control such surfaces and many other load 

cases are fundamental for the certification and safe operation of an aircraft. 

This process requires extensive time simulations based on the solution of the aeroelastic equations 

of motion and the sooner and faster this is done, the less need to adopt remedial measures, such 

as the application of load monitors, rework and resizing cycles. 

There are several methods for calculating these dynamic responses. Probably, the most common 

are procedures based on frequency domain formulations, which are used in commercial software 

such as NASTRAN [1] and ZAERO [2]. To obtain time domain responses, Fourier and inverse 

Fourier transforms can be used [3]. The main advantage of the Frequency Domain approach is that 

the aerodynamic force coefficients (AFC) are well described for an oscillating airfoil and can be 

obtained by established commercial software. However, the Frequency Domain approach does not 

allow the inclusion of non-linear terms, such as non-linear control laws for load alleviation, which 

may have significant impacts on the resulting loads and are increasingly common in the aeronautical 

industry. 
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One option to include non-linear terms is a state-space formulation of the aeroelastic equations of 

motion in the time-domain. This approach has several advantages on fight mechanics and 

aeroservoelastic design and analysis. However, the conversion of the aeroelastic motion equations 

to the time-domain requires the approximation of the aerodynamic force coefficients (AFC) with 

rational functions of the Laplace variable. There are several rational function approximation (RFA) 

methods [4] to fit the tabulated AFC with the ones calculated via RFA such as the Roger's term-by-

term approximation [5] and the Minimum-State method [6]. Still, these methods have disadvantages 

in accuracy and require careful adjustments because of the AFC approximation. In addition, they 

can add an excessive number of augmenting states due to the required lag terms, increasing the 

order of the state-space model substantially. 

Another difficulty encountered with this method is the approximation of the aerodynamic terms 

referring to gust inputs, which is especially challenging as it can not be done in the reduced 

frequencies due to the penetration component of the gust. These terms are necessary to calculate 

gust responses and design load alleviation control laws. An option to circumvent this problem is the 

hybrid approach [7], where the rational approximations are only applied to the generalized 

aerodynamic forces (GAFs) due to structural modes and control surface and the time domain 

generalized gust forces are obtained via inverse Fourier transform, thus avoiding the RFA of the 

GAF due to gust. 

As a result of these disadvantages, a recent trend is to return the aeroservoelastic analysis to the 

frequency axis [8], without the need to transform the unsteady aerodynamic models to the time-

domain, thus non-linear aeroservoelasticity problems can be solved by separating their linear and 

non-linear parts. This was done in [9], where the computation of dynamic response to discrete gust 

excitation with nonlinear control system effects, using Fourier transforms and Convolution Integrals 

in a three-stage process with several linear and non-linear control terms, was demonstrated. 

The approach presented in this work is based on characteristic responses obtained with a frequency 

domain model, which associated with Fourier transforms, can be used to calculate the dynamic 

responses via Duhamel Integrals.  

The advantage of this approach is that the system's response to any excitation can be described 

using characteristic behaviors obtained once in a commercial software. This can reduce the number 

of cases analyzed and the time needed for analysis, optimizing the use of licenses. Furthermore, 

these characteristic behaviors are calculated via a Frequency Domain formulation, thus avoiding the 

disadvantages of RFA.  

The control surface excitation can also have a dependence, linear on non-linear, on the system's 

response configuring a closed loop. In this way, the linear characteristic of the aeroelastic plant is 

used in its integration with non-linear control laws. 

The objective of this work is to demonstrate this methodology based on the Duhamel Integral in a 

typical airfoil section with a trailing edge control surface, as well as the applications where this 

method has advantages, such as in the application of non-linear control laws and analysis of 

Oscillatory Malfunction (OMF). 

2. Duhamel Integral Methodology 

As stated previously, the method based on the Duhamel Integral is capable of optimizing the time 
needed for analysis and the use of commercial software licenses. In addition, this methodology allows 
to take advantage of the linear characteristic of the aeroelastic system in the integration with non-
linear control laws. 

This is made possible due to the Superposition Principle, which states that for all linear systems (which 
is the case of the aeroelastic plant), the net response caused by two or more stimuli is the sum of the 
responses that would have been caused by each stimulus individually. 

The Duhamel Integral is the generalization of this principle and makes it possible to obtain the dynamic 
response of a system to any excitation through its characteristic behavior. This characteristic behavior 
could be the system’s impulse response or the step response for example. It can be demonstrated 
that if the characteristic behavior is specified in the form of a step response (S), the dynamic response 
to a given input (F) is described by Equation 1. 
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𝑥(𝑡) =  ∫ 𝐹(𝜏)𝑆′(𝑡 − 𝜏)𝑑𝜏
𝑡

0
     (1) 

Since both the input data and the characteristic response data are normally discretized over time, it 
is necessary to discretize the Equation 1, one of the discretized forms of Equation 1 is described in 
the Equation 2 [10]. 

𝑥(𝑖𝑖) =  𝐹(1)𝑆(𝑖𝑖) + ∑ (𝐹(𝑗𝑗 + 1) − 𝐹(𝑗𝑗))𝑆(𝑖𝑖 − (𝑗𝑗 + 1))𝑖𝑖−1
𝑗𝑗=1   (2) 

In this way, using the Duhamel Integral, the system's response to any excitation can be described 
using a characteristic behavior obtained once in a commercial software. This excitation can also have 
a dependence, linear or non-linear, on the system's response, configuring a closed loop.  

For a better representation, the flowchart presented on Figure 1 shows the methodology using the 
Duhamel Integral to calculate the dynamic response to gust and control surface excitation. Where δ 
is the control surface input, y is the system’s response at a given time step, which consists in the sum 
between the responses to gust and control surface excitations, and wG is a given gust velocity profile, 
e.g., ‘1-cos’ gust profile. 

 

 

Figure 1 – Duhamel integral methodology flowchart. 

 

3. Characteristic Responses for a Typical Airfoil Section 

Several commercial software in the aeronautical industry are capable of calculating the characteristic 
responses to gust and control surface excitation shown in Figure 1, this makes the methodology very 
practical for these applications.  

However, in this work, the objective is to demonstrate the methodology for the typical airfoil section 

with three degrees of freedom (DOFs) shown in Figure 2.  

 

 

Figure 2 – Typical airfoil section with 3 DOFs. 
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The equation of motion of this typical airfoil section in the frequency domain is given by Equation 3. 

−𝜔2[𝑀𝑠]{𝑥𝑠} + 𝑖𝜔[𝐵𝑠]{𝑥𝑠} + [𝐾𝑠]{𝑥𝑠} − 𝜔2[𝑀𝛿]{𝛿} = 

= 𝑞∞[𝑄(𝑉∞, 𝜔)]{𝑥𝑠} + 𝑞∞[𝑄𝛿(𝑉∞, 𝜔)]{𝛿} + 𝑞∞[𝑄𝐺]
𝑤𝐺

𝑉∞
  (3) 

Where [𝑀𝑠], [𝐵𝑠] and [𝐾𝑠] are the system’s mass, damping and stiffness matrices, respectively. 

[𝑄(𝑉∞, 𝜔)] is the aerodynamic coefficient matrix, [𝑀𝛿] and [𝑄𝛿] are the inertia and aerodynamic 

control matrices, [𝑄𝐺] is the gust column, 𝑉∞ and 𝑞∞ are the free-stream airflow velocity and dynamic 

pressure and 𝑤𝐺 represents the gust vertical velocity. The development of the system’s matrices for 

a typical airfoil section with 3 DOFs can be found in [10] and [11]. 

In addition, the input {𝛿} is the control surface deflection and the column vector {𝑥𝑠} is the system’s 

response, which contains the 3 DOFs shown in Figure 2: the plunge (h), the pitch angle (α) and the 

control surface angle (β).  

The time domain characteristic responses are then calculated with the equations in the frequency 

domain, using Inverse and Direct Fourier Transforms. To check the accuracy of the Fourier 

Transforms, these responses are also validated with the ones obtained via time domain equations, 

which make use of rational function approximation (RFA). The process of obtaining these 

characteristic responses and the validation using the time domain model is described in the 

Flowchart of Figure 3.  

 

 

Figure 3 – Characteristic responses calculation for a typical airfoil section flowchart. 

 

Starting from the bottom of the flowchart, a step input in the control surface (δ(t)) is transformed to 

the frequency domain using a Fourier Transform. This frequency domain input (δ(ω)) is applied to 

the frequency domain model and the result is transformed back to the time domain using Inverse 

Fourier Transform. The result of this transformation is the time domain response to a control surface 

step input (Sδ(t)) which is validated with the time domain model. With the step response to δ in hands 

it is possible to calculate the typical airfoil section response to any input in the control surface, which 

can be arbitrary or given by a control law, using the Duhamel Integral. 

As for the upper part of the flowchart, the same process can be done, but this time with a step gust 

velocity profile (wG(t)), thus obtaining the characteristic response to gust (SG(t)). With that, the typical 

airfoil section response to any gust profile can be calculated using the Duhamel Integral. 

As shown in the flowchart, it is possible to rearrange the equation of motion (Equation 3) in order to 

obtain the state space Equation 4, used to calculate the response in the frequency domain. 

𝑖𝜔 [
{𝑥𝑠}

𝑖𝜔{𝑥𝑠}
] = [

0 𝐼
[𝐴21] [𝐴22]

] [
{𝑥𝑠}

𝑖𝜔{𝑥𝑠}
] + [

0 0
𝐵𝛿 𝐵𝐺

] [
𝛿

[𝑄𝐺]
𝑤𝐺

𝑉∞

]   (4) 
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As for the time domain, other procedures are necessary, such as rational function approximation, 

which will not be detailed here. In this way, the open loop state-space equation used to calculate the 

response in the time domain is Equation 5. 

{𝑋̇} = [𝐴]{𝑋} + [𝐵][𝑢]     (5) 

Where the {𝑋} column vector, contains not only the 3 coordinates of the system, but also ns*nl 

aerodynamic states generated in the rational function approximation. The variable ns being the 

number of structural modes, in this case 3, and nl is the number of lag terms used in the RFA. It is 

noteworthy that the number of structural modes grows a lot for practical applications, therefore the 

system order increases considerably using RFA. 

4. Open Loop Results 

4.1 Characteristic Responses 

As shown in the Flowchart of Figure 1, characteristic responses such as step responses to gust and 
control surface excitations are fundamental in the application of Duhamel Integral methodology. 

The characteristic response to a step control surface input is calculated in the frequency domain, 
using direct and inverse Fourier Transforms, and is validated with a time domain model, using the 
step MATLAB function as shown in the Figure 4. 

 

 

 

Figure 4 – Control surface step response validation. 

 

This coherent result validates the model in the frequency domain using Fast Fourier Transform 
tools. 
In addition, to calculate the response to an arbitrary gust velocity profile, it is also required the 

characteristic gust response. For this, the gust profile (wG) used in the Equation 4 is obtained via a 

Fourier Transform of the Heaviside function and δ is assumed to be zero. In this way, the step 

response to gust, obtained using the inverse Fourier Transform on ({xs}) of Equation 4, is presented 

on Figure 5. 
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Figure 5 – Step response to gust. 
 

4.2 Duhamel Integral Validation 

With possession of the step response to a control surface input it is possible to calculate the response 

to an arbitrary control surface input using the Duhamel Integral. To test the Duhamel Integral 

implementation, it is used a sinusoidal control surface input, presented in Figure 6.  

 

 

Figure 6 – Sinusoidal control surface input. 

 

The response to this sinusoidal input obtained via Duhamel Integral is compared with the one 

obtained with a time domain model, using the lsim MATLAB function as shown in the Figure 7. 
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Figure 7 – Response to control surface angle via Duhamel Integral validation. 

 

This coherent result validates the Duhamel Integral implementation. Therefore, one of the major 

objectives of the work, which is to calculate dynamic responses via the Duhamel Integral for a typical 

airfoil section with a trailing edge control surface, is achieved. 

4.3 Gust and Combined Responses 

With possession of the response to a step gust profile, shown in the Figure 5, it is also possible to 

calculate the response to a given gust profile, for example the '1-cos' profile shown in Figure 8, using 

the Duhamel Integral. 

 

 

Figure 8 – Gust profile. 

 

The response to this gust profile obtained with the Duhamel Integral is presented in Figure 9. 



8 

AEROELASTIC RESPONSE CALCULATION USING DUHAMEL INTEGRAL AND ITS APPLICATIONS 
 

 

 

 

Figure 9 – Response to ‘1-cos’ gust profile. 

 

The combined response consists of the sum of the gust and control surface responses presented on 

Figures 9 and 7. The combined response is shown in the Figure 10. 

 

 

Figure 10 – Open Loop combined response. 

 

The combined response is the one fed back into the control law, resulting in the control surface input 

used in the next time step. 

5. Active Control and Oscillatory Malfunction (OMF) 

Active control technologies such as gust load alleviation, flutter suppression, among others, are 

increasingly common and represent important tools in aircraft design. The effect of these tools must 

be taken into account in the analysis because they may have significant impacts on the resulting 
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loads.  

Because of that, the application of control techniques is demonstrated in the analysis via Duhamel 

Integral. As described in Figure 1, the control law receives the system response feedback as input. 

This feedback can be any measurable state of the system response or even a combination of them. 

As an output, the control law generates the deflection of the control surface to be applied in the next 

time step. The control law can be further optimized for any desired purpose, such as to minimize the 

load factor or maximize critical flutter speed, for an example. 

In the test case presented in this work, the pitch speed (𝛼̇) was chosen as the feedback variable and 

the control law parameters were optimized to reduce the plunge load factor. 

An advantage of the Duhamel Integral methodology is that nonlinear control terms can be easily 

included in the analysis. This non-linearity can be found either in the control law itself, including 

quadratic or cubic factors on the feedback variables for example, or even non-linearities associated 

with control surface deflection and actuation rate limitations. In addition, through this methodology, 

it is possible to take into account the system’s time history response in the control law. 

When talking about control techniques and their consideration in the resulting loads, one must also 

consider the flaws in this system. One of them, known as oscillatory malfunction (OMF), is a failure 

that can occur in the actuator or in the control law itself that causes the failed control surface to 

oscillate, which can cause a significant impact on loads. 

If this fault generates loads above the projected limit load of the structure, structural reinforcement 

is required, or deflection detectors must be installed to identify the failure and inform the pilots to 

disengage the failed surface. Both solutions can be very costly, and therefore, the earlier in the 

project and the faster these analyzes are made, the less the impact on the program and aircraft 

costs. 

In addition, these deflection detectors can only identify the failure with oscillation amplitudes above 

a certain level depending on their sensitivity. Therefore, an analysis to determine if the loads 

generated by a non-identified failure are below the projected limit load of the aircraft structure is also 

necessary. In this case, OMF analysis can be also used to define requisites to the oscillatory failure 

detection system. 

In the OMF analysis, the failure is modeled as a white noise in the deflection of the control surface 

that can be easily included in the analyzes via Duhamel Integral. Because of this, another great 

advantage of using the Duhamel integral methodology is the evaluation of the loads caused by OMF 

in a simple and fast way, as demonstrated in this work. 

It is worth mentioning that there are two types of OMF, in one of them, the failed surface is no longer 

controlled and by the control law, this type of failure will be here called a solid failure, and in the 

other, the failed surface is still being controlled and will be here called a liquid failure.  

6. Closed Loop Results 

As stated previously, the pitch velocity (𝛼̇) was chosen as the feedback variable and the control law 

was optimized to minimize the plunge load factor. Since we are using the Duahmel Integral, the 

control law can contain nonlinearities and, in this case, a cubic factor is applied to the feedback 

variable. The control law used in this example case with a proportional (linear) and a cubic (nonlinear) 

portion is demonstrated in the Equation 6. 

𝛿(𝑖𝑖 + 1) =  𝐾1𝛼̇(𝑖𝑖) + 𝐾2𝛼̇(𝑖𝑖)3           (6) 

The parameters K1 and K2 can be optimized to minimize the plunge load factor. For this the MATLAB 

fminsearch function is used and the objective function is defined as the norm of the load factor vector. 

An optimization surface, in which the parameters K1 and K2 are displayed in the x and y axes and 

the objective function is displayed on the z axis is shown in Figure 11. 
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Figure 11 – Optimization surface. 

 

Using the K1 and K2 values from the optimization, it is possible to compare the open loop to the 

closed loop response. This comparison made in terms of plunge load factor is represented in Figure 

12, which shows an expressive reduction on the load factor with the closed loop. 
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Figure 12 – Closed loop and open loop load factor comparison. 

 

6.1 Oscilatory Malfunction (OMF) 

Having presented the results with the integrated control law, it now remains to be evaluated the 

impacts to the load factor in case of a control system failure. The failure by OMF was modeled as a 

white noise (𝛿𝐹𝑎𝑖𝑙) and, in the case of a liquid failure, this noise is added to the command given by 

the control law, as shown in Equation 7. 

𝛿𝐿𝑖𝑞𝑢𝑖𝑑_𝑂𝑀𝐹(𝑖𝑖 + 1) =  𝐾1𝛼̇(𝑖𝑖) + 𝐾2𝛼̇(𝑖𝑖)3 + 𝛿𝐹𝑎𝑖𝑙(𝑖𝑖 + 1)    (7) 

 

In the case of a solid failure, the input in the control surface is equal to the white noise used to model 

the OMF excitation, as shown in Equation 8. 

𝛿𝑆𝑜𝑙𝑖𝑑_𝑂𝑀𝐹(𝑖𝑖 + 1) =  𝛿𝐹𝑎𝑖𝑙(𝑖𝑖 + 1)          (8) 

 

In practical cases, if it is desired to test whether a certain deflection detector is suitable, the white 

noise amplitude should be the minimum detectable amplitude by the failure detection system. Then, 

it should be evaluated whether the loads generated by this minimum detectable failure exceed the 

projected limit loads of the aircraft structure, if they do not exceed, the detection system is adequate.  

In the example case presented here, the white noise amplitude was assumed to be thirty times lower 

than the maximum control law command. The comparison between the closed loop systems excited 

by ‘1-cos’ gust with and without failure in terms of plunge load factor is presented in the Figure 13. 
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Figure 13 – Closed loop systems excited by gust with and without OMF. 

 

In another example, it is compared the liquid and the solid failures in terms of plunge load factor 
without the effect of gust as shown in Figure 14. 
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Figure 14 – Comparison between liquid and solid OMF. 

 

One could assume that the loads generated by solid OMF would envelope the ones generated by 

the liquid OMF and perform only solid OMF analysis, that are simpler since they do not require to 

integrate the control law, thinking it is a conservative approach. In the case presented, that would be 

a terrible mistake as it can be seen that the liquid failure was more severe than the solid failure. This 

happened because the control law, which is still active in the case of the liquid failure, was optimized 

to alleviate gust loads and, in this case, it even amplifies the loads generated by the OMF.  

To evaluate liquid OMF it is necessary integrate the control-law. If it has non-linear terms, it is 

fundamental to have a prepared tool for analysis. This example shows the importance to have 

analysis tools that are capable to integrate nonlinear control laws as is the case of the Duhamel 

Integral approach. 

7. Conclusion 

Using a typical airfoil section with a trailing edge control surface model, the characteristic responses 

to control surface and gust inputs are calculated in the frequency domain and transformed to the 

time domain using Fourier Transforms. Among them, the characteristic response to control surface 

input is compared with the one obtained via a time domain state space model, thus validating the 

Frequency Domain approach using direct and inverse Fourier Transforms. 

Then, these characteristic responses are utilized to calculate the response to a sinusoidal control 

surface input and the response to a '1-cos' gust profile via Duhamel Integrals. The response to a 

sinusoidal control surface input is compared with the one obtained via a time domain state space 

model, thus validating the Duhamel Integral implementation. 

In addition, a control law is integrated in order to minimize the load factor of the typical airfoil section. 

To do this, the system’s pitch velocity is chosen as the feedback variable, and the parameters of a 

non-linear control law are optimized to reduce the plunge load factor. In this way, comparing the 

open and closed loop dynamic responses, a significant reduction in the load factor is found. 

Regarding the relationship between control techniques and loads, a failure in the control system 

known as Oscillatory Malfunction is presented. This failure can be modeled as a white noise input 



14 

AEROELASTIC RESPONSE CALCULATION USING DUHAMEL INTEGRAL AND ITS APPLICATIONS 
 

 

for the control surface deflection. An Oscillatory Malfunction analysis for the typical section is then 

carried out, paralleling it with practical applications of this analysis. 

With that, the major objectives of the work, which are the calculation of dynamic responses via the 

Duhamel Integral and the demonstration of applications where this methodology presents 

advantages, such as the application of nonlinear control laws and OMF analysis, for a typical airfoil 

section, are achieved. 
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