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Abstract

In the recently developed twistor framework, the distributed control of six-degree-of-freedom (6-DOF) multiple spacecraft
leader-following formation is investigated in the presence of unknown external disturbances. A distributed adaptive controller
is proposed under an undirected communication graph to guarantee that the formation flying and consensus of the attitudes
of the leader and followers is reached simultaneously. Firstly, the 6-DOF dynamics of a rigid spacecraft modeled by twistors
is presented, and the distributed control problem is formulated. Then, a distributed sliding surface is established for the
system composed of the kinematics of the spacecraft. Based on the sliding surface, a sliding mode controller for the 6-
DOF formation is proposed. For the unknown disturbances, an adaptive law is developed to estimate the upper bounds to
substitute for the unknowns in the sliding mode controller. The stability of the closed-loop system is proved via Lyapunov
stability theory. Finally, the effectiveness of the proposed protocol is demonstrated by numerical simulations.
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1. Introduction
Formation flying is capable of distributing the functionality of a conventional monolithic spacecraft to a group
of small, low-cost, and cooperative spacecraft [1]. Spacecraft formation can reduce the risk of mission failure,
enhance the versatility of spacecraft systems, eliminate the limitation of launch vehicles, and complete the tasks
that need the cooperation of several spacecraft [1, 2]. Hence, the techniques for spacecraft formation have been
extensive investigated.
As space tasks become more and more complex, not only are the positions of spacecraft required to form a
specified pattern, but also their attitudes are expected to reach consensus simultaneously. Hence, the 6-DOF
spacecraft formation has been drawing growing research interests. Kristiansen et al. [3] developed three nonlin-
ear controllers for 6-DOF spacecraft formation on the basis of Euler–Lagrange system theory. Wang et al. [2, 4]
investigated the control problem of 6-DOF leader-follower spacecraft formation in the framework of dual quater-
nions, and several sliding mode controllers were developed to ensure finite-time convergence in the presence of
external disturbances. Ref. [5] addressed the problem of robust H∞ control for 6-DOF formation flying with the
translational and rotational coupling of the dynamics considered, and a modified θ −D method was proposed
to solve the resultant Hamilton-Jacobi-Inequality. Sun et al. [6] investigated the control of both translational
and rotational motions for small-satellite formation using only aerodynamic force; In the work, a novel coupled
orbit-attitude model was established, based on which, a sliding mode controller was developed for the 6-DOF
formation. In [7], a 6-DOF relative translation and rotation coupled dynamics model was represented by the ex-
ponential coordinates on the Lie group SE(3), and then an extended state observer was designed to eliminate
the chattering of the proposed terminal sliding mode controller for the leader-following formation. Gao et al. [8]
derived a dimensionless 6-DOF relative coupled dynamical model of the spacecraft in libration point orbits by
using dual quaternions; Then, an active disturbance rejection controller was designed for the 6-DOF formation
in libration point orbits. In Ref. [9], a fixed-time adaptive controller with quantized input was proposed for 6-DOF
formation in the framework of dual quaternions. All of the above researches concentrate on the 6-DOF formation
of only two spacecraft, the results of which are difficult to be used in multi-spacecraft formation with a certain
communication topology among them.
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Distributed control schemes do not require a control center to collect the information of all the other spacecraft,
and 6-DOF formation can be achieved by only using the local measurements of each spacecraft and the informa-
tion transmitted from its neighbors. If some of the formation-flying spacecraft malfunction, the rest spacecraft can
still complete formation via a distributed control scheme. Consensus theory is an effective and powerful tool to
design a distributed control scheme [10]. Ren [11] studied the control of formation keeping and attitude alignment
for multiple spacecraft with a direct communication graph in the presence of arbitrary information loops or feed-
back between neighbors. However, in the study, it was assumed that the translational dynamics and rotational
dynamics was decoupled. In [12], a collision-free distributed control scheme for 6-DOF spacecraft formation was
proposed with the kinematics and dynamics represented by dual quaternions. In the design, the reference orbit
and attitude information could only be obtained by a subset of the deputies, and a sliding mode controller was
designed with the reference information estimated by a finite-time observer. In [13], with the Laplacian matrix of
the communication graph of the spacecraft changing in accordance with a distance-based connectivity function
between neighbors, an adaptive controller for the 6-DOF formation was proposed. Ref. [14] was devoted to the
control problem of 6-DOF spacecraft formation with collision avoidance and network topology change. Huang et
al. [15] studied the distributed adaptive finite-time synchronization control for 6-DOF formation without velocity
measurements in the presence of external disturbances and parameter uncertainties.
The concept of twistors was from geometric algebra [16], and recently was employed to model 6-DOF relative
motion of spacecraft [17, 18, 19, 20]. Twistors were first introduced to uniformly model relative pose motion of
spacecraft to avoid the normalization constraint resulted from the dual quaternion representation [17]. Also, the
twistor representation possesses a small-dimensional state, which can reduce computation and communication
burdens for spacecraft with limited onboard resources. In [18], the authors developed an unscented Kalman
filter for spacecraft pose estimation by using twistors. The work overcame the difficulty of unscented Kalman
filter design using dual quaternions. Li et al. [19] developed a sliding mode controller for synchronization of the
relative attitude and position of a separated ultraquiet spacecraft. Zhang et al. [20] proposed a twistor-based
6-DOF control scheme for the spacecraft landing on an asteroid, which could effectively enforce the LOS (line of
sight) constraint and collision avoidance constraint.
In this paper, to ease the distributed controller design and lighten the computation and communication burden
(transmitted fewer data) of 6-DOF formation, the twistor-based 6-DOF dynamic model is first used to develop
a distributed adaptive controller for multi-spacecraft formation with an undirected communication graph. In the
design, a sliding mode surface for the system composed of the kinematic of each spacecraft is proposed. Then,
a distributed sliding mode backstepping control scheme is devised by the combination of the sliding mode control
method and backstepping technique. For the unknown disturbances, an adaptive law is proposed to estimate
the unknown upper bounds.
The remainder of this paper is organized as follows. Some preliminaries about quaternions, dual quaternions,
twistors, and graph theory are presented in Section 2. The problem of 6-DOF spacecraft formation control is
formulated in the framework of twistors in Section 3. The distributed adaptive controller is designed in Section
4. The results of numerical simulations are given in Section 5 to demonstrate the effectiveness of the controller.
Finally, Section 6 concludes the paper.

2. Preliminaries
In this section, the definition and elementary operations of dual quaternions and twistors are introduced firstly.
Then, some knowledge about graph theory is presented.

2.1 Quternions and Dual Quaternion
A quaternion is defined as q = q1i+ q2 j + q3k + q4, where q1,q2,q3,q4 ∈ R, and i j = − ji = k, j k = −k j = i, ki =
−ik = j, i2 = j2 = k2 = −1 [21]. A quaternion can also be represented by the ordered pair q = (q̄,q4) with
q̄ ∈ R3 being the vector part and q4 ∈ R the scalar part. The sets of quaternions, vector quaternions, and
scalar quaternions are denoted by Q = {q |q = q1i+ q2 j + q3k + q4,q1,q2,q3,q4 ∈ R }, Qv = {q |q ∈ Q,q4 = 0 },
andQs = {q |q ∈ Q,q1 = q2 = q3 = 0 }, respectively. The rotation about a unit vector n can be represented by the
unit quaternion q = (n sin (θ/2),cos (θ/2)), where θ is the rotaion angle. Based on the definition of quaternions,
a dual quaternion is defined as

p = pr + εpd, pr, pd ∈ Q (1)
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where pr and pd are the real part and dual part of the dual quaternion, respectively. Similarly, the sets of
dual quaternions, dual vector quaternions, and dual scalar quaternions are D = {p |p = pr + εpd, pr, pd ∈ Q },
Dv = {p |p = pr + εpd, pr, pd ∈ Q

v }, and Ds = {p |p = pr + εpd, pr, pd ∈ Q
s }.

With the assumption p, q ∈ D, some elementary algebraic operations on dual quaternions are shown as follows
[20]:
Addition:

p+ q = (pr + qr )+ ε (pd + qd)

Multiplication by a scalar:
λp = λpr + ελpd, λ ∈ R

Multiplication:
pq = (pr qr )+ ε (pr qd + pdqr )

Conjugation:
p∗ = p∗r + εp

∗
d

where p∗r and p∗
d
are the conjugations of pr and pd, respectively.

Inverse:
1
p
=

1
p∗r pr

p∗r − ε
1

(p∗r pr )
2 p
∗
r pd p

∗
r

Division:
q

p
=

1
p
q

Swap:
ps = pd + εpr

Cross product:
p× q = pr × qr + ε (pr × qd + pd × qr ), pr, qr ∈ D

v

Circle product:
p ◦ q = pr · qr + pd · qd

Multiplication by a matrix:
Ap = (A11pr + A12pd)+ ε (A21pr + A22pd)

where
A =

[
A11 A12
A21 A22

]
, A11, A12, A21, A22 ∈ R

4×4.

If a dual quaternion is regarded as a vector with four dual scalar quaternion elements, that is

p =

[
p̄r + ε p̄d

pr4+ εpd4

]
∈ (Ds)

4×1

the following operation is defined:

Ap =

[
(A11 p̄r + A12pr4)+ ε (A11 p̄d + A12pd4)

(A21 p̄r + A22pr4)+ ε (A21 p̄d + A22pd4)

]
where

A =

[
A11 A12
A21 A22

]
∈ R4×4, A11 ∈ R

3×3,

A12 ∈ R
3×1, A21 ∈ R

1×3, A22 ∈ R

Deduced from the previous definitions, some useful properties are given below:

ps ◦ qs = p ◦ q, p, q ∈ D

(Ap) ◦ q = p ◦
(
AT q

)
, p, q ∈ D, A ∈ R8×8

3
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(AB) p = A (Bp), p, q ∈ D, A,B ∈ R8×8

p ◦ (q+ r) = p ◦ q+ p ◦ r, p, q, r ∈ D

(pq) r = p (qr), p, q, r ∈ D

p ◦ (q× r) = qs ◦ (r × ps) = r s ◦ (ps × q), p, q, r ∈ Dv

According to the definition of the multiplication of two quaternions, one has [20]

pq = [p] q = [q]∨ p, p, q ∈ Q, (2)

where [p] and [q]∨ represent 4×4 skew symmetric matrices related to p and q respectively, and they are given
by

[p] =


p4, −p3, p2, p1
p3, p4, −p1, p2
−p2, p1, p4, p3
−p1, −p2, −p3, p4

 ,
[q]∨ =


q4, q3, −q2, q1
−q3, q4, q1, q2

q2, −q1, q4, q3
−q1, −q2, −q3, q4

 .
For dual quaternions, there exists the similar transformation [20]:

pq = [p] q = [q]∨ p, p, q ∈ D, (3)

where
[p] =

[
[pr ], 04×4
[pd], [pr ]

]
, [q]∨ =

[
[qr ]

∨ , 04×4
[qd]

∨ , [qr ]
∨

]
. (4)

2.2 Graph Theory
In this paper, an undirected graph is used to describe the communication topology among the spacecraft. An
undirected graph of order n is a pair G = (V,E), where V = {v1,v2, · · · ,vn} is a finite nonempty node set and
E =V×V is an edge set of pairs of the nodes [10]. In the undirected graph G, the edge

(
vi,vj

)
denotes that

agents i and j can obtain information from each other. The weighted adjacent matrix of G is represented by A =[
ai j

]
∈ Rn×n, where ai j > 0 if the pair of nodes (i, j) ∈ E, ai j = 0 otherwise. The Laplacia matrix L =

[
li j

]
∈ Rn×n

of G is defined as lii =
∑n

j=1, j,i ai j and li j = −ai j, i , j.
In spacecraft formation, it is assumed that there is a leader (or virtual leader), which is regarded as a node v0
in the communication graph. The other spacecraft in the graph G are driven to follow the leader. Hence, the
communication topology among the leader and the followers in G form a new augmented graph Ḡ. The access
of the followers to the leader is represented by a diagonal matrix B = diag (a10,a20, · · · ,an0) [22]. If the i − th
follower can receive information from the leader, ai0 > 0; otherwise, ai0 = 0.

Lemma 1 If the undirected graph G is connected and at least one ai0 > 0, then H = L+B is symmetric positive
definite [10].

3. Problem Formulation
In 6-DOF formation, the body fixed frame of the i− th spacecraft is denoted as FBi , whose origin OBi is located at
the mass center of the i− th spacecraft, and axes coincide with the inertial principal axes to form a right-handed
coordinate frame. The reference coordinate frameLD is a local vertical local horizontal (LVLH) frame that moves
on the reference orbit. The origin of LD is the reference point on the orbit; its XD-axis is in the orbit plane and
points from the center of the Earth to the reference point; the ZD-axis is perpendicular to the orbital plane and
YD-axis point toward the moving direction of the reference point.
Express the relative position vector of the i − th spacecraft with respect to the reference point in the frame FBi

as rBi

BiD
. The relative attitude of the i− th spacecraft relative to LD is represented by a quaternion qBiD . Then

4
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the dual quaternion that can illustrate the relative pose of the i− th spacecraft with respect to the reference frame
LD is

pBiD = qBiD + ε
1
2
qBiD rBi

BiD
∈ D (5)

Twistors were originally defined in the framework of geometric algebra [16], and were used to model the relative
pose motion of spacecraft by Deng [17] and Zhang [20]. According to the definition of twistors in the framework
of dual quaternions, the twistor corresponding to pBiD is

Bi =
pBiD −1
pBiD +1

∈ Dv (6)

The pose kinematics of the i− th spacecraft relative to the reference frame LD is represented by [20]

ÛBi =
1
4
(1+Bi)Vi (1−Bi) ∈ D

v (7)

whereVi =ω
Bi

BiD
+ε

(
ÛrBi

BiD
+ωBi

BiD
× rBi

BiD

)
withωBi

BiD
being the angular velocity of FBi relative to FD expressed

in FBi . To describe the dynamics of FBi relative to FD , the standard Earth-centered inertial reference frame FI
is introduced. The relative dynamic equation is given by [20]

ÛVi =M
−1

[
FBi
gi
+FBi

ui
+FBi

di
−VBi

Bi I
×

(
MVBi

Bi I

)]
−

1−Bi

1+Bi

ÛVD
DI

1+Bi

1−Bi

+Vi ×

(
1−Bi

1+Bi
VD
DI

1+Bi

1−Bi

)
∈ Dv

(8)

where VBi

Bi I
= ωBi

Bi I
+ ε

(
ÛrBi

Bi I
+ωBi

Bi I
× rBi

Bi I

)
with ωBi

Bi I
and rBi

Bi I
respectively being the angular velocity vector

and position vector of FBi with respect to FI expressed in FBi . The expression of VD
di

is similar to VBi

Bi I
, and

omitted here for conciseness.
The term M is called a dual inertia matrix, given by

M = m
d

dε
I3+ εJ =


m d

dε + εJ11 εJ12 εJ13
εJ12 m d

dε + εJ22 εJ23
εJ13 εJ23 m d

dε + εJ33

 (9)

where m is the mass of the spacecraft and Ji j (i, j = 1,2,3) the elements of the inertial matrix J . It is assumed
that all the spacecraft possess the same mass and inertial matrix. I3 is a 3×3 identity matrix. Due to Bi,Vi ∈D

v,
the scalar parts of them are discarded. Hence, the dimension of M is appropriate for matrix production. The
inversion of M is

M−1 = J−1 d
dε
+ ε

1
m
I3 (10)

The term FBi
gi = f Bi

gi +ετ
Bi
gi is the force motor exerted on the i− th spacecraft expressed in FBi . The gravitational

force f Bi
gi is given by

f Bi
gi
= m

(
aBi
gi
+

1+BBi I

1−BBi I
aIJ2

1−BBi I

1+BBi I

)
(11)

where aBi
gi is the gravitational acceleration caused by an ideal spherical Earth expressed in FBi , and aIJ2

is the
perturbing acceleration due to Earth’s oblateness expressed in FI . They are given by [21]

aBi
gi
= −µ

rBi

Bi I

‖rBi

Bi I
‖3

(12)

aIJ2
= −

3
2
µJ2R2

e

‖r IBi I
‖4



(
1−5

(
z IBi I

‖r IBi I
‖

)2
)

x I
Bi I

‖r IBi I
‖(

1−5
(

z IBi I

‖r IBi I
‖

)2
)

y I
Bi I

‖r IBi I
‖(

3−5
(

z IBi I

‖r IBi I
‖

)2
)

z IBi I

‖r IBi I
‖


(13)

5
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where µ is the gravitational constant of the Earth, Re the mean equatorial radius of the Earth. J2 is a constant
that describes the Earth’s oblateness. The term τBi

gi denotes the gravity gradient torque expressed in FBi , which
is given by

τBi
gi
=

3µrBi

Bi I

‖rBi

Bi I
‖5
× J rBi

Bi I
(14)

Rewrite FBi
gi in a compact form, one obtains

FBi
gi
= MGBi +

3µRBi

Bi I

‖RBi

Bi I
‖5
×MRBi

Bi I
(15)

where GBi = 0+ ε(aBi
gi + a

B
J2
), and RBi

Bi I
= rBi

Bi I
+ ε0. The term FBi

ui is the control force motor expressed as
FBi
ui = f Bi

ui + ετ
Bi
ui , where f Bi

ui and τBi
ui are control force and torque, respectively. FBi

di
denotes the external

disturbance force motor.
The pose error of the i− th follower relative to the leader is

B̃i = Bi −B0 (16)

The objective of the distributed adaptive pose control for 6-DOF formation in this paper is to design the control
input FBi

ui of the i− th spacecraft under a certain communication graph Ḡ in the presence of unknown external
disturbances, so that the followers establish formation flying with respect to the leader, and the attitudes of the
followers are consistent with that of the leader simultaneously, that is

lim
t→∞

B̃i = δi (17)

where δi is a constant twistor, and the real part is 0, the dual part determined by the attitude of the leader and
the desired formation.

4. Distributed Controller Design
This section is to design the distributed adaptive controller via the backstepping method. Before proceeding to
the design, some assumptions are made as follows:

Assumption 1 The communication graph G of the n follower spacecraft is undireccted and connected. At least
one follower can obtain information from the leader.

Assumption 2 The disturbance force motor FBi

di
is unknown but bounded by |FBi

di
| ≤ Di ∈ D

v, which means
that the absolute value of each element of FBi

di
is less than or equal to the corresponding element of Di. The

upper bound Di is constant and unknown.

According to Eq. (17), the pose error of the i− th follower relative to its desired pose is denoted by

ei = Bi −δi −B0 (18)

Considering the kinematics model (7), one gets the derivative of ei as Ûei = ÛBi. Therefore, the virtual control is
given by

αi = −
4

1+Bi
Kα


n∑
j=1

ai j
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)

 1
1−Bi

(19)

where Kα is a symmetric positive definite matrix. Choose the following Lyapunov function candidate

V1 =
1
2

n∑
i=1

n∑
j=1

ai j
(
ei − e j

)
◦
(
ei − e j

)
+

n∑
i=1

ai0ei ◦ ei (20)

The time derivative of V1 is

ÛV1 =

n∑
i=1

n∑
j=1

ai j
(
ÛBi − ÛB j

)
◦
[
(Bi −δi)−

(
B j −δ j

) ]
+2

n∑
i=1

ai0 ÛBi ◦ (Bi −δi −B0)

6
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= 2
n∑
i=1

n∑
j=1

ai j ÛBi ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+2

n∑
i=1

ai0 ÛBi ◦ (Bi −δi −B0)

= 2
n∑
i=1

ÛBi ◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


= 2

n∑
i=1

[
1
4
(1+Bi)Vi (1−Bi)

]
◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)

 (21)

Replacing Vi with the virtual control αi yields

ÛV1 =−2
n∑
i=1

Kα


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


=−2

[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
≤ 0 (22)

where ⊗ represents Kronecker production of matrices, B = [B1,B2, · · · ,Bn]
T ∈ R8n×1, δ = [δ1,δ2, · · · ,δn]

T ∈

R8n×1, and B̄0 = [B0,B0, · · · ,B0]
T ∈ R8n×1. The matrix C satisfies CTC = Kα. Recalling Assumption 1 and

invoking Lemma 1, we know that H is symmetric positive definite, and therefore ÛV1 is negative definite.
Let the error of the virtual control be

Zi = Vi −αi (23)

Then, Eq. (7) can be rewritten as

ÛBi =
1
4
(1+Bi)αi (1−Bi)+

1
4
(1+Bi)Zi (1−Bi) (24)

The time derivative of V1 becomes

ÛV1 =
1
2

n∑
i=1
[(1+Bi)αi (1−Bi)+ (1+Bi)Zi (1−Bi)] ◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


=

1
2

n∑
i=1
[(1+Bi)αi (1−Bi)] ◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


+

1
2

n∑
i=1
[(1+Bi)Zi (1−Bi)] ◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


=

1
2

n∑
i=1
[(1+Bi)αi (1−Bi)] ◦


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


+

1
2

n∑
i=1

Zi ◦

(1+Bi)
∗


n∑
j=1

ai j ◦
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)


s

(1−Bi)
∗

s

=−2
[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
−

1
8

n∑
i=1

Zi ◦

{
(1+Bi)

∗
[
K−1
α (1+Bi)αi (1−Bi)

] s
(1−Bi)

∗
}s

(25)

Let
Zi = Kz

{
(1+Bi)

∗
[
K−1
α (1+Bi)αi (1−Bi)

] s
(1−Bi)

∗
}s

(26)

where Kz is symmetric positive definite. Substituting Eq. (26) into Eq. (25) results in

ÛV1 =−2
[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
7
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−
1
8

n∑
i=1

Kz

{
(1+Bi)

∗
[
K−1
α (1+Bi)αi (1−Bi)

] s
(1−Bi)

∗
}s

◦

{
(1+Bi)

∗
[
K−1
α (1+Bi)αi (1−Bi)

] s
(1−Bi)

∗
}s
≤ 0 (27)

Eq. (27) indicates that limt→+∞

(
B−δ− B̄0

)
= 0 when Eq. (26) holds. Hence, a sliding variable can be defined

as
Si = Zi −Kz

{
(1+Bi)

∗
[
K−1
α (1+Bi)αi (1−Bi)

] s
(1−Bi)

∗
}s

(28)

Theorem 1 Consider the system consisting of one leader and n follower spacecraft with a communication graph
Ḡ that satisfies Assumption 1. The kinematics of each spacecraft is represented by Eq. (7). The manifold{
< |Si = 0, i = 1,2, · · · ,n

}
is a sliding surface with αi, i = 1,2, · · · ,n given by Eq. (19).

Proof : The proof is straightorward from the previous analysis, therefore omitted here for conciseness. �

Remark 1 It should be noted that the proposed sliding surface is determined by the combination of S1 = 0,S2 =

0, · · · ,Sn = 0. A single manifold Si = 0 is not a sliding surface.

Next, a distributed controller will be designed by the combination of the sliding mode control technique and
backstepping method. The upper bound of the disturbance force motor FBi

d
satisfies Assumption 2, and D̂i

represents the estimate of Di. Then, the following adaptive 6-DOF distributed control scheme for the formation
of multiple rigid spacecraft is proposed:

FBi
u =−KsS

s
i − D̂isign

(
Ss
i

)
−FBi

gi
+VBi

Bi I
×

(
MVBi

Bi I

)
+M

1−Bi

1+Bi

ÛVD
DI

1+Bi

1−Bi

−M

[
Vi ×

(
1−Bi

1+Bi
VD
DI

1+Bi

1−Bi

)]
+M Ûα+M

(
Kz
ÛYi
)
+

1
8
Y s
i (29)

where Yi =
{
(1+Bi)

∗
{
K−1
α (1+Bi)αi (1−Bi)

}s
(1−Bi)

∗
}s. The expressions of Ûαi and ÛYi are given in Ap-

pendix. The adaptive law for estimating Di is

Û̂Di = K−1
d

��Ss
i

�� (30)

where Kd is a symmetric positive definite matrix.

Theorem 2 Consider the system consisting of one leader and n follower spacecraft with a communication graph
Ḡ that satisfies Assumption 1. The kinematics of each spacecraft is represented by Eq. (7), dynamics repre-
sented by Eq. (8) with the disturbance force motor meeting Assumption 2. Then, the positions of the followers
form a specified formation relative to the leader and the attitudes of the followers are consistent with the leader
under the distributed adaptive control scheme composed of Eqs. (29) and (30). In addition, the estimate of Di

is bounded.

Proof : Consider the Lyapunov function candidate

V2 = V1+
1
2

n∑
i=1

Ss
i ◦MSi +

1
2

n∑
i=1

D̃i ◦KdD̃i (31)

where D̃i = D̂i −Di. Differeniating V2 with respect to time yields

ÛV2 = ÛV1+

n∑
i=1

Ss
i ◦M

ÛSi +
n∑
i=1

D̃i ◦KD
Û̂Di

=−2
[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
−

1
8

n∑
i=1
{Si +KzYi} ◦Yi +

n∑
i=1

Ss
i ◦M

(
ÛVi − Ûαi −Kz

ÛYi
)
+

n∑
i=1

D̃ ◦
��Ss

i

�� (32)

8
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Substituting the control law Eq. (29) and adaptive law Eq. (30) into Eq. (32) with some algebraic operations
leads to

ÛV2 =−2
[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
−

1
8

n∑
i=1

KzYi ◦Yi −
1
8

n∑
i=1

Si ◦Yi +
n∑
i=1

Ss
i ◦

[
1
8
Y s
i −KsS

s
i − D̂isign

(
Ss
i

)
+FBi

di

]
+

n∑
i=1

D̃ ◦
��Ss

i

��
≤−2

[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
−

1
8

n∑
i=1

KzYi ◦Yi +
n∑
i=1

Ss
i ◦

[
−KsS

s
i − D̂isign

(
Ss
i

)
+FBi

di

]
+

n∑
i=1

D̃ ◦
��Ss

i

��
≤−2

[
(H ⊗C)

(
B−δ− B̄0

) ]
◦
[
(H ⊗C)

(
B−δ− B̄0

) ]
−

1
8

n∑
i=1

KzYi ◦Yi −
n∑
i=1

Ss
i ◦

(
KsS

s
i

)
≤0 (33)

It is obvious that V2 is positive semi-definite, and therefore B,S1,S2, · · · ,Sn, D̃1, D̃2, · · · , D̃n ∈ L∞. Because V2 is
radially unbounded, there exist a constant scalar ε to render the setΩ =

{
B,S1,S2, · · · ,Sn, D̃1, D̃2, · · · , D̃n | V2 < ε

}
compact and positively invariant with respect to the closed-loop system. Let E be the set of all points in Ω where
ÛV2 = 0, i.e.

E =
{
B−δ− B̄0 = 0,Y1 = 0,Y2 = 0, · · · ,Yn = 0,S1 = 0,S2 = 0, · · · ,Sn = 0

}
(34)

Obviously, the largest invariant set in E is Γ = E. Invoking LaSalle’s theorem [23], we know that every solution
starting in Ω approaches Γ as t→∞. Hence,

lim
t→∞

B−δ− B̄0 = 0 (35)

which means the 6-DOF formation of the spacecraft is established. The proof is completed. �
In the sliding mode controller, the sign function results in control input chattering. To avoid the problem, the
sigmoid function can be used to approximate the sign function [24]. The sigmoid function is defined as

sigmoid (x) =
x

|x |+∆
(36)

where ∆ is a small positive scalar. With the sign function replaced with Eq. (36), B− δ− B̄0 only converges to
the neighborhood of 0.

5. Simulations
An illustrative simulation example is given in this section. The number of the followers is set to 5, and the 1st
follower can obtain information from the leader. The communication topology is given by the graph in Figure 1.
The weighted adjacency matrix of the communication graph of the followers is

A =


0 1 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 0 0 0
0 0 1 0 0


×10−8 (37)

The matrix representing the information access of the follower to the leader is given by

B =


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


×10−8 (38)

9
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It is assumed that all the spacecraft possess the same mass and inertial matrix, which are

m = 50 kg, J =


22 1 0.5
1 20 0.8

0.5 0.8 25

 kg ·m2 (39)

0

1 3

2 4

5

Figure 1 – Communication topology.

The reference orbit is a low Earth orbit, whose elements are given in Table 1. The origin of the LVLH coordinate
frame LD is fixed on the point that moves along the reference orbit. The relative position vector of the leader with
respect to LD expressed in LD is rDB0D

= [10, 20, 10]T m, and the relative velocity is ÛrDB0D
= [0, 0, 0]T m/s.

The attitude of the leader relative to LD is represented by the quaternion qB0D = [sin (π/3), 0, 0, cos (π/3)]T ,
and the relative angular velocity expressed in LD is ωD

B0D
= [0, 0, 0]T rad/s. From the setting, we know that

the leader is fixed in the reference frame LD . The initial relative positions, velocities, quaternions, and angular
velocities of the followers relative to the frame LD expressed in LD are given in Table 2. The initial value of Bi

and Vi can be calculated according to the definitions. The desired relative positions of the followers relative to
the leader expressed in LD is set to the values shown in Table 3 to form a regular pentagon.

Table 1 – Orbital elements of the leader.

Parameter Perigee altitude Eccentricity RAAN Inclination Argument of perigee True anomaly
Value 500 km 0 50 deg 45 deg 30deg 10 deg

Table 2 – Initial states of the followers.

Spacecraft Initial position rDBiD
Initial velocity ÛrDBiD

1 [4.4943, 200.4371, 97.2679]T m [0, 0, 0]T m/s
2 [−69.0684, 70.8708, 112.1265]T m [0, 0, 0]T m/s
3 [76.4665, −102.2596, 85.6776]T m [0, 0, 0]T m/s
4 [161.4337, −36.8823, 38.2923]T m [0, 0, 0]T m/s
5 [166.6738, 172.8339, 56.6358]T m [0, 0, 0]T m/s

Initial quaternion qBiD Initial angular velocity ωD
BiD

1 [0.6088, 0.2227, 0.5483, 0.5284]T [0, 0, 0]T rad/s
2 [0.1478, 0.1082, 0.4530, 0.8725]T [0, 0, 0]T rad/s
3 [0.3286, 0.5650, 0.2161, 0.7253]T [0, 0, 0]T rad/s
4 [0.2015, 0.3996, 0.5521, 0.7036]T [0, 0, 0]T rad/s
5 [0.8542, 0.4873, 0.1234, 0.1329]T [0, 0, 0]T rad/s

The control gain matrices Kα, Ks, Kz , and K−1
d

are set to Kα = diag ([0.5, 0.5, 0.5, 0.5, 1, 1, 1, 1])×107, Ks =

diag ([1, 1, 1, 1, 5, 5, 5, 5]), Kz = diag ([1, 1, 1, 1, 2, 2, 2, 2]), and K−1
d
= diag

( [
1×10−4, 1×10−4, 1×10−4,

10
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Table 3 – Desired formation position.

Spacecraft Desired position relative to the leader
1 δDr1 = [−60.5057, 135.4371, 22.2679]T m
2 δDr2 = [−144.0684, −19.1292, 37.1265]T m
3 δDr3 = [−28.5335, −147.2596, 0.6776]T m
4 δDr4 = [126.4337, −71.8823, −36.7077]T m
5 δDr5

= [106.6738, 102.8339, −23.3642]T m

1×10−4, 1, 1, 1, 1
] )
×10−2, respectively. The external disturbances are given as

f Bi

d
=

©­«


2sin (0.1t)+0.2sin
(
t + π

2
)

5sin
(
0.1t + π

4
)
+0.5sin

(
t + π

4
)

4sin
(
0.1t + π

2
)
+0.4sin (t)

 +


4
3
−5

ª®¬×10−4 N

τBi

d
=

©­«


6sin (0.5t)+0.6sin
(
5t + π

2
)

3sin
(
0.5t + π

4
)
+0.3sin

(
5t + π

4
)

4sin
(
0.5t + π

2
)
+0.4sin (5t)

 +

−2
5
4

ª®¬×10−4 N ·m

The position errors of the followers are shown in Figure 2. It is obvious that all the followers converge to their
desired positions to fly in formation with the specified pattern. The convergence of the 1st follower is the fastest
because it can directly access the leader. Though only the 1st follower can obtain the information of the leader,
the other followers reach their each desired position relative to the leader. The 3-dimensional trajectories of the
followers are plotted in Figure 3. As can be seen, the regular pentagon formation is accurately established.
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Figure 2 – The position error histories of the followers in the frame FD.

The consensus of the spacecraft’s attitude is presented in Figure 4. All the errors of the real parts of the twistors
reach the neighborhood of zero in about 600s, though the attitudes of the followers are randomly initialized. It
should be noted that the real parts of twistors is just 3-dimensional, which is different from dual quaternions.
The histories of the control force and control torque are shown in Figures 5 and 6. It can be observed that the
control force increases rapidly despite the fact that the relative position between each follower and the leader has
been almost unchanging, the reason of which is that the leader are actually orbiting around the Earth and the
periodic control force (the periodic time is too long to demonstrate the periodicity in the Figures) has to be exerted
on the followers to keep the formation. The attitude of the leader varies slowly, so just small control torque is
needed to ensure the attitude consensus.

11



TWISTOR BASED DISTRIBUTED ADAPTIVE CONTROL FOR 6-DOF SPACECRAFT FORMATION

-100

0

100

200

Z
D

 (
m

)

-400
-200

0

X
D

 (m)

800200 600

Y
D

 (m)

400400 200
0

The 1st follower

The 2nd follower

The 3rd follower

The 4th follower

The 5th follower

The leader

Formation

Figure 3 – The trajectories of the followers in the frame FD.
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Figure 4 – The attitude error histories of the followers.
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Figure 5 – The control force histories of the followers.
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Figure 6 – The control torque histories of the followers.

6. Conclusion
A distributed adaptive controller for 6-DOF leader-following multi-spacecraft formation is proposed in the frame-
work of twistors. Based on the consensus theory and backstepping technique, a distributed virtual control law
for each follower spacecraft is devised under the assumption that the communication topology of the followers
is a connected undirected graph and at least one follower can access the leader. Then, a sliding surface is pro-
posed for the system consisting of the kinematics of all the followers. By the application of the sliding surface,
a backstepping sliding mode control scheme is developed with the unknown upper bound of the external distur-
bance force motor estimated by an adaptive law. The stability of the whole closed-loop system is proved and
numerical simulations demonstrate the effectiveness of the proposed algorithm. Compared with the distributed
pose controller based on dual quaternions, our work provides a more efficient solution to the distributed control of
6-DOF multi-spacecraft formation because the transmitted states of the spacecraft possess smaller dimensions.
To further lighten the communication burden, an event-triggering mechanism can be considered in future studies.

7. Acknowledgment
This work was supported by the National Natural Science Foundation of China (Grant No. 62003268) and the
Fundamental Research Funds for the Central Universities (Grant No. G2020KY0503). The authors greatly ap-
preciate the financial support.

8. Contact Author Email Address
The email of the contact author is npuzhbo@163.com.

9. Copyright Statement
The authors confirm that they, and/or their company or organization, hold copyright on all of the original material included
in this paper. The authors also confirm that they have obtained permission, from the copyright holder of any third party
material included in this paper, to publish it as part of their paper. The authors confirm that they give permission, or have
obtained permission from the copyright holder of this paper, for the publication and distribution of this paper as part of the
ICAS proceedings or as individual off-prints from the proceedings.

Appendix: Expressions of Ûαi and ÛYi

The expansions of Ûαi is given as follows:

Ûαi =
4

1+Bi

ÛBi
1

1+Bi
Kα


n∑
j=1

ai j
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)

 1
1−Bi
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+
4

1+Bi
Kα


n∑
j=1

ai j
(
ÛBi − ÛB j

)
+ ai0 ÛBi


1

1−Bi

−
4

1+Bi
Kα


n∑
j=1

ai j
[
(Bi −δi)−

(
B j −δ j

) ]
+ ai0 (Bi −δi −B0)

 1
1−Bi

ÛBi
1

1−Bi

where ÛBi is given by Eq. (7). The term ÛYi is

ÛYi =
{(
ÛBi

)∗ {
K−1
α (1+Bi)αi (1−Bi)

}s
(1−Bi)

∗
}s
+

{
(1+Bi)

∗
{
K−1
α
ÛBiαi (1−Bi)

}s
(1−Bi)

∗
}s

+
{
(1+Bi)

∗
{
K−1
α (1+Bi) Ûαi (1−Bi)

}s
(1−Bi)

∗
}s
−

{
(1+Bi)

∗
{
K−1
α (1+Bi)αi

ÛBi

}s
(1−Bi)

∗
}s

−

{
(1+Bi)

∗
{
K−1
α (1+Bi)αi (1−Bi)

}s (
ÛBi

)∗}s
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