NOISE REDUCTION AT FLAP SIDE EDGE AND UNDERCARRIAGE

32nd Congress of the International Council of the Aeronautical Sciences ICAS 2021, September 6 - 10, 2021 in Pudong Shangri-La, Shanghai, China

Presented by Michael Pott-Pollenske (DLR) on behalf of the Workpackage 4 – Airbus - DLR and Safran Landing Systems team

ICAS2020_1047

32nd Congress of the International Council of the Aeronautical Science September 6-10, 2021

Presentation Outline

Flap Side Edge

- > Technology development
- Progress in AFLoNext

2. Landing Gear

- > Technology Development
- Progress in AFLoNext

3. Flight Test

- Conduct
- Results

4. Conclusions

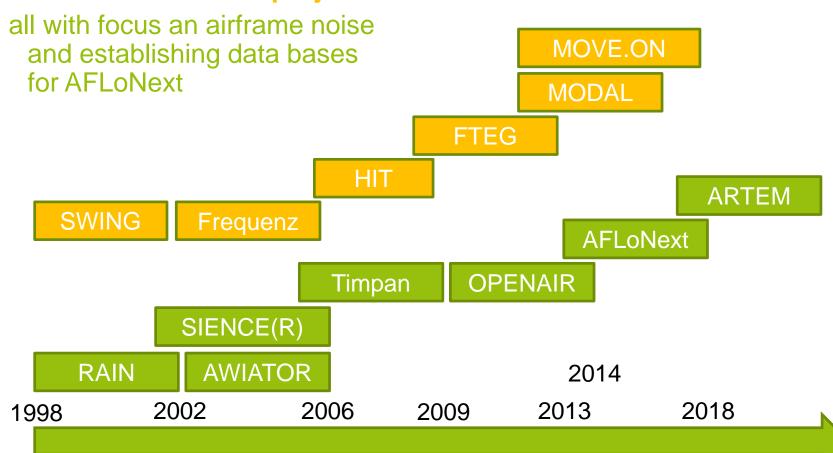
Workpackage 4

Objectives

- Technical solution of flap modification and low-noise treatment integration
- Proof of noise reduction potential of different treatments on A/C level
- Material specifications wrt. acoustic attenuation target.

Flap Side Edge for Airliner

- Preliminary producability analysis on material.
- Effects of FSE cut-out design on local flow field and implications on material specifications.


Flap Side Edge for BizJet

- Improve understanding of landing gear wake and flap flow interaction regarding interaction noise.
- Proof of noise reduction potential of different treatments on A/C level

Landing Gear for Airliner

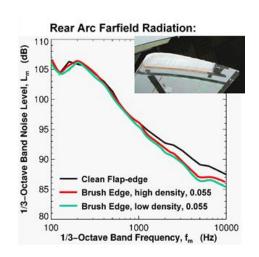
European Research Projects

- European research projects
- German research project

AFLONext

1. FLAP SIDE EDGE

Flap Side Edge Noise Studies


First attempts to reduce flap side edge noise by means of porous edge treatments were published by Fink in 1980

\ Fink M, Bailey D. "Model tests of airframe noise reduction concepts", 6th Aeroacoustics Conference 04 - 06 June 1980 Hartford, CT, USA

First European highlight: RAIN - Reduction of Airframe and Installation Noise

\ Dobrzynski W, Gehlhar B, Buchholz H: RAIN Task 3.2: High Lift Devices Noise Reduction Study - A320 Full-scale Wing in DNW-LLF, DLR IB /18, Braunschweig

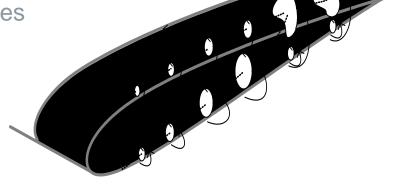
Flap Side Edge Noise Studies

Noise source maps for the 1600 Hz 1/3-octave band show

\ original flap side edge → dominant noise source

\ clean flap side edge → significant noise reduction, noise levels compare to those of slat tracks and flap track fairings

\ FSE noise is significantly reduced by the "porous" brush edge same levels, dynamic 12 dB **Brush FSE** Original FSE Clean FSE


Flap Side Edge Noise Studies

Flap side edges (FSE) were identified as relevant noise source at approach and landing

\ mechanism of FSE noise is a mix of

\ sharp edges and corners generating vortices

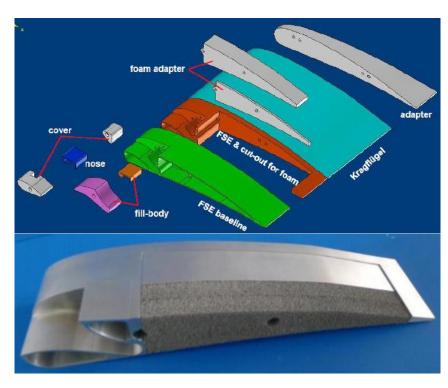
\ cavities acting as Helmholtz resonators

In AFLoNext:

WTT on PFSE using realistic A320 flap geometry in AWB

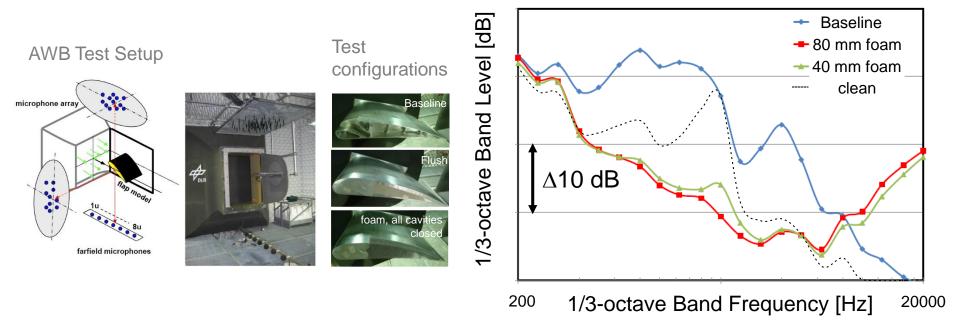
\ model and design of very realistic A320 FSE WT model to provide representative reference

Grant agreement no. 604013


Wind Tunnel Model

WTT on PFSE using realistic A320 flap geometry in AWB

\ second FSE model provided to test low-noise technologies including porous material


\ modular model design realised.

- \ to eliminate single noise sources separately
- \ to investigate spanwise extension of porous material (limitation given by flap structure).
- \ to assess noise reduction wrt. the flush FSE (elimination of cavities only)

\ target is best noise reduction at minimum modification level of A/C flap

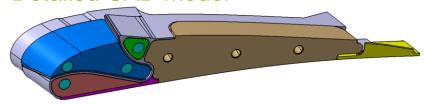
Wind Tunnel Test Data

WTT on FSE noise in the Acoustic Windtunnel Braunschweig (AWB)

- \ Flap side edge noise was localized and quantified for numerous configurations
- \ Significant noise reduction is already achieved for clean FSE
- \ Thickness of porous material can be limited to 40 mm

Preparation for Flight Test

Transfer from Lab to Reality


- \ Parts mounted into flap end rip
- \ Outer holes of solid parts closed with cover discs
- \ Design selected to allow mounting and de-mounting of all parts also on flap installed to aircraft

Required documentation for FT preparation

- \ Complete documentation
- \ Stress report(s)
- \ Assessment of
 - \ System integration
 - \ Aerodynamic performance
 - \ Maintenance
 - \ etc.

AFLONEX Grant agreement no. 604013

Detailed CAD model

Flap Side Edge prepared for installation

Flap Side Edge prepared for flight tests

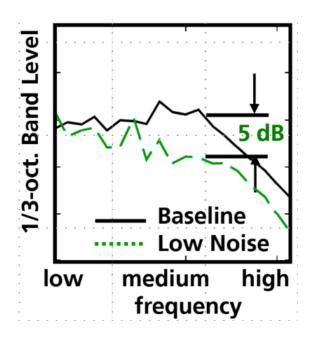
AFLONext

2. LANDING GEAR

Landing Gear Noise Studies

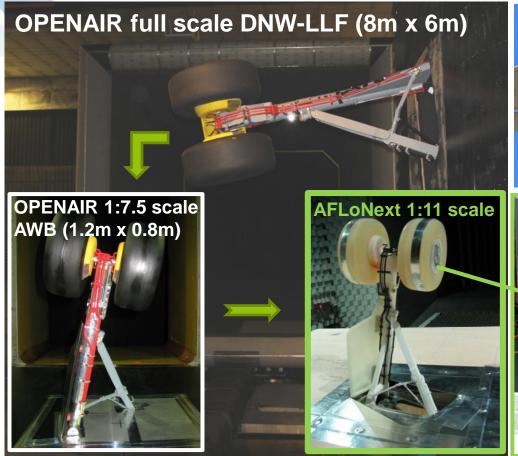
European highlight on full scale landing gear research Demonstration of streamlined full landing gear fairings (2-wheels)

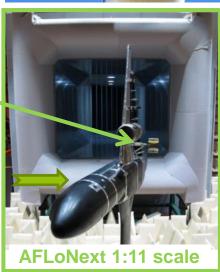
- \ Dobrzynski W, Buchholz H. Full-Scale A320 Landing Gear Airframe Noise Characteristics. DLR Report IB129-96/43, Braunschweig, November 1996
- \ Heller H, Dobrzynski W. Sound radiation from aircraft wheel-well/landing gear configurations. Proceedings of Inter-Noise 95 (10–12 July 1995), pp. 203-206.


Landing Gear Noise Studies

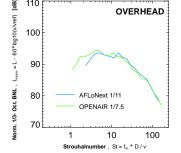
RAIN project: Reduction of Airframe and Installation Noise

\ Dobrzynski, W., Gehlhar, B., Buchholz, H., Holthusen, H., A340 Main landing gear noise reduction study, RAIN-TR-02.2-03-R3/DLR/1, 2000


Noise reduction potential with solid fairings on a 4-wheel landing gear



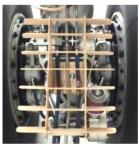
Development and Test of Noise Reduction Concepts



Development of landing gear noise reduction concepts to be tested in flight

- Brake cover
- Torque link fairing
- \ Leg door fairing

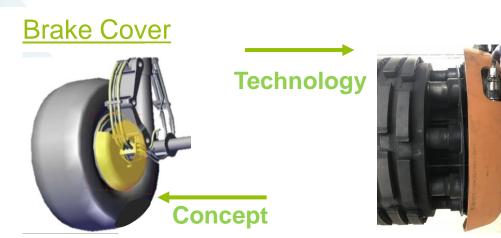
AFLONEX Grant agreement no. 604013

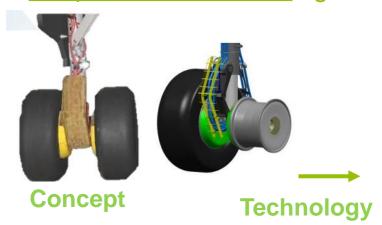


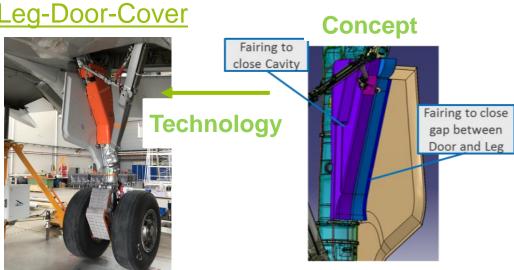
Development and Test of Noise Reduction Concepts

Facing constraints to integrate devices on a existing leg which is optimized for other functions

- \ Brake temperature evaluation of the impact of covers on brakes
- \ Available space, clearances and attachments
- \ Keep design acoustically friendly






Overview of Final Parts Installed on Aircraft

Grant agreement no. 604013

Torque Link Mesh Fairing

AFLONext

3. FLIGHT TEST

Aircraft Configuration and Flight Procedure

Flyover noise source identification and quantification

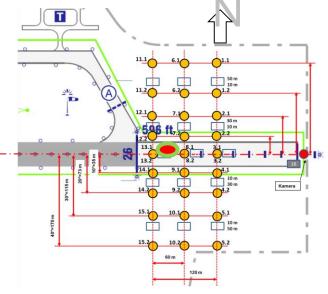
\ Engine power: flight idle, equivalent to N1 ~ 29%

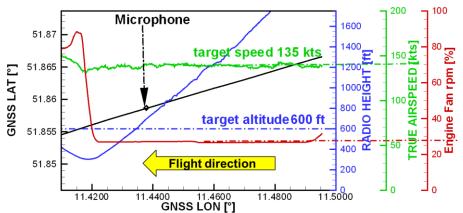
\ Target altitude: 600 ft

\ Lateral deviation ±10°

 $V_{Wind} < 12 \text{ kts}$

 \setminus 60 t > A/C weight > 54 t

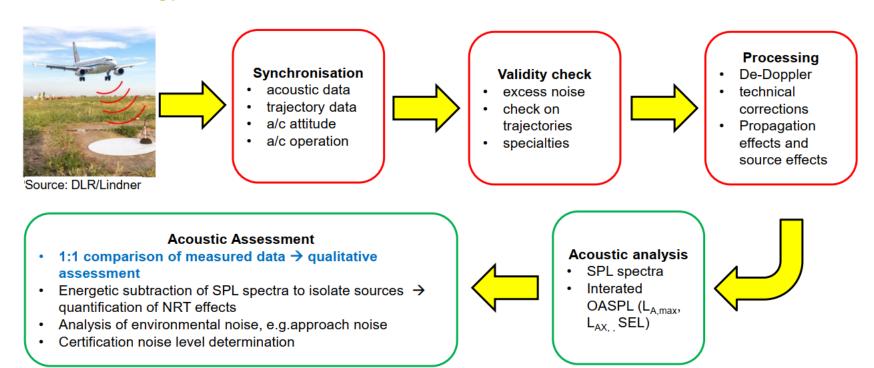

\ No precipation, no inversion or other anomalous meteorological conditions

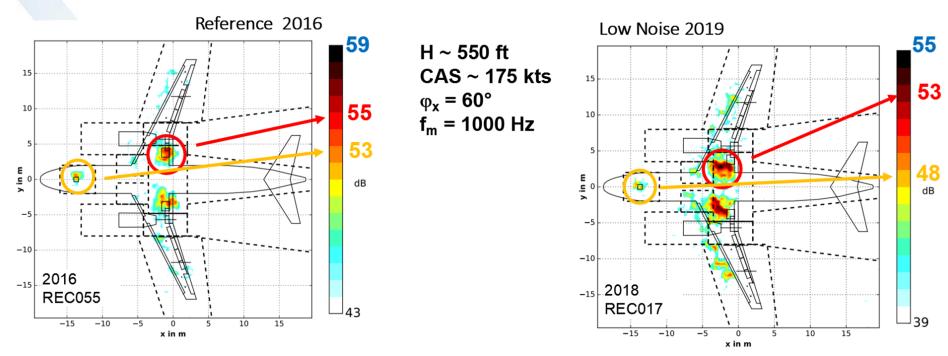


\ 250 mics. phased array

 $1.50^{\circ} < \phi_{x} < 140^{\circ}, \ \phi_{v} = \pm 40^{\circ}$

\ data acquisition synchronized on basis of GPS time

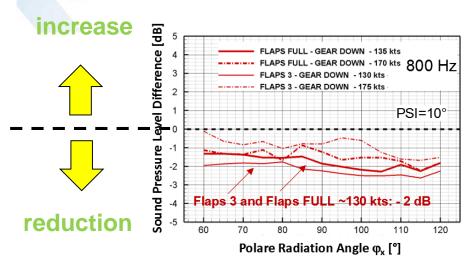


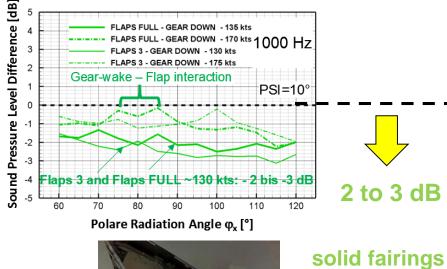

Data Processing and Analysis

Target: Derrive noise source characteristics for a source at rest for comparison to wind tunnel test data

Methodology:

Test Results – Landing Gear Sources


Array data proof noise reduction at the main landing gear

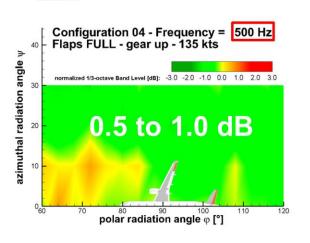

Noise landing gear contributes less to farfield noise

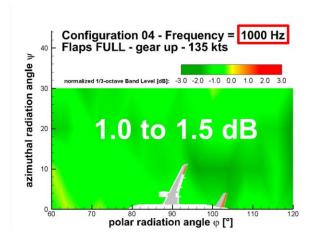
→ Single microphone measured sound pressure level data represent mainly mainly landing gear related noise

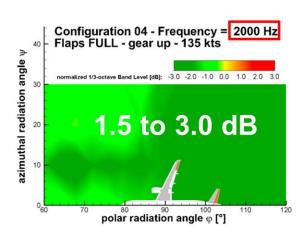
Test Results – Landing Gear Farfield Noise

Porous fairing, 40% open area

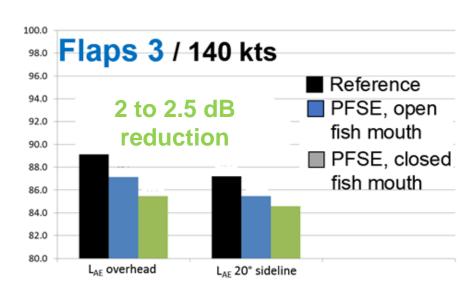
Reduce local flow speed $p^{2} \sim u^{6}$




deflect flow, protect parts


An up to 3 dB noise reduction was achieved by means of the LG fairings.

Test Results - Flap Side Edge



Farfield noise reduction, especially for rear arc radiation direction

$$SEL_{korr} = L_{A,max} + \frac{t_{10}}{2} + 12.5 * log_{10} {D/D_{Ref} \choose V_{Ref}} - 40.0 * log_{10} {V/V_{Ref}}$$

Evaluation of the single event noise level shows even an effect for the fish mouth closure

AFLONext

4. CONCLUSIONS

Summary and Conclusions

Summary

- \ Noise reduction concepts to mitigate landing gear and flap side edge noise were matured and flight tested
- \ Both concets showed a significant noise reduction
- \ The achieved noise reductions compared well to expactations based on wind tunnel test data and respective predictions.

Conclusions

- \ The flight tests showed part of the potential of retro fitting the actual fleet to achieve thenoise reductions demanded e.g. by the actual European strategic research agenda Flightpath 2050
- \ All tested parts are prototypes with limitations regarding daily operation. Further development is necessary to reach full airworthiness for normal airline operation.

Acknowledgements

This project has received funding from the European Community's Seventh Framework Programme FP7/2007-2013, under grant agreement no. 604013, AFLoNext project

The flight tests were enabled by the DLR internal research project Low Noise ATRA which aimed at the demonstration of retro-fit noise reduction technology for airframe and engine.

