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Abstract 

With the increase of flight speed, helicopter rotor aerodynamic environment becomes complicated. Transonic 

flow near the forward blade tip and reverse flow near the backward blade root occured at the same time. In 

order to estimate rotor aerodynamic performance, the CFD simulation around airfoils on various working 

conditions were carried out. First, transient flow simulations around NACA0012 airfoil were tested for various 

turbulence models at several working conditions (Ma number 0.28~0.8, angle of attack 10~20, 160~180). 

Results were compared with experimental values. It was found that the Realizable k-epsilon turbulence model 

was closer to the test than kkl omega turbulent model. The errors of the lift coefficient and drag coefficient 

were -46.7~56.3% and -66.2~27.5% respectively. Secondly, airfoils on the XH-59A helicopter rotor 

(NACA0026, NACA63-213, NACA63-218, NACA63-224 and NACA230125) were simulated in various working 

conditions. Finally, with the airfoil performance database provided, the rotor performance in advance ratio 

0.1~0.4 was obtained based on momentum blade element theory. 
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1. Introduction 

When a helicopter flies at a high advance ratio, the flow phenomenon is complicated, and the rotor will be 

affected by the reverse flow, see Figure 1. The higher the forward flight speed, the larger the reverse flow 

region and the more serious the stall problem. Therefore, the separation of airflow also limits the forward flight 

speed of the helicopter. 

Generally, flow across the airfoil from the leading edge to the trailing edge can be named as downstream. 

Instead, it across the trailing edge to the leading edge is named as reverse flow. In this situation, the flow at 

leading and trailing edges of the airfoil are more likely to separate, resulting in reduction of maximum lift, the 

resistance divergence angle of attack, and the increment of the stall angle of attack. The pitch moment changes 

sharply near the 0° angle of attack, and the aerodynamic characteristics are obviously inferior to downstream 

conditions. 
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Figure 1. Reverse flow region. 

Research on the reverse flow is quite limited. There is short of experimental data and simulation is inadequate. 

Ai [1] used the SA model in the Reynolds Average Model (RANS) and the SA-DDES model in the LES to 

calculate the flow field around the delta wing under multiple conditions, and verified that the SA-DDES was 

more accurate than the SA model. Zhou [2] proved that DES could better simulate the large-scale separation 

flow around a two-dimensional airfoil than the RANS method, and could simulate the flow field more detailed. 

However, in addition to the slight deviation of the calculation results of certain azimuth angles when the flow 

was separated, the results in other cases were basically the same. Therefore, the RANS method was adopted 

in this paper to save time and resources. 

Kong and Chen [3] took the H-34 rotor as an example. The influence of the reverse flow region on the rotor 

aerodynamic characteristics was calculated and analyzed under high advance ratio, and compared with wind 

tunnel test data.  

It can be seen that the performance of the airfoil in the reverse flow region is greatly affected by the selected 

turbulence model. It is necessary to select a suitable turbulence model through the CFD method to obtain more 

accurate aerodynamic performance. 

 

2. NACA0012 Airfoil Performance Simulation and Validation 

The NACA0012 airfoil wind tunnel test data [4] was applied for CFD model. ANSYS ICEM software was 

employed to create the mesh. In order to ensure the accuracy of calculation, when constructing the NACA0012 

airfoil model, the trailing edge of the airfoil was filleted first, the purpose was to calculate that the trailing edge 

was not prone to flow separation during the reverse flow. Yuan [5] verified the beneficial effect of the trailing 

edge rounding on the reverse flow characteristics. The model of NACA0012 airfoil fillet is shown in Figure 2. 
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Figure 2. The fillet of the trailing edge of the NACA0012 airfoil. 

The original airfoil chord length was 0.1m, with far field radius 20 times of the chord length. It would be scaled 

according to the chord length in various working conditions in Table 1. The grids division the leading edge and 

trailing edge of the airfoil, along chord direction and in radial direction were 340, 1000 and 101 respectively. 

The first boundary layer grid thickness of the airfoil was the 10-5 times of the chord length. The total number of 

grids was 2.7×105. The local meshes of the leading and trailing edges of the NACA0012 airfoil are shown in 

Figure 3. 

 

 

Figure 3. Local meshes of the leading and trailing edges of the NACA0012 airfoil. 

The wind tunnel experiment provided lift-drag coefficient or pressure coefficient of NACA0012 airfoil under 5 

working conditions. The representative data was selected for verification with corresponding working 

conditions shown in Table 1. 

Table 1. NACA0012 airfoil working conditions and performance  

Ma 0.28 0.3 0.8 0.82 0.82 

Re 3.47×106 3.72×106 9.92×106 10.17×106 3×106 

Chord length(m) 0.53297 0.53297 0.53287 0.53297 0.10625 

Angle of attack(°) 
10~30, 

160~180 
10~25, 

145~175 
10~25, 

145~175 
10~30, 

160~180 
-0.14 

Coefficient Cd Cl Cl Cd Cp 

Transient airflow models were developed by software FLUENT. K-kl-omega and Realizable k-epsilon turbulent 

models were compared, Turbulence viscosity ratio was set to 4. Density-based solution was applied and 

pressure far-field boundary condition were adopted. The unsteady equation was solved by a first-order implicit 

scheme, and flow was solved by a second-order upwind scheme. The time step was chosen as 1×10-4 s, and 

the number of internal iterations was set to 50. 
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The airfoil lift and drag coefficients at angles of attack of 10-20 (downstream) and 145-175 (reverse flow) 

were calculated. Results are compared with experimental data in Figure 4 and Figure 5. Detailed data are 

shown in Table 2. 

 

Figure 4. NACA0012 airfoil lift coefficient varies with the angle of attack. 

 

Figure 5. NACA0012 airfoil drag coefficient varies with angle of attack. 

The Table 2 also gives the relative error of each numerical calculation result based on the experimental value. 

According to Formula (1), the standard deviation of the numerical results was solved for the four sets of Ma 

number working conditions. 
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For simplicity, the experimental value is abbreviated as Exp, k-kl-omega is abbreviated as KKO, and Realizable 

k-epsilon is abbreviated as RKE.  

Figures 4 ~ 5 and Table 2 show that in the calculation of lift coefficient, the Realizable k-epsilon calculation 

result in the downstream region is closer to the experimental value. The error range is -19.2~34% (0.3Ma) and 

-46.7~4.5% (0.8Ma), the standard deviation is 0.228 (0.3Ma) and 0.271 (0.8Ma). The error range of k-kl-omega 

is 16.5~56.1% (0.3Ma) and 40.8~73.6% (0.8Ma), with standard deviations of 0.39 (0.3Ma) and 0.425 (0.8Ma). 

The calculation results of the two models in the reverse flow region are not much different.  

 

 

 

Ma=0.3 Ma=0.8 

Ma=0.28 Ma=0.82 
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Table 2. Aerodynamic performance results comparison of NACA0012 airfoil 

 

 

 

Ma=0.3 Ma=0.8 Ma=0.28 Ma=0.82 

Cl 

/relative error % 
Cd 

/relative error % 

 Exp KKO RKE Exp KKO RKE Exp KKO RKE Exp KKO RKE 

12 / / / 
0.822 

 
1.196 
/45.5 

0.438 
/-46.7 

/ / / 0.208 
0.304 
/46.2 

0.208 
/-0.4 

13 1.271 
1.481 
/16.5 

1.378 
/8.4 

0.817 
1.243 
/53.1 

0.478 
/-41.1 

0.033 
0.022 
/-33.6 

0.029 
/-10.5 

0.226 
0.338 
/49.3 

0.160 
/-29.3 

14 1.203 
1.500 
/24.7 

1.387 
/15.3 

0.801 
1.272 
/58.7 

0.508 
/-36.6 

0.092 
0.028 
/-70.0 

0.036 
/-60.8 

0.249 
0.381 
/52.8 

0.179 
/-28.1 

15 1.079 
1.490 
/38.1 

1.381 
/28.0 

0.786 
1.292 
/64.4 

0.533 
/-32.2 

0.141 
0.041 
/-70.7 

0.048 
/-66.2 

0.272 
0.410 
/50.9 

0.198 
/-27.0 

16 / / / 0.755 
1.198 
/58.6 

0.582 
/-23.0 

0.179 
0.069 
/-61.3 

0.087 
/-51.4 

0.303 
0.439 
/44.5 

0.227 
/-25.3 

17 0.928 
1.448 
/56.1 

1.244 
/34.0 

/ / / / / / / / / 

21 0.804 
1.240 
/54.2 

0.650 
/-19.2 

0.673 
1.168 
/73.6 

0.703 
/4.5 

0.326 
0.205 
/-37.0 

0.157 
/-51.9 

0.322 
0.496 
/54.6 

0.321 
/-0.3 

σ / 0.390 0.228 / 0.425 0.271 / 0.083 0.115 / 0.143 0.054 

147 -1.010 
-0.816 
/-19.2 

-1.200 
/18.8 

-1.005 
-0.868 
/-13.6 

-1.020 
/1.5 

/ / / / / / 

160 / / / / / / 0.304 
0.286 
/-6.0 

0.275 
/-9.6 

0.299 
0.363 
/21.4 

0.325 
/8.7 

161 -0.632 
-0.720 
/13.9 

-0.500 
/-20.9 

-0.634 
-0.813 
/30.3 

-0.975 
/56.3 

/ / / / / / 

165 / / / / / / 0.239 
0.200 
/-16.4 

0.175 
/-26.8 

0.245 
0.239 
/-2.3 

0.301 
/23.1 

170 / / / / / / 0.130 
0.094 
/-27.7 

0.080 
/-38.7 

0.131 
0.218 
/65.7 

0.168 
/27.5 

172 -0.784 
-0.431 
/-45.0 

-0.496 
/-36.8 

-0.789 
-0.730 
/-7.5 

-0.820 
/4.0 

/ / / / / / 

175 / / / / / / 0.054 
0.026 
/-52.3 

0.029 
/-47.1 

0.063 
0.070 
/10.2 

0.058 
/-8.5 

σ / 0.238 0.213 / 0.139 0.176 / 0.032 0.045 / 0.054 0.036 

In the calculation of the drag coefficient, the calculation results of the two turbulence models at 0.28Ma in the 

downstream region are not much different. However, the calculation accuracy of Realizable k-epsilon at 

0.82Ma is significantly higher than that of the k-kl-omega model, with standard deviations of 0.054 and 0.143, 

respectively. In addition, the calculation errors of the two models under the two working conditions of the 

reverse flow region are similar. It is concluded from the above analysis that the Realizable k-epsilon model is 

more accurate. 

Due to the consideration of airfoil transonic flow characteristics, local flow details are needed to verify the 

Angle 

( ) 
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experimental results. Therefore, it is necessary to verify the accuracy of the Realizable k-epsilon model in the 

airfoil pressure coefficient, and compare with the experimental data in literature [6]. In the experiment, the 

airfoil Mach number was 0.82, the Reynolds number was 3×106, the angle of attack was -0.14°, and the 

airfoil chord length was 106.25mm. Density base and unsteady settings were used for calculation in FLUENT. 

The result comparison is shown in Figure 6. 

 

Figure 6. Pressure coefficient varies with chord length of the NACA0012 airfoil. 

(Ma=0.82， Re=3×106，=-0.14°) 

Figure 6 shows that the airfoil pressure coefficient predicted by CFD is basically consistent with the 

experimental value, and the shock wave generation position is slightly earlier. The shock wave positions of the 

upper and lower wings obtained by CFD are 50.7%c and 51%c, and the experimental shock wave positions 

are 54%c and 54%c. The peak pressure coefficient is basically the same, with an error of 5.48%. 

The comparison of various data proves that the Realizable k-epsilon turbulence model has high accuracy and 

reliability in calculating the aerodynamic characteristics of the airfoil. Therefore, when predicting the airfoil of 

each section of the XH-59A rotor, choose to use Realizable k-epsilon turbulence model for calculation. 

 

3. Airfoils of XH-59A Helicopter Rotor Performance Simulation 

The appearance of the XH-59A helicopter rotor is shown in Figure 7. The rotor radius was 5.49m with blade 

torsion angle -10°. The 0.105 section adopted NACA0026 airfoil with a chord length of 0.16m. The 0.2 section 

adopted NACA63(230)-224A airfoil with a chord length of 0.5m. The 0.43 section adopted NACA63(230)-218A 

airfoil with a chord length of 0.45m. The 0.625 section adopted NACA63(230)-213A airfoil with a chord length 

of 0.39m. NACA23012 (64) airfoil was used from the 0.725 section to the blade tip, and the chord length was 

0.37m and 0.28m respectively. 

Because the modified airfoil shape was not available, the uncorrected airfoil was used instead (NACA0026, 

NACA63-213, NACA63-218, NACA63-224, NACA23012). The same method was used for the numerical 

simulation of 5 airfoils of 6 sections of XH-59A. The airfoil geometry model was also optimized with the fillet of 

the trailing edge, and the mesh was divided using the same parameters as the NACA0012 airfoil verification. 

The total number of grids was 2.7×105. 
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Figure 7. Sketch of the rotor blade. 

In order to simulate rotor aerodynamic force, the chord length of each section airfoil were selected according 

to the actual rotor. Four Mach number conditions of 0.2, 0.4, 0.6, 0.8 were chosen. There were 17 angles of 

attack within the range of 0~20°and 160~180°, which constituted a total of 408 working conditions. The 

working conditions parameters is shown in Table 3. 

Table 3. Mach number and Reynolds number for airfoil calculation conditions( Ma, Re in 106) 

Airfoil of different sections / Actual chord length(m) 

NACA 0026 

/0.16329 

NACA 63224 

/0.50292 

NACA 63218 

/0.45067 

NACA 63213 

/0.39188 

NACA 23012 

/0.36576 

NACA 23012 

/0.27759 

0.2 0.745 0.2 2.296 0.2 2.057 0.2 1.789 0.2 1.67 0.2 1.267 

0.4 1.491 0.4 4.591 0.4 4.114 0.4 3.578 0.4 3.339 0.4 2.534 

0.6 2.236 0.6 6.887 0.6 6.171 0.6 5.366 0.6 5.009 0.6 3.801 

0.8 2.981 0.8 9.183 0.8 8.229 0.8 7.155 0.8 6.678 0.8 5.068 

 

All working conditions of XH-59A were calculated using the batch processing method of FLUENT, and the 

unsteady calculation method was used. Similar solver setting were accepted with NACA0012 airfoils.  

Take the working condition of forward ratio =0.3 as an example, the aerodynamic force prediction of XH-59A 

rotor airfoils are shown in Figures 8~9. 
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Figure 8. Summary of the XH-59A rotor blade airfoils lift coefficients. 

 

Figure 9. Summary of the XH-59A rotor blade airfoils drag coefficients. 

The results were used to form a database for rotor thrust and torque prediction in helicopter forward flight. 

 

4. Rotor Aerodynamic Performance Prediction 

With the airfoil database generated, the neural network method was used to compile the MATLAB program to 

obtain the airfoil aerodynamic characteristics under other conditions by interpolation. Then the momentum 

blade element theory of the rotor in forward flight was developed to calculate the XH-59A rotor thrust, torque 

and power, under the working conditions of 0.1~0.4 advance ratio. This work will be present later on. 

5. Conclusion 
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Unsteady flow across the airfoils were carried out on NACA0012 airfoils under 5 working conditions using the 

Realizable k-epsilon and k-kl-omega turbulence models. Results were validated with experimental data. 

Simulation results show that Realizable k-epsilon model is more accurate than k-kl-omega turbulence models 

referring to experimental value. (I) For lift coefficient, in the downstream flow region, the former is more 

accurate. The error range is -19.2~34% (0.3Ma) and -46.7~4.5% (0.8Ma), the standard deviation is 0.228 

(0.3Ma) and 0.271 (0.8Ma). In the reverse flow region, the calculation results of the two models are not much 

different. (ii) For drag coefficient, in the downstream region, the calculation accuracy of Realizable k-epsilon at 

0.82Ma is significantly higher than that of the k-kl-omega model, with standard deviations of 0.054 and 0.143, 

respectively. The calculation results of the two turbulence models at 0.28Ma are not much different. In the 

reverse flow, the calculation errors of the two models under the two working conditions are similar. (iii) The 

airfoil pressure coefficient predicted by realizable k-epsilon is basically consistent with the experimental value, 

and the shock wave generation position is slightly earlier.  

Based on realizable k-epsilon model, the unsteady flow simulations around five airfoils on XH-59A rotor were 

carried out. Altogether 12 working conditions were completed with flow range in 0.2Ma~0.8Ma and attack angle 

-10~20 and 160~190. The aerodynamic performances of those airfoils serve as a  database for rotor thrust 

and torque prediction of the rotor for  helicopter forward flight. 

The XH-59A rotor thrust, torque and power, under 0.1~0.4 advance ratio in steady forward flight will be 

presented in the final paper. 
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