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Abstract

In the applications of reinforcement learning to flight control tasks, it is hard to design an appropriate
reward function through trial and error. In order to learn policies without reward function engineering, this
paper deals with the flight controller design by using inverse reinforcement learning. Two learning algorithms
are investigated on the flight control tasks. The first one is generative adversarial imitation learning (GAIL). The
policy is obtained by imitating expert demonstrations. The second method is adversarial inverse reinforcement
learning (AIRL). In contrast to GAIL, AIRL can recover the estimated reward function, which enables us to
obtain the reward function for achieving a good maneuver like human experts. The simulation results show
that both methods successfully learn policies and obtain almost the same flight control performance as the
human expert.
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1. Introduction

With the increasing demand for introducing highly autonomous systems into the aviation industry,
much attention has been paid to the flight controller design using reinforcement learning, e.g. [1,12, 3].
During the training of reinforcement learning, the agent is optimized through the interaction with the
environment. The tuning parameters such as the neural networks are updated by maximizing the
expected total reward. The trained policy achieves complex flight maneuvers [2] and outperforms the
conventional PID control [3]. These results suggest the effectiveness of flight controller design using
reinforcement learning.

In reinforcement learning, reward design is one of the key points to successfully train the agent
since the policy is optimized by evaluating whether the task is achieved based on the reward from the
environment. However, in practice, it is difficult to design an appropriate reward function. The difficulty
is especially seen if it is required to solve a complex task and the number of observations/actions is
increased. An inappropriate reward function leads to obtain the agent that acts undesired behaviors,
resulting in the situation where the policy does not satisfy the criterion required for flight control
systems.

In order to overcome the difficulty of reward design for flight control, this paper trains the agent by
using the data of expert demonstrations. This means that it is not required to design a reward function.
In this study, two methods are used for flight control tasks. The first one is generative adversarial
imitation learning (GAIL) [4]. The control policy is obtained by imitating expert demonstrations. The
second method is adversarial inverse reinforcement learning (AIRL) [5]. In contrast to GAIL, AIRL can
recover the estimated reward function, which enables us to obtain the reward function for achieving
a good maneuver like human experts.

The layout of this paper is as follows. Section 2 describes the outline of inverse reinforcement
learning. Section 3 describes the flight controller design from the human expert demonstrations.
Section 4 describes the results and discussion of the controller, and section 5 ends the paper with
the conclusions.



Learning Flight Control Skills By Imitating Expert Demonstrations

2. Preliminaries

In this paper, we use generative adversarial imitation learning (GAIL) [4] and advasarial inverse
reinforcement learning (AIRL) [S]. The controller n : R"¢ — R™ is an ¢-layer neural network with
nonlinear activation functions in hidden layers:

wO(k) = s(k); (1a)
wi(k) = o' (Wiw =L (k) +b), i=1,...¢ (1b)
a(k) = WHWH (k) + b, (1c)

where w' € R" is the output from the i’ layer. Symbols Wi € R%*"-1 and b’ € R" are respectively the
weight matrix and the bias of the /" layer in the neural network. Symbol ¢’ : R" — R" is the activation
function which is applied element-wise for a given vector v:

¢i(v) = [(p(vl),...,(p(vni)]T, (2)

where ¢ : R — R is the scalar activation function, e.g., tanh. In this paper, the neural network con-
troller defined by Eq. is updated by trust region policy optimization (TRPO) [6]. In this paper, the
controller & is also referred to as the policy in accordance with the field of RL researches.

The discriminator D, (s,a) discriminates the expert trajectories 7., and the trajectories generated
by the controller 7. The objective function is given as follows.

mgx IE(s,a)N‘E,, [IOg(DCO (S, a) )] +E(s,a)~‘l:exp [log(l —Dg (S’ Cl))} (3)

We supply —log(Dy(s,a)) to policies as a reward during training. After the training, the trajectories
generated by the policy will be similar to that of the experts. See [4, 5] for detailed descriptions of the
algorithms.

3. Controller Design from Expert Demonstrations
3.1 Controller Design Framework

This section describes the experiment setups for designing flight controllers from expert demon-
strations. The overview of the flight simulation framework is shown in Fig. In this study, two
programming languages are used. The first one is MATLAB/Simulink, which is used in real-time sim-
ulations in order to collect the data of time histories of aircraft states controlled by a human expert.
The second programming language is Python, which is used for training policies from the expert
demonstrations in desktop simulations.

The key point of the design framework is to share aircraft dynamics and problem definitions (e.g.
controlled models, control objectives, and evaluation criteria) in MATLAB/Simulink and Python. In
inverse reinforcement learning, the agent is trained by interacting with the environment including
aircraft dynamics. If the data of the expert demonstrations are obtained in MATLAB/Simulink, the en-
vironment implemented by Python for training is required to be the same as that of MATLAB/Simulink
as possible. By connecting two environments, the advantages of each programming language are
provided for controller designers. The detailed description is given as follows.

Flight Controller Design Framework

< Nonlinear/Linearized Aircraft Models
« Problem Definitions

A 4

OpenAl Gym Interface

I 1
1 1
1 1
1 1
1 1
I 1
| 1
I 1
1 A A 1
| 1
1 1
1 1
I 1
I 1
1 1
I 1
| 1

A 4 A 4

MATLAB/Simulink Python
Real-time Simulation Desktop Simulation

Figure 1 — Overview of flight controller design framework.
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(a) MATLAB/Simulink Implementation

MATLAB/Simulink is used to carry out a high-fidelity nonlinear simulation in real-time. The main
Simulink file consists of three subsystem blocks. The first subsystem is the hardware interface block
which obtains pilot inputs from the wheel and pedal in the cockpit. It calculates the surface deflec-
tions and gives the output signals of the electronic commands. The second subsystem is the aircraft
dynamics block. Based on the commands from the first subsystem block, the second subsystem cal-
culates aircraft motion and gives the observation. Note that the input-output relationship of the second
subsystem is corresponding to aircraft dynamics implemented by Python. The third subsystem is the
visual interface for feedbacking current aircraft state to pilots, see [7] for the detailed descriptions. By
using the Simulink file which is connected to the flight simulator as shown in Fig. |2, the human-in-
the-loop simulations are carried out to collect the data of expert demonstrations. The collected data
is used for training agents using inverse reinforcement learning algorithms implemented by Python.

Figure 2 — Fixed-based flight simulator.

(b) Python Implementation

Python is used to train agents using inverse reinforcement learning algorithms. In order to improve
the convenience of using machine learning libraries, the flight controller design framework has the
interface of OpenAl Gym. OpenAl Gyrrﬂ is a toolkit for developing and comparing reinforcement
learning algorithms with the aim to make a benchmark for assessing different methods [8]. The
interface of OpenAl Gym defines the observation and action spaces, which can be easily used with
machine learning libraries (e.g. TensorFlow [9] or PyTorch [10]) and has been used in the fields
of the robotics [11] as well as the unmanned aerial vehicle [3| [1, 12]. Through the OpenAl Gym
interface, the advanced learning algorithms implemented in Python can be used for the controlled
models whose properties are the same as the ones in MATLAB/Simulink.

3.2 Aircraft Model

The aircraft model used in this study is a high fidelity nonlinear model of a large transport aircraft.
It was developed by [13] with the aim to design auto-landing controllers (see also [14}[15]). Following
a standard approach, the equations of aircraft motion are obtained from the dynamics and kinematics
equations. The dynamics of the engines and the actuators are modeled as the first-order filters with
magnitude and rate limits. In this aircraft model, the aircraft states X, the control input U, and the
wind disturbance W are given as follows.

X = [p> q, 1, ‘Pa 95 lllv u, v, w, X, y, g, 517 5617 66 ar]T (4)
U = [5107 6aCa 6ec> 6rc]T (5)
W = [wy, wy, wz]T (6)

Thttp:/gym.openai.com
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where p, g, r, ¢, 0, W, u, v, w, x, v, 7, &, 04, O, O, are respectively the roll rate, the pitch rate, the yaw
rate, the bank angle, the pitch angle, the heading angle, the x-axis velocity, the y-axis velocity, the
z-axis velocity, the X-axis position, the Y-axis position, the Z-axis position, the exhaust pressure ratio,
the aileron deflection, the elevator deflection, and the rudder deflection. Symbols 6., 8., Oec, and S,
are respectively the exhaust pressure ratio command, the aileron deflection command, the elevator
deflection command, and the rudder deflection command. Symbols w,, wy, w, are respectively the
wind velocities in the x-, y-, and z-axes.

The initial flight conditions in simulations are set to a level flight at an altitude of 300 m. The trim
conditions are calculated by using the MATLAB function provided by [13]. The simulation sampling
interval of the aircraft motion is set to 7, = 0.05 s.

3.3 Flight Control Task

The flight control task in this study is to change the pitch angle from the initial trim condition of
7.68 deg to the target pitch angle of 5.0 deg in the presence of turbulence. For simplicity, the input
commands for the exhaust pressure ratio and for the lateral motion (i.e. aileron and rudder) are set
to 0 in the simulations. Thus, the control input is the elevator deflection command. Regarding the
observation of this flight control task, the measured outputs of the longitudinal motion are selected
and supplied to the policy. The observation is summarized in Table[{]

Table 1 — Observation of the changing pitch angle task.

# sym. description unit
0 6  target pitch angle rad
1 N, longitudinal load factor ~ m/s?
2 N, vertical load factor m/s*
3 q pitch rate rad/s
4 0 pitch angle rad
5 a  angle of attack rad
6 V, true airspeed m/s
7 V., inertial vertical airspeed  m/s
8 H altitude m

3.4 Hyperparameters

The algorithms of inverse reinforcement learning are implemented by author using Python. The
policy network is modeled by a fully-connected multi-layer perceptron with two hidden layers of 64
units and tanh as the activation function. The hyperparameters are selected as in Table |2/ to obtain
adequate flight control performance. Following a standard procedure, the exploration noise is added
to actions during the training phase while deterministic actions are performed without the exploration
noise during the evaluation phase. For the training, we use ten trajectories of the human expert
demonstrations which are obtained in real-time simulations.

4. Results and Discussion

In this paper, the following key points are discussed to evaluate the policies obtained by inverse
reinforcement learning algorithms.

a). Relationships between the observation supplied to the policy during training and its final perfor-
mance

b). Comparison between the behavior of the policy and that of the human expert

Regarding a), we discuss the relationship between the dimension size of observation and the
difficulty of the training process. Reference [16] suggests that reducing the dimension of observation
by selecting only the essential elements (e.g. the pitch angle and the pitch rate) helps the training of

4



Learning Flight Control Skills By Imitating Expert Demonstrations

Table 2 — Hyperparameters of the algorithms on the changing pitch angle task.

GAIL AIRL
Timesteps per iteration 2048 2048
Mini batch size 2048 2048
Discount factor 0.99 0.99
GAE discount 0.98 0.98

Policy network hidden layers [64,64] [64,64]
Value network hidden layers [64,64] [64,64]

Value network LR 3x107*  3x107*
Policy network LR 31074 3x107*
Num. epochs 10 10
Gradient clipping 0.5 0.5
KL-divergence limit 0.01 0.01
Damping coeff. 0.01 0.01
Backtrack coeff. 0.8 0.8
Backtrack iters 10 10

Cg iters 10 10
Disc. update iters 30 30
Disc. LR 3x107%  3x1074
Disc. network hidden layers  [100,100] [100,100]
Disc. mini batch size 2048 2048

flight control policy. In this paper, we investigate the relationships in the case of inverse reinforcement
learning algorithms. Three cases are investigated regarding the dimension of the observation. The
first case is to provide the observation obs = [6;, ¢, 6] to the policy during its training. The elements
are selected in order to determine control input based on the current deviation from the desired pitch
angle (i.e. 6, —0) and the change rate of the pitch angle. The first case is the minimum dimension
size in this experiment. The second case is obs = [6,, N,, g, 6], which is added the vertical load
factor N, to the first case. The selection of the elements was determined by trial and error. The third
case is that the elements of the observation are fully provided to the policy.

Regarding b), we discuss the time histories of aircraft states controlled by the policy. In addition
to the flight control performance given by calculating an evaluation metric (e.g. mean squared error),
the similarity to the expert behavior is investigated. Even if the flight control performance is almost
the same as the expert demonstrations, undesired behaviors (e.g. give too large control inputs) are
not acceptable in the sense of flight safety.

4 1 Results of GAIL

The learning curve of the GAIL on the pitch control task is shown in Fig. |3 where the solid
line corresponds to the average and the shaded region to the minimum/maximum returns (i.e. the
sum of all rewards in one episode) of evaluation rollouts over the three different random seeds.
At each simulation step, the reward is give by r = —0.5¢> — 15.0(6, — 8)> — 1.082. and the current
episode is terminated with adding the penalty r = —100 if |6, — 6| > 4.0 deg, which means that control
performance is better as reaching to r = 0. Note that the returns are only depicted so as to show the
performance check and are not used for the training. The red line shows the behavior of the policy
trained by providing the observation of obs = [6,, ¢, 6], the blue line obs = [6,, N., ¢, 6], and the green
line all observations. The yellow solid line shows the average return of the human expert.

In the cases of obs = [6;, ¢, 8] and obs = [6;, N., ¢, 6], the obtained policies perform comparably
to the human expert after the training of the total environment steps of 3 x 10°. It is confirmed that
reducing the observation size by selecting the essential elements for the pitch control task helps the
training and improves the performance of the policy. On the other hand, supplying all observations
for training the policy leads to poor performance and less sample efficiency.



Learning Flight Control Skills By Imitating Expert Demonstrations

=20
—~40
=il
E
g k0
~100
-120
—140 expert =—— obs=[8, g, 8] = obs=[8;, N, g, 4] full observation
0.0 0.s 1.0 1.5 20 25 a0
Steps <10

Figure 3 — Learning curve of GAIL on the changing pitch angle task.
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Figure 4 — Time histories of aircraft states of GAIL on the changing pitch angle task.

Figure [4] shows the time history of aircraft states on the changing pitch angle task. The expert
demonstration, whose simulation is carried out in MATLAB/Simulink, is also plotted for reference. In
the subplot regarding the pitch angle, the target pitch angle of 6, = 5.0 deg is plotted with the black
dash-dot line. The difference of the behaviors between obs = [6;, ¢, 6] and obs = [6;, N,, g, 6] is
seen in the time histories of the elevator deflection commands. In the case of obs = [6;, g, 0], the
pitch angle is kept to the target one with acceptable elevator deflection commands. On the other
hand, in the case of obs = [6,, N,, g, 6], the unsmoothed elevator deflection commands are provided
to control the pitch angle. This is considered to be due to the disturbance since the control input is
determined by the vertical load factor affected by turbulence. In the case of providing all elements
of the observation for the policy training, the behavior is not acceptable since the elevator deflection

6
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command is fixed at about the average of the expert command.

4.2 Results of AIRL

The learning curve of AIRL is shown in Fig. |5, whose plot layout is the same as in Fig. It is
confirmed that the performance and the sample efficiency are similar to those of GAIL. Selecting the
elements of the observation helps the policy training and improves the performance. Figure [6|shows
the time histories of the aircraft states controlled by AIRL. In the case of obs = [6;, ¢, 6], the behavior
is acceptable and the flight control task is successfully achieved.

Figure |7| shows the heat map of the estimated reward function in the case of obs = [6,, ¢, 6].
The heat map shows larger values at the pitch angle of around 5.0 to 6.0 deg and at the pitch rate
of around -1.0 to 0.0 deg/s. The learned reward function encourages the pitch angle to keep 5.0
deg with a smaller pitch rate, which corresponds to the flight control task to be achieved. Thus, as
the reward function, the flight control skill is estimated from the human expert demonstrations. By
estimating the reward function during the training, AIRL performs comparably to the human expert.

5. Conclusion

In this paper, we have investigated the application of inverse reinforcement learning to flight con-
trol tasks. By selecting only the essential elements such as the pitch angle and the pitch rate, GAIL
and AIRL successfully obtain the control policies from the human expert demonstrations. The per-
formance of both algorithms is almost the same as the human expert, whose behaviors are similar
to the expert demonstrations. In order to obtain more comprehensive results, our future works will
include simulations for both longitudinal and lateral directional motions at the same time with more
human expert demonstrations and more maneuvers.
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