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Abstract 

Presented in this paper is an outline specification for a cloud-based collaborative aircraft design environment. 
It reflects particular industrial needs, such as capabilities required for remote workflow orchestration and design 
coordination. The architecture of the prototype application is presented along with initial implementation details 
of deploying commercial-off-the-shelf (COTS) cloud solutions. The usefulness of this prototype is evaluated 
with an aircraft sizing use-case and an airframe-engine design use-case. The former is utilized to test the 
cloud-based workflow orchestration capability while the latter is conducted to demonstrate remote design 
collaboration. The initial results are promising and indicate that the prototype application (employing COTS 
technologies and cloud providers) can be used to enable collaborative optimization studies between distributed 
design teams. 

Keywords: Cloud Computing, Aircraft Design, Distributed Design, Workflow Orchestration, Design 
Collaboration 

 

1. Introduction 
Aircraft design is a highly complex system engineering process, which involves the integration of 
major components and numerous sub-systems. In practice, the overall aircraft design problem can 
be decomposed hierarchically into sub-problems, conducted by different designers and domain 
experts. These designers/experts may belong to multiple departments or even separate 
organizations, which underlines the heterogeneous and distributed nature of the process and the 
associated computing resources. 
While traditional design collaboration relies heavily on workshops and review meetings, the rapid 
development of Information Technology (IT), has enabled extensive research on distributed 
(collaborative) design during the last three decades, with many collaborative design tools developed, 
especially in recent years. However, there remain a few challenges, related in particular to the 
utilization of the newly emerged cloud computing technologies: 1) There is still a lack of an integrated 
cloud-based tool for flexible orchestration of workflows and studies. 2) Current collaborative tools 
have been focused predominantly on the connections between models, while less attention has been 
paid to the interactions between designers. 3) Uncertainty regarding the risks and opportunities of 
deploying commercial-off-the-shelf cloud solutions in industry. These challenges have motivated the 
ongoing research for a cloud-based collaborative aircraft design environment as part of the COLIBRI 
project [1].  
In this paper, we will mainly address the first challenge, which can be further divided into the three 
objectives: The first objective is to propose an approach/architecture to share computational models 
and general engineering capabilities (e.g. workflow orchestration, optimization, visualization 
capabilities) remotely for geographically distributed companies/design teams. The second objective 
is to identify the corresponding technology stacks (e.g. web frameworks, development toolkits, and 
communication protocols) to implement the cloud-based design environment. The last objective is 
to test the feasibility of employing commercial-off-the-shelf cloud solutions. The outcome is a cloud-
based prototype application named “AirCADia Nebos”. This prototype will also be used as a platform 
to facilitate further research for tackling the other two challenges. 
The remaining part of the paper is structured as follows: Section 2 reviews the state-of-the-art of 
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cloud computing technologies, along with existing research on distributed and collaborative design. 
Section 3 presents the specification for the proposed cloud-based design environment. In Section 4, 
the prototype tool is demonstrated with an aircraft and engine design use-case. Finally, summary, 
conclusions, and future work are outlined in Section 5. 

2. State-of-the-Art 
This section presents the background and relevant research on cloud-based design environment. In 
Section 2.1, we will briefly review the basics concepts of cloud computing, along with some 
technologies corresponding to IT implementation. Section 2.2 reviews existing research on cloud-
based design methodology, tools, and applications. 

2.1 Terminology Definition 
2.1.1 Cloud Computing  
There is no single universally accepted definition of cloud computing. However, there is a 
consensus is that it delivers computing as a service on demand via the internet [2]. One of the 
rigorous definitions, adopted in this research is given by the U.S. National Institute of Standards and 
Technology (NIST) [3]: 
Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a 
shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released with minimal management effort or service 
provider interaction.  
Cloud computing releases the burden on an enterprise or organization to operate its own IT system, 
therefore reduces the total cost and enables the enterprise to focus more on its original business. 
For example, instead of purchasing and maintaining its own physical servers, an enterprise can 
employ remote virtual servers from cloud providers. In case of computing demand changes, the 
virtual servers can be rescaled dynamically, and the enterprise only needs to pay for what it has 
used. The more professional and centralized management from the service provider will also reduce 
the risk of server failure and data loss, as the virtual servers are normally distributed and redundant. 
 
2.1.2 Service, Service Oriented Architecture (SOA), Microservices, and Web Services: 
According to the World Wide Web Consortium (W3C), a service is defined as “abstract resource that 
represents a capability of performing tasks that represents a coherent functionality from the point of 
view of provider entities and requester entities” [4]. Within the context of cloud computing, there are 
three typical service models depending on the type of services provided [3], namely: Infrastructure 
as a Service (IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS). 
Based on the philosophy of considering capabilities as services, two related concepts are:  Service 
Oriented Architecture (SOA) and Microservices Architecture. Both concepts are architecture design 
styles which employ loosely coupled functional components to achieve an overall target. The 
difference is mainly in the scope of deployment [5]. 
SOA is an enterprise-wise concept [6], and can be defined as “a paradigm for organizing and 
utilizing distributed capabilities that may be under the control of different ownership domains” [7]. 
The services in SOA can be multiple independent applications or even more general entities which 
are beyond IT implementations (e.g., a business activity [8]). 
On the other hand, the microservices architecture is an application-wise concept, and can be 
regarded as an interpretation of SOA in the development of a single software. A microservice refers 
exclusively to a computer process which is designed to perform a single specific function and can 
be invoked separately. Within one application, microservices can be written in different languages 
and are loosely connected through Application Programming Interfaces (API). This distinguishes 
SOA from the monolithic architecture, where the components communicate via internal data 
structures and cannot be executed independently [9]. 
Finally, a web service is “a software system designed to support interoperable machine-to-machine 
interaction over a network” [4]. From this perspective, web service can be considered as a specific 
form of API using the web technology. One or more microservices can be deployed as a web 
service to expose their functionalities remotely. 
We use the term “microservice architecture” for single software implementation, while SOA is used 
in the context of a collaborative design project, because the latter involves multiple partners, design 
activities, and design (software) tools. 
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2.1.3 Application Programming Interface (API) 
As mentioned earlier, microservices are loosely connected through Application Programming 
Interface (API). Currently there are three major API options (for web services): Remote Procedure 
Call (RPC), Simple Object Access Protocol (SOAP), and Representational State Transfer (REST). 
All the three options can be operated with the HTTP protocol [10]. 
The RPC is a relatively old technology based on the client-server model. It was developed to extend 
local (program to program) procedure callings to remote addresses [11]. Compared with the other 
two options, it requires a tighter coupling between subsystems, therefore it has now been gradually 
replaced with the SOAP technology. SOAP is a protocol for transferring XML based messages. In 
general, a SOAP message consists of three parts: “an envelope that defines a framework for 
describing what is in a message and how to process it, a set of encoding rules for expressing 
instances of application-defined datatypes, and a convention for representing remote procedure 
calls and responses” [12]. REST is currently the most popular solution for building microservices-
based applications. Different from the former options, it is an API design style rather than a fixed 
standard. The central philosophy of REST is to employ HTTP commands (GET, POST, CREATE, 
READ, UPDATE, and DELETE) to handle resources, which are exposed with Uniform Resource 
Locators (URL) [13]. Compared with the other two options, it is light-weight, efficient, and flexible. 
 
2.1.4 Data communication 
Commonly used options for data communication between microservices include plain text files, 
comma-separated values (CSV), Extensible Markup Language (XML) [14], and Javascript Object 
Notation (JSON) [15].  
The plain text file is easy to create since it does not require any predefined structures. However, this 
may cause error and inconsistency during data exchange. In addition, it is less interpretable for a 
computer to extract useful information. For instance, to get the value of a variable, either the 
location is specified beforehand (which leads to low flexibility) or the file needs to be searched line 
by line with key words matching (which leads to low efficiency). The CSV format can be regarded as 
a text file with a very simple structure for tabular data (columns delimited using commas as indicated 
by its name). However, it cannot represent complex data structures such as functions, objects, and 
hierarchies, etc. To manipulate those data structures, the XML and JSON are widely used and very 
similar in their capabilities. Both these two formats have consistent syntaxes and hierarchical 
structures for data representation. While being effectively machine-interpretable, they are also 
convenient for humans to understand. Compared with JSON, XML has a few additional functions 
such as supporting namespace, accommodating more data types (e.g. images), etc. However, 
JSON is easy to generate and to process due to its simplicity. In addition, JSON is readily 
interpretable by JavaScript function, while XML needs to be parsed, which makes it less efficient in 
data transmission. As a result, although XML has a longer history, JSON is now used more often 
and is gradually replacing XML in practice. 
 
2.1.5 Database Management Systems (DBMS) and Object Relational Mappers (ORM) 
Database is the commonly used to store information over the cloud. A database is defined as “a 
shared collection of logically related data and its description, designed to meet the information 
needs of an organization”, while a Database Management Systems (DBMS) is defined as "a 
software system that enables users to define, create, maintain, and control access to the database." 
[16]. 
In general, a database and its corresponding DBMS can be classified as relational or non-relational. 
In a relational database, the data are structured as relations, where “a relation is physically 
represented as a table with columns and rows” [16]. The rigorous mathematical foundation was 
originally proposed in [17], known as the relational model, which also defined a series of relational 
algebra and calculus for data manipulation. In practice, these operations can be implemented via 
the Structured Query Language (SQL). There are various Relational Database Management 
Systems (RDBMS) options for back-end development in Python, such as SQL Server, Oracle 
Database, PostgreSQL, MySQL, SQLite, etc. 
The non-relational database, also referred to as a NoSQL (Not only SQL) database, does not 
require a predefined schema for data representation. Some sub-classes of this category include: 
Key-value, Graph, Document, and Object databases, etc. These databases are normally used for 
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unstructured contents, such as text, image, audio, and so on. The popular Non-Relational Database 
Management Systems (NRDBMS) options are MongoDB, CouchDB, Oracle NoSQL, Neo4J, etc. 
An Object-Relational Mapper (ORM) is “a code library that automate the transfer of data stored in 
relational database tables into objects” [18]. With an ORM, the developer can interact with the 
RDBMS using Python, instead of working with SQL which may be tedious. In addition, the ORM 
makes it easy for communication between different relational databases. For example, a developer 
could use SQLite for local development and MySQL in production without changing any code. There 
are various ORM implementations written in Python, including SQLAlchemy, The Django ORM, 
SQLObject etc. 
2.2 Cloud-based/Distributed Systems for Engineering Design 
Despite the extensive utilization of cloud computing for business purposes, research is still ongoing 
for its application in the field of engineering design, especially for aerospace developments. Existing 
literature can be categorized into three groups: cloud-based Computer Aid Design (CAD) systems, 
cloud-based High-Performance Computing (HPC) systems, general cloud-based design 
methodologies and systems for integration of tools/models. 
2.2.1 Cloud-based Computer Aid Design (CAD) systems 
Creation of component geometry plays an important role in (especially mechanical) engineering 
design. Therefore, much research has been devoted to development of cloud-based CAD systems 
[19–24]. These systems are commonly implemented as web-based applications using the client-
server architecture, where the client provides a user interface while the actual CAD software and 
other functional components are installed on a server [22]. 
In [19,20], multiple servers are used for web portal, application hosing, coordination, data storage, 
Graphics Processing Unit (GPU) rendering, and scientific calculation, respectively. The user is first 
connected to the web portal server, then redirected by the coordinator server to the requested CAD 
tools are installed on another machine. The data, GPU, and calculation server will provide relevant 
computing resources during the application execution., A Product Lifecycle Management (PLM) 
method enabling collaboration between legacy (native applications) users and cloud-based users is 
described in [21]. The process involves definition of a Unified Product Structure (UPS) and 
corresponding requirements over the cloud, while legacy users can add/modify parts at the authority 
of the administrator. This case study was implemented with Dassault Systemes 3D Experience [25] 
(representing the cloud platform) and CATIA V5 [26] (native application). Reported in [23,24] are 
several prototypes for multiple users to make changes simultaneously on a single part file 
implemented in a server. These prototypes were implemented by integrating some existing CAx 
software API libraries and additional Client-Server plugins. Methods were also proposed to 
decompose a single component geometry so that different designers can work on the same 
component. 
2.2.2 Cloud-based High-Performance Computing (HPC) systems 
Development of cloud-based HPC systems [27–31] are mainly motivated by high-fidelity and large-
scale simulations, such as Computational Fluid Dynamics (CFD) simulation of entire aircraft. These 
studies are computationally intensive, which demand hi-spec hardware resources such as 
supercomputer clusters. However, constructing and maintaining these supercomputer 
infrastructures is difficult and expensive, which requires remote sharing of HPC resources.  
In general, cloud-based HPC is achieved with virtualization technology, so that hi-spec hardware 
resources (along with simulation software) can be packaged and accessed remotely. For instance, 
Ren et. al. [29] developed virtualization-based simulation platform (VSIM) to support 
multidisciplinary design of complex products. This platform is composed of simulation resources 
layer, virtualization layer, simulation services layer, and simulation application layer. The simulation 
resources layer contains all the hardware (CPU, memory, data storage, etc.) and software 
(simulation tools, models, knowledge base, etc.) resources. The virtualization layer maps these 
resources into virtual machines templates, and manages them as a pool for calling from different 
domain-specific simulation. The simulation services layer encapsulates simulation functions into 
services under a SOA framework. It also contains modules for scheduling, monitoring, deployment 
of all the services, etc. Finally, the application layer provides the user interfaces and web portal as 
an integrated design environment. This platform was applied for virtual prototyping of an aircraft 
undercarriage system, which involves simulation models of aerodynamics, mechanical systems, 
hydraulic systems, and multi-body dynamics.  
Within this context, an induced problem is to optimize task schedule and resources allocation. Peng 
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et. al. [31] proposed a knowledge-based approach, in which a radial basis function neural network is 
trained to calculate the resource requirements (e.g., CPU frequency, disk size, etc.) according to the 
specification of a simulation task (e.g., software type, tenant size, etc.). 
2.2.3 General cloud-based design methodologies and systems 
Schaefer et. al. [32] proposed a conceptual model of Cloud-Based Design and Manufacture 
(CBDM), where the design and manufacture tasks are considered as services and delivered to 
different consumers in a crowd-sourcing paradigm. This process, as further defined by Wu et. al. 
[33], utilizes a search engine to receive requests for quotes (RFQs) from a consumer, then returns a 
list of candidate service providers, along with information such as prices, lead times, and quality 
level. The actual design process is then performed with Platform as a Service (PaaS) and Software 
as a Service (SaaS) tools, while the results (CAD models) are passed to on-demand manufacture 
websites such as 3dsystems.com [34]. 
A private cloud-based design environment, DMCloud, was developed as a prototype for 
demonstration and education purposes [35]. It employs the Moodle learning management system 
[36] as a centralized interfacing server (CIS) platform, which provides web-portals to CATIA V6 [26] 
and remote access to 3D printers and CNC milling machines, etc. It also integrates Google Doc [37] 
for information sharing and social networking tools such as chat rooms, forums, video conferences 
for design communication. 
Similar concepts can be found in the research of Virtual Enterprise (VE), which is defined as “a 
temporary relationship with two or more participants… formed, operated, and dissolved to 
accomplish specific short term goals” [38].  
While extensive research has been focused on the VE conceptual models [39,40], of particular 
interest to this research is the IT infrastructure which enables the design collaboration. For instance, 
in the VIVACE project [41], a Virtual Enterprise Collaboration Hub (VEC-Hub) was developed for 
information sharing and design integration between different project partners [42,43]. Within the 
context, local design systems are wrapped into web services and exposed to the VEC-Hub. The top 
level contains the portal services, which include management of access, security, and control over 
other services. These services are employed as user-interfaces to connect the hub with different 
partners. The core services are used to share product information, organizational roles, workflow, 
and reference data. Specifically, the product information includes, part, structures, documents, 
change proposals, and notifications, which are managed through PLCS /PLM web Services. The 
organizational roles are used for administrative purposes to ensure that resources are shared only 
between dedicated users. Workflow related services are used to create, edit, delete, start, monitor, 
and stop a remote workflow process. Finally, the reference data provide additional information on 
internal and external resources. A set of supplementary services are provided to handle request 
outside the core services. At the bottom of this architecture, is the data and infrastructure layer, 
which contains the networks, applications, and hardware for storing data and executing services. 
Communications between the infrastructure and services is through a messaging middleware layer, 
which employs Simple Object Access Protocol (SOAP) for transferring XML-based massages. 
A cloud-based platform for automatic workflow generation [44,45] was developed in the NASA 
Europa spacecraft project [46]. The platform consists of three main repositories: Modeling 
Management System (MMS), Mission Planning and Sequencing (MPS), and ModelCenter Cloud 
(MCC). The MMS stores the system model of the spacecraft, which defines its structure, 
requirements, behaviors, and some key parameters. The system model is defined in Systems 
Modeling Language (SysML) [47], created by dedicated system modelers using MagicDraw [48] and 
then synchronized with the MMS repository. The MPS repository stores time-dependent data for 
mission design. The MCC is part of the ModelCenter software [49]. This repository stores simulation 
files and results, and is connected to a workflow execution server. The simulation models are 
created in parallel by domain experts and then published to the MCC repository. The conversion 
from SysML to executable workflow is achieved by ModelCenter MBSEPak, which maps the SysML 
parametric diagrams to corresponding simulation models [50]. JSON and REST APIs are used for 
communication between different repositories, and between local and cloud applications. 
One recent advance in distributed design collaboration is the so-called AGILE paradigm [51–55]. 
This paradigm adopts the service-oriented architecture, where an engineering service is defined as: 
“a generically applicable software routine within an engineering domain, capable of automated 
handling of input and output data in a standardized format, which can be approached by other 
services via standard web or network technologies and ideally allows for batch execution without 
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requiring any intervention of the user” [55]. 
The implementation of the paradigm involves a set of specific participants and software, where the 
latter can be divided into two groups, namely the knowledge architecture [53] and the collaborative 
architecture [52]. 
Knowledge architecture is mainly used for definition of the design problem and construction of the 
workflow. For instance, a commercial web-based application named KE-chain [56], serves as a 
project management platform for hosting information of all the agents (participants) and design 
competences (models and tools). KADMOS is used for MDO formulation based on graph theory 
[57]. VISTOMS [58] is used for visualization of the MDO system. The output is an inexecutable 
“blueprint” of the automatic design process (workflow), which concludes the application of the 
knowledge architecture.  
The collaborative architecture handles the actual execution of the workflow and studies. This is 
achieved with two alternative applications: Optimus and RCE. The former is a commercial software, 
which also contains modules for various analysis and post-processing functions [59]. The latter is an 
open-source software with similar functionalities [60–62]. The RCE also allows hosting of 
engineering services on various dedicated servers connected by a relay server for remote 
accessing. As the workflow contains both local and remote design tools and models, a client-server 
process is applied. This process uses a technology named Brics, which contains protocols and 
middleware for notification of remote engineers and the exchange of data [63]. 
During the process, there are two software-independent schemas for data storage and exchange. 
The first one is a product schema called CPACS, which is a structured parametric model to 
represent the aircraft [64,65]. The second is a workflow schema named CMDOWS, which stores the 
non-executable problem formulation (e.g. the model connections, MDO solution strategy, etc.) [66]. 
Both schemas are open-sourced and based on Extensible Markup Language (XML).  
2.3 Discussion 
Following an extensive review of cloud computing technology and its recent applications in the field 
of engineering design it could be concluded that SOA is widely adopted in academic and industrial 
applications. Two common features could be identified: 1) distributed models and tools are 
considered as engineering services; 2) the remote execution of a model/tool follows the client-server 
paradigm. In general, many efforts have been devoted to CAD and HPC systems, while research on 
workflow orchestration and distributed design environment is still an area worth further exploration. 
Specifically: 

 There is still a lack of an integrated tool for orchestrating the workflow within the distributed 
design environment. For instance, the AIGILE paradigm relies on a collection of software 
and plug-ins to achieve the purposes. Although this setup provides more flexibility in 
configuring the design problem, it also leads to a complicated process, where specific 
integrators and collaborative engineers are required to perform the orchestration task.  

 The existing methods and tools have been focused on the connections between models, 
while less attention has been paid to the interactions between designers. However, the 
computational workflow should be more than just a push-button process. For instance, 
expert experience is very important in the setup of many design models and tools, and also 
for the inspection of the computational results. In addition, the designer should be involved 
when there is a need to perform a trade-off study, not necessarily at the end of the workflow 
execution, but also during the process, within each sub-design problem.  

 From implementation perspective, it is still not clear what would be the pros and cons of 
involving commercial-off-the-shelf cloud providers in the development of collaborative design 
environments. Using a third-party cloud bring security issues. However, it also provides a 
more flexible and cost-effective solution than deploying on-premises servers to host and 
execute design workflows. 

3. Proposed Approach 
3.1 Requirements Specification 
Following an extensive literature review summarized in the previous section and a dialogue with the 
industrial partners in the COLIBRI project, several major requirements for cloud-based collaborative 
(computational) design have been identified: 
• Remote execution: The cloud-based environment should facilitate remote model executions. 
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• Security: To protect intellectual property and external access to computational resources, the 
original developer should be able to deny irrelevant requests and be able to decide whether the 
model is stored locally or in the cloud.  
• Automatic sequencing: The collaborative design environment should be able to schedule all 
the design tasks in a proper order, based on the model (inter) dependencies, e.g., sequentially, 
iteratively, or in parallel. 
• Automatic data exchange: Based on the dependencies, the computational results of some 
models and tools should be collected and fed to the others automatically, so that the computation is 
not interrupted. However, the designer should be able to oversee the process and halt the execution 
if needed. 
• Dynamic creation of design studies:  Given a computational workflow (see ‘Automatic 
sequencing’ above), various studies can be dynamically created by the employment of cloud-based 
numerical treatments (methods), including: Design of Experiments (DoE), optimization, trade-off and 
sensitivity analysis, uncertainty, etc. 
• Visualization and Data Analytics: The computational results should be presented to all the 
relevant designers for decision making. This requires production of manipulable (interactive) plots 
and rapid CAD models for interactive design space exploration and trade-off studies.  
• Design coordination: The cloud-based environment should also be used to enhance 
interactions between different designers/design teams, so that the designer is always kept in the 
loop. 

3.2 Architecture Overview 
To implement and validate the requirements specified above, a cloud-base prototype application 
named “AirCADia Nebos” is developed in this research. This application adopts a microservice 
architecture, as illustrated in Figure 1, where all the components are implemented as microservices. 
These are loosely coupled and can be remotely accessible on the cloud-based environment. The 
back-end of the application (left side of Figure 1) consists of three repositories to host computational 
models, functional modules, and databases, respectively. The front-end (on the right side of the 
figure) includes several Graphical User Interfaces (GUI), which are used for invoking the back-end 
components and can be accessed thought web browsers. To protect intellectual properties, a 
security layer is developed for authentication and authorization, which grants control to different 
users, depending on their roles in the design process. Based on the discussion with industrial 
partners, the microservices are accessible via REST API’s and the communication is based on JSON 
files. It is also decided that Microsoft Azure Cloud [67] is used for hosting the prototype. 

 

Figure 1 – AirCADia Nebos Architecture 
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3.3 Model Library 
The computational model refers to the models used for design and analysis, such as empirical 
equations and simulations, e.g., CFD, FEM.  
Depending on the owners, the models can be classified into three categories. The first category 
includes models which are created by the academic research group and embedded in AirCADia 
Nebos. These models are accessible for all the users of this cloud application. The second category 
includes external models adopted from the open-source domain or provided by the 
industrial/research partners who are willing to upload their models on the cloud repository. These 
models are shared among specific partners within a project. For security purposes, some partners 
may prefer to host their models only on local domains. These models form the third category, which 
will be accessed by implementing the local host as a server. This part is still under development.  
Apart from the third category, models in the first two categories are hosted on the Microsoft Azure 
Cloud. The remote execution process is illustrated in Figure 2. Currently, the models are mainly 
coded in C# and python. The former is implemented using ASP.NET core web application 
framework, while the latter employs the FLASK framework. If the original model is provided as an 
executable file (.exe), a C# wrapper will be created to write/read the input/output files. 
The model repository is defined by a Universal Resource Identifier (URL). To access the model, an 
HTTP POST request is sent to this URL, from a client or another microservice. The request body is 
a JSON file which specifies the model name, values of input variables, and expected output 
variables. If the execution is successful, a response will be returned as a JSON file, with updated 
values for the output variables. 
 

 

Figure 2 – Remote model execution on the cloud 

3.4 Data Storage 
The data stored on the cloud are encapsulated in four parts: aircraft, aircraft systems, project, and 
study results. The first three parts are represented as object models in JSON format, while the last 
is stored as SQL databases. 
The aircraft object model defines the geometry, mission profile, and general performance of the 
aircraft under design. That is, it can be regarded as a “universal” representation for early-stage 
aircraft design. The geometry parameterization [68] is based on the Class Shape Transformation 
(CST) method [69]. The mission section includes distance, altitude, and Mach number for take-off, 
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climb, cruise, decent, and landing segments, respectively. The performance section includes top-
level performance variables such as take-off/landing field length, time to climb, fuel consumption, 
weight decomposition, etc. 
The system object model defines the aircraft system architecture using the Requirements, 
Functional, Logical, Physical (RFLP) approach. Further details of this definition could be found in 
[70].  
The project object model defines the formulation of the design problem, which contains four major 
elements: data, model, subprocess, and study. As illustrated in Figure 3, at the bottom level of the 
hierarchy is the Data object, which can be used to represent any type of variables in a computation 
(e.g., design variables, constants, intermediate results, performance variables, etc.). The Model 
object is a basic executable component, which defines the computational relationship between a set 
of input and output variables. The assembly of different models defines a computational workflow, 
implemented as a Subprocess object. Within a subprocess, the models are executed in a specific 
sequence, and the results are passed from upstream models to the downstream ones automatically. 
Finally, Study object can be created for Design of Experiments (DoE), optimization, uncertainty 
propagation, and sensitivity analysis. It consists of a model/subprocess and certain numerical 
methods (finite differencing, fix point iteration, genetic algorithm, etc.), where the latter are 
implemented as Treatment objects. Further details of this definition could be found in [71,72]. 

 

Figure 3 – Schematic view of AirCADia object hierarchy. 

 
In general, the study results produced in design computation are well-structured. For instance, the 
results of a DoE study contain a list of design points, each of which is defined by a set of design 
variables, constants, and performances outputs. It is therefore decided to employ relational 
database management system (RDBMS) in the collaborative design environment. 
Several options were considered. MySQL is one of the most widely used RDBMS, due to its 
simplicity and open source. PostgreSQL is also an open-source system and has object-oriented 
features to handle more complex data structures. SQLite is built into Python, but needs to be stored 
in a single file on local disk. However, it is very easy to use and test within the local environment. 
Therefore, it has been decided to use SQLite during the development and PostgreSQL/MySQL will 
be used for the actual cloud application.  
To connect the numeric results with the object models, an Object-Relational Mapper (ORM) is used. 
Among the current solutions, SQLAlchemy [73] is a popular solution, due to its effective 
connection/pooling infrastructure for complex queries and mappings. It also has good compatibilities 
with PostgreSQL, MySQL, and SQLite, which are chosen for the collaborative design environment. 
Therefore, SQLAlchemy will be employed in the current research.  

3.5 Functional Modules 
The functional modules are used for manipulating the executable components, such as models, 
workflows, and studies. These modules are based on existing enablers for model-based design and 
system engineering developed in Cranfield university during previous research projects [41,74–76]. 
To orchestrate a workflow, the user can specify which models should be included. Algorithms were 
developed to enable automatic assembly of the selected models into a computational workflow, 
where the outputs of one model will be used as the inputs of others, based on their dependencies 
[77,78]. This capability was further developed in [79], where methods and algorithms were proposed 
to automatically convert a system architecture into a computational workflow. It allows the designer 
to perform on-the-fly analysis while defining the system architecture of a complex product. 
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In case of coupled models, a Strongly Connected Component (SCC) will be identified, and a solver 
will be set up to converge the iteration. This process is also automated behind the scenes. Another 
capability is to reverse a model or a workflow, by swapping its original input and output variables. 
This is achieved by in-built solvers and it allows the designer to ask “what-if” questions and solve 
inverse design problems. For instance, given a specific value of a performance output, what should 
be the value of a design variable. The reader is referred to [80,81] for further details. 
The study creation module creates study objects as outlined in Section 3.4. For each workflow or 
study, a specific execution strategy will be produced in the background. The execution module 
sends out requests (as described in Section 3.3) to all the relevant models according to the 
execution strategy. 

3.6 User Interface 
The user interfaces are developed as webpages which can be accessed with standard web 
browsers. These webpages are written in HTML and Javascript for dynamic interaction with the 
designer. Third-party libraries are used, including Webix for UI design [82], D3.js for data 
visualization [83], and Three.js for 3D geometry [84]. Currently the cloud version of the Architect 
module is under development. The Aircraft Designer, Explorer, and Vision are presented in this 
section. 

3.6.1 Interactive Aircraft Definition 
The aircraft designer interface is used for interactive definition of the aircraft geometry and mission 
profile. As discussed in Section 3.4, the aircraft is fully parameterized. For each major component, 
such as the wing, fuselage, horizontal and vertical tails, etc., a form is used for specifying its 
parameters, as illustrated in Figure 4, left. The geometry can be updated simultaneously as the 
input values are changed. The mission profile is defined in a similar way, with another form as 
shown in Figure 4, right. 
 

 

Figure 4 – Aircraft design interface 

 
 The definition of the aircraft is saved as an object model in a JSON file. The designer can assign a 
specific computational model (from the model library) to the aircraft or one of its components. This 
link between aircraft object and computational models is also saved in the JSON file. To perform a 
design analysis (as illustrated in Figure 4), the aircraft designer interface will first load the aircraft 
geometry and the associated model names from the aircraft object JSON file. Then for each model 
to be executed, a separate input JSON file will be produced, which contains the model name, and 
values of input variables, as shown in Figure 5. This JSON file will be send to the model repository 
as a request using the HTTP POST method. The results will be sent back as an output JSON, which 
will be used to update the aircraft geometry and performance in the interface. The changes will also 
be saved in the aircraft object JSON file. 
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Figure 5 – Model execution via the aircraft designer interface 

3.6.2 Explorer and Vision 
While the aircraft designer interface is used specifically for aircraft design, the explorer interface can 
be used for more general problems. This interface (Figure 6 Left) mainly handles the project object 
model, as discussed in Section 3.4. The designer can create, modify, and delete models, workflows, 
and studies. During these operations, the functional module as discussed in Section 3.5 will be 
invoked, (e.g. to connect the models as a workflow). The project object will also be saved as a JSON 
file in the data repository. 

After execution of a workflow or study, the computational results are stored in the cloud and need to 
be presented to all the relevant designers for decision-making. This can be achieved by the Vison 
interface as shown in Figure 6 right. It facilitates a number of interactive plots (e.g. scatter plots, 
parallel coordinates plot, surface plots, etc.) which are synchronized together, so that moving a 
design point in one plot will be reflected simultaneously across all the other plots in the workspace. 

These plots are also linked to the computational workflow for potential additional execution, which 
enables the designer to test “what if” scenarios for further exploration of the design space and to 
conduct trade-off between the performance variables. Data analytics could also be used to extract 
design rules, for instance, by conducting correlation and sensitivity studies on different variables. 
This helps to capture implicit relationship between different variables and construct a knowledge 
base for future applications. 
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Figure 6 – Explorer and Vision Interface 

4. Evaluation 
For demonstration and evaluation, two use-cases are conducted with the cloud-based design 
environment described above. The first use-case is an aircraft sizing study, which is used to test the 
cloud-based workflow orchestration capability. The second one is an airframe-engine matching case 
study to demonstrate collaborative design optimization between different (distributed) design teams. 
This use-case was initially applied in the COLIBRI’s predecessor project, APROCONE [74], to 
demonstrate design coordination, but was based on a monolithic workflow setup [85]. In this 
evaluation, the models and executions are migrated to the cloud, and the designers will use different 
computers to perform the study. 

4.1 Aircraft Sizing Workflow Orchestration 
Early-stage aircraft sizing involves a large number of computational models (e.g. empirical 
equations, lookup tables, low fidelity tools, etc.), whose input and output variables should be 
connected to each other during the computation. Figure 7 (a) shows the web interface for workflow 
orchestration, where the box on the left lists all the models available in library, while the box on the 
right contains the selected ones to be connected. After confirming the selection, the cloud-based 
orchestration module enables automatic assembly and sequencing of these models, based on the 
variable dependencies. The completed workflow is identical to the one produced by the local version 
of AirCADia, and is illustrated in Figure 7 (b). 

 

Figure 7 – Automatic workflow orchestration 

 

4.2 Airframe and Engine Matching 
As illustrate in Figure 8, the airframers first employ conceptual aircraft design tools to identify engine 
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thrust requirements. The latter are then passed on to the engine manufacturer as specifications. 
The engine designers apply their cycle analysis tools to generate an engine performance deck, 
which is then sent back to the airframe designers for assessment. The new engine performance 
deck will result in a modification of the airframe and thus will lead to revised thrust requirements. 
Therefore, an iterative process will be applied to update the airframe and engine, until a 
convergence is achieved.  

 

Figure 8 – Airframe and engine matching use-case 

 
In the original setup, FLOPS [86] was used for the airframe design while NPSS [87] was used for 
the engine cycle analysis. However, NPSS is locked to a physical IP of a local workstation, therefore 
it cannot be implemented as a microservice over the cloud. As mentioned in Section 3.3, the remote 
accessing of local models is still under development. In this demonstration, the FLOPS engine 
module is used as a sperate model to temporarily replace the NPSS model for producing the engine 
deck.  At the same time, cycle analysis is disabled in the main program of FLOPS, so that the latter 
is isolated from the engine module.  
An A320 like aircraft is chosen as an illustrative example, whereas the problem setups for the 
airframer and engine designer are shown in Table 1 and Table 2, respectively. The airframe 
optimization is based on a rubberized engine, with three scaling factors for maximum take-off, 
maximum climb, and maximum cruise thrust, respectively. A baseline engine deck is used in the first 
iteration. From the second iteration, it is replaced with a new engine deck from the cycle analysis 
(conducted by the engine design team).  It should be noted that this use-case is to demonstrate the 
cloud-based design environment rather than the actual collaborative design case study. The latter 
will be further developed in the COLIBRI project. 
 

Table 1 – Airframe Design Problem Setup 

Category Variable Symbol Value 

Design Variables Wing Area 𝑆ௐ [1200, 1400] 𝑓𝑡ଶ 

Aspect Ratio 𝐴𝑅 [8, 12] 

Taper Ratio 𝑇𝑅 [0.2, 0.3] 

0.25 Chord Line Sweep Angle 𝛬଴.ଶହ [25, 30] 𝑑𝑒𝑔𝑟𝑒𝑒 

Engine Deck N/A 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒/𝐹𝑟𝑜𝑚 𝐸𝑛𝑔𝑖𝑛𝑒 𝑇𝑒𝑎𝑚 

Engine Scaling Maximum Take-Off 𝑘ெ்ை [0.95, 1.05] 

Engine Scaling Maximum Climb 𝑘ெ஼௅ [0.95, 1.05] 

Engine Scaling Maximum Cruise 𝑘ெ஼ோ [0.95, 1.05] 

Parameters Cruise Altitude 𝐻஼௥ 37000 𝑓𝑡 

Cruise Mach 𝑀𝑎𝑐ℎ஼௥ 0.78 

Number of Passengers 𝑁௉௔௫ 160 

Design Range 𝑅 3500 

Constraints Take-off Field Length 𝑇𝑂𝐹𝐿 ≤ 7000 𝑓𝑡 

Landing Field Length 𝐿𝐹𝐿 ≤ 6000 𝑓𝑡 

Design Range 𝑅஽௘௦ ≥ 3300 𝑛𝑚 
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Approach Velocity  𝑉஺௉௉ ≤ 130 𝑘𝑡𝑠 

Time to Climb 𝑇𝑇𝐶 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

Objective Function Block Fuel 𝑊ி 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

Time to Climb 𝑇𝑇𝐶 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

 

Table 2 – Engine Design Problem Setup 

Category Variable Symbol Value 

Design Variables Sea Level Static Thrust 𝑆𝐿𝑆𝑇 [20000, 40000] 𝑙𝑏𝑓 

 Bypass Ratio 𝐵𝑃𝑅 [5, 7] 

 Fan Pressure Ratio 𝐹𝑃𝑅 [1.6, 1.7] 

 Overall Pressure Ratio 𝑂𝑃𝑅 [27, 30] 

Parameters Cruise Altitude 𝐻஼௥ 37000 𝑓𝑡 

Cruise Mach 𝑀𝑎𝑐ℎ஼௥ 0.78 

Constraints End of Runway Thrust 𝑇ா௢ோ ≥ 𝑅𝑒𝑞 𝐹𝑟𝑜𝑚 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑇𝑒𝑎𝑚 

Top of Climb Thrust 𝑇்௢஼ ≥ 𝑅𝑒𝑞 𝐹𝑟𝑜𝑚 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑇𝑒𝑎𝑚 

Mid-Cruise Thrust 𝑇ெ஼ோ ≥ 𝑅𝑒𝑞 𝐹𝑟𝑜𝑚 𝐴𝑖𝑟𝑓𝑟𝑎𝑚𝑒 𝑇𝑒𝑎𝑚 

Objective Function Specific Fuel Consumption 𝑆𝐹𝐶 𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 

4.3 Implementation and Results 
The implementation of the use-case in the cloud-based environment is illustrated in Figure 9. The 
airframe designer will first formulate the design problem with the Explorer interface, by specifying 
the design variables, constraints, and objective functions. During this process, the Explorer interface 
will invoke the study creation microservice, as indicated by step ① in Figure 9. The project object 
model will be saved in the data repository, as shown by step ②. Meanwhile, the execution 
microservice will invoke the FLOPS main program repeatedly during the optimization process (step 
③). The optimization results are also saved (step ④) in the data repository and loaded (step ⑤) by 
the Vision and Aircraft designer interface for decision making (as shown by Figure 10). After the 
airframe is frozen (in the current iteration), the thrust requirements are published (Figure 11) and 
passed on to the engine design team (step ⑥). Similar steps are followed to conduct the engine 
optimization (steps ⑦ to ⑫). The results and the engine deck are illustrated in Figure 12 and 
Figure 13, respectively. The new engine deck will be used for the next iteration of the airframe 
design optimization. 
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Figure 9 – Implementation of the use-case in the cloud-based environment 
 

 

Figure 10 – Airframe optimization result in Vision Interface. 
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Figure 11 – Publishing thrust requirements. 

 

 
Figure 12 – Engine optimization result in Vision Interface. 
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Figure 13 – Publishing engine deck 

5. Summary and Conclusions 

Presented in this paper is an outline specification for a cloud-based collaborative aircraft design 
environment.  

Following an extensive literature review of cloud computing technology and its recent applications in 
the field of engineering design, it was found that while aspects of the service-oriented architecture 
approach have been widely adopted in academic and industrial applications, areas which require 
further exploration include: 

 There is still a lack of an integrated tool for orchestrating the workflow within the distributed 
design environment.  

 The existing methods and tools have been focused on the connections between models, 
while less attention has been paid to the interactions between designers.  

 The pros and cons of relying on commercial-off-the-shelf cloud providers in the development 
of collaborative design environments in industry are still to be determined.  

Several major requirements for cloud-based collaborative (computational) design have been 
identified from the state-of-the-art review and from discussions between Cranfield University and the 
industrial partners in the COLIBRI project, including: remote execution, security, automatic 
sequencing (workflow orchestration), automatic data exchange, dynamic creation of design studies, 
visualization and data analytics, and design coordination. 
In order to validate the specified requirements, an architecture is proposed for exposing 
computational models and general engineering capabilities as microservices on the cloud. This 
architecture is implemented in a cloud-base prototype application, named “AirCADia Nebos”. 
Currently this prototype employs Microsoft Azure to host the microservices, while web-based user 
interfaces are implemented to invoke these capabilities and to visualize results over the cloud. The 
communication between microservices is based on JSON files and REST APIs.  
Initial evaluation was performed with an aircraft sizing use-case to test the workflow orchestration 
capability and an airframe-engine matching use-case to demonstrate the remote collaboration 
capability. The latter was first implemented and ran on a local host computer as part COLIBRI’s 
predecessor project, APROCONE [74]. The results obtained from running the same computational 
models in the cloud-based environment via AirCADia Nebos are identical with those of the 
monolithic (non-distributed) implementation. Speed and reliability of the connection were not an 
explicit objective of the tests, but in the current test no problems were observed.    
In conclusion, the proposed architecture and developed prototype can be used to share 
computational models and general engineering capabilities among distributed design teams, which 
enables collaborative optimization studies without installing any local instances of software and 
models. The results so far are promising and indicate that with the current problem scale, the actual 
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design solution will not be impacted by the migration to the cloud. 
Future work will include further development of the prototype to handle the design coordination 
problem in a broader view, especially interactivity. This involves handling conflicting constraints, 
implicit interfaces, and evolving problem formulations and so forth. A comprehensive use-case will 
be developed in collaboration with the partners in the COLIBRI project, to test the scalability of the 
application. Last, but not least, to enhance security and intellectual property protection, an 
authentication and authorization mechanism will be developed for granting controls to different 
users, depending on their roles in the design process. 
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