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Abstract 

Airport ground processes are a critical path in the air traffic network. The management and reliability of the 
scheduled turnaround time is essential for the system’s robustness and efficiency. This paper presents a 
method based on approximate dynamic programming and reinforcement learning to optimize airline policies 
regarding the scheduling of turnaround times. The model uses arrival delay and the airport level of congestion 
as state variables, while the turnaround time is the control variable. The feedback control approach is capable 
to adapt the proposed policy to changes in the system, which is a key feature due to the non-linear, stochastic 
and time-varying nature of airport operations. Moreover, the methodology provides a decision-making rule and 
not only a static optimal value. The cost function of the method considers delay and “buffer” costs, but also 
costs related to perturbations in schedule adherence, internal (local) delays and airport level of congestion. 
This approach widens the turnaround time allocation problem to a system-level view. The method is applied 
to a case study in a busy European airport, where the dataset covers approximately 34,000 turnaround 
operations. We focus the analysis on two carriers with different business models. Results show that an 
accurate use of turnaround time allocation methods may help airlines to manage the punctuality performance 
of turnaround aircraft by minimizing system costs. 
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1. Introduction and motivation 
Airports are the nodes that interconnect flights in the complex air traffic networks [1]. Hence, airport 
ground processes are a critical path of this system: incoming aircraft continue on the subsequent legs 
of their planned itineraries and crew members and passengers connect to other flights or other 
transport modes [2], [3]. An incident at the airport environment may easily propagate through the 
network and generate system-level effects, like reactionary delays [4]–[6]. Airport ground operations 
mainly consists of the handling procedures at the stand (de-boarding, catering, fueling, cleaning, 
boarding, unloading and loading), which are defined as the aircraft turnaround [7]. Therefore, the 
management and reliability of the scheduled turnaround time become essential as regards to the 
system’s robustness and efficiency [3], [8]. Moreover, from an air transportation system view, 
uncertainties in airport operations have huge impacts on flight schedule adherence [9], [10]. Instead 
of following the traditional gate-to-gate framework, the air-to-air approach focusses on the ground 
trajectory of an aircraft, in order to enable efficient flight operations and reliable departure times [11]. 
Predictability of an accurate TOBT (Target Off-Block Time) represents one of the basic challenges 
regarding the new operational concept associated to 4D trajectory based operations [12]–[14]. The 
demand of high arrival punctuality at destination through an adjusted CTA (Controlled Time of Arrival) 
requires precise scheduling from the initial ground phase of a flight, as arrival punctuality is clearly 
driven by departure punctuality [11], [15]. Therefore, turnaround time allocation and predictability of 
departure times are key elements to avoid perturbations on trajectory schedule adherence [16], [17] 
and system reliability [18]. Once different initiatives have successfully decreased airborne delay over 
the two last decades, the next opportunity for time-efficiency improvement rely on airport surface 
operations [19]. 



A NOVEL APPROACH FOR TURNAROUND TIME ALLOCATION BASED ON REINFORCEMENT LEARNING  

2  

Nevertheless, airports are limited in capacity by operational constraints and different factors such as 
traffic mix, runway configuration, local weather or wake separation [20]. Imbalances between capacity 
and demand can lead to congestion problems [21], which have worsened due to the strong growth in 
the number of airport operations during the last decades [22]–[24]. The objective of this paper is to 
provide a novel methodology to manage turnaround times and departure schedule allocation, by also 
considering airport congestion. 
Since information management and data analytics are becoming strategic issues for the efficiency of 
the global air traffic management system [14], there is an opportunity to develop new conceptual tools 
based on artificial intelligence and machine learning. In the case of airport operations, this new tools 
can be applied to solve traditional scheduling and resource allocation problems, by considering the 
potential of these techniques for data science [25]. Airports act as dynamic and complex systems, 
with several facilities, processes and stakeholders that are interrelated and interact with each other 
[8]. In order to provide a holistic approach for the future “intelligent airport systems”, the new 
conceptual tools should not pursue isolated views but integrated ones; specially when solving 
problems like flight delay prediction, passenger profiling, traffic segmentation and supply chain 
optimization [26]–[28]. Regarding the turnaround scheduling problem, apart from airline strategies, 
new tools should also consider airport characteristics, like the level of congestion [29]. 
Reinforcement learning methods are based on the idea that the output of the system is a sequence 
of actions, as part of a global policy [30]. The system evolves and there is no such thing as the best 
action in any intermediate state; an action is good if it is part of a good policy. Appraising the changes 
in the system, these methods are able to assess the goodness of strategies and learn from past good 
action sequences, in order to generate an optimal policy. This policy also changes the system state, 
so a feedback control approach is developed [31]. This dynamic programming approach fits perfectly 
with the turnaround time allocation problem, where external conditions (as inbound delays or airport 
congestion) can affect the system’s response. 
Section 2 reviews the background information regarding turnaround management and presents our 
contribution. In Section 3, we state the problem characteristics and detail the proposed optimization 
model. Section 4 describes and discusses the main results for the case study. Finally, Section 5 
appraises the conclusions, the model applicability, and the potential further work. 

2. Background and contribution 
The Airport Transit View (ATV) concept analyses the “visit” of an aircraft to the airport [12]. This 
framework connects inbound and outbound flights, providing a tool to optimize airport operations and 
to enable a more efficient and cost-effective deployment of operator resources. It also changes the 
conceptual framework from the gate-to-gate approach to the air-to-air conception. Whereas the gate-
to-gate process is more focused on the airborne phase of the aircraft trajectory, the air-to-air appraisal 
concentrates on the airport ground operations between flight segment/legs [32], [33]. Figure 1 
illustrates the ATV domain: the operational attention relies on ground processes when optimizing 
resources and seeking time-efficiency improvements. 

 
Figure 1. ATV air-to-air concept (not to scale). 
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Aircraft turnaround refers to the process of servicing an aircraft on the ground between two 
consecutive flight segments. The turnaround consists of five major tasks related to aircraft ground 
handling (Figure 2): de-boarding, catering, cleaning, fueling and boarding as well as the parallel 
processes of unloading and loading cargo [7]. It may also include aircraft programmed maintenance. 
The minimum time needed for turnaround operations depends on the aircraft type, the airline business 
model, the airport configuration and the handling agent characteristics. From the operator perspective, 
all these handling processes will follow defined procedures. The Airplane Characteristics for Airport 
Planning manual (Figure 2) stablishes a minimum recommended turnaround time for each aircraft 
type and configuration. Nevertheless, uncertainty of operational conditions (e.g., runway 
configuration, aircraft performances, air traffic control procedures, regulations, airline strategies, 
available ground resources and meteorological conditions) makes on-ground operations a stochastic 
phenomenon and provides turnaround with a time-varying and random nature. 

 
Figure 2. Turnaround processes for B787-10. Adapted from Boeing (2017). 

Airlines plan the aircraft schedule time on the airport, between inbound and outbound flights, by 
considering [35]: (a) minimum recommended turnaround time [34], [36]; (b) route characteristics (e.g. 
point-to-point or hub-and-spoke network); (c) next destination (e.g. last flight, overnight parking and 
hub windows); (d) airport base type (e.g. full turnaround station or en-route station); (e) fleet 
optimization; (f) network accumulated delays and potential “slacks”; (g) slot allocation in coordinated 
airports; (h) crew availability; (i) minimum connecting time for passengers (e.g. hub and spoke 
strategies); (j) aircraft scheduled maintenance programs; and (k) the moment of the day (e.g. 
existence of long buffer times in the midday as a “fire break time” in order to control delay propagation 
in a network). Finding the optimal turnaround time is known as the Turnaround Time Allocation (TTA) 
problem [3], [37], [38]. This topic is related to airline scheduling [35], [39], airport slot distribution [40], 
[41], system congestion mitigation [21], [42], [43], resource allocation [33] and delay propagation [17], 
[44]. 
Airlines seek to increase fleet utilization by reducing total turnaround times; longer on-ground times 
between flights increases opportunity costs, as well as other expenses associated to the use of airport 
facilities [45]. However, if turnaround times are tightly scheduled, the airline can incur in local on-
ground lateness, multiplying inherent inbound delays. This situation leads to reactionary delays and 
congestion problems. Moreover, a significant portion of delay generation occurs at airports, where 
aircraft connectivity acts as a key driver for delay propagation [46]. Apart from the associated 
economic costs for all involved stakeholders [47], delays have a substantial impact on the schedule 
adherence of airports and airlines, passenger experience, customer satisfaction and system reliability 
[3], [39], [48]. Therefore, uncertainty management and delay propagation affecting internal airport 
processes have received significant attention over the years [33], [49]–[53]. Increased on-ground 
periods through “buffers” and “fire break times” may act as delay recovery mechanisms, in order to 
control delay propagation in a network. 
Therefore, the scheduling optimization problem for TTA (setting block times) is a trade-off between 
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limiting the on-ground flight phase to the minimum required time (increasing fleet utilization and 
reducing airport parking associated costs) and adding an additional “buffer” time (allowing schedule 
adherence, absorbing inbound delay and ensuring crew and passenger connectivity). 
Scheduled block time (SBT) setting is thus a crucial part in airlines’ scheduling [35], [48]. Two main 
approaches have been used to solve the TTA optimization problem. The first one considers a 
sequential view of the different processes that shape the aircraft turnaround, i.e. some tasks cannot 
be started until some others are completed [53]–[55]. This methodology distinguishes the required 
time for each partial operation, and the objective is to find the optimal order or the critical path that 
minimizes turnaround time by reducing costs. It leads to a version of the Resource Constraint Project 
Scheduling (RCPS) problem [56], an application of the Project Evaluation and Review Technique 
(PERT) method [53], [57], or a stochastic modeling followed by Monte Carlo simulation [49]. The 
second approach treats the turnaround process as a “single block”. In this case, the goal is to minimize 
costs considering the schedule adherence of flights. Costs results from delays (inherited from the 
previous flight and generated locally) or from adding an on-ground “buffer” (extra time - potential 
underused or untapped resources). This approach leads to mathematical optimization methods that 
evaluate the potential impact of schedule changes on flight delays and delay related costs [38], [58], 
[59]. Moreover, most of the proposed methods to solve the TTA problem can be categorized into two 
approaches, i.e., empirical/stochastic [49], [60]–[62] and numerical [38], [58]. 
The dynamically changing operation at airports makes it difficult to accurately predict operational 
times or generate fixed strategies for all situations [63]. Therefore, adaptive and stochastic 
approximation methods can be a useful tool for solving airport operational problems [37]. In the field 
of airport on-ground operations, optimal control theory and reinforcement learning methods have been 
previously applied for predictability and management of taxi-out and runway occupancy times [63]–
[67]. These methods deal with the problem of finding a control law for a given system, such that a 
certain optimality criterion is achieved; the aim is to derive control policies. 
Reinforcement learning and approximate dynamic programming methodologies have been proved to 
be effective for control of non-linear stochastic and dynamic systems [31]. This is aligned with the 
complex nature of airport operations and the uncertainties involved, which often make it difficult to 
obtain mathematical models to describe the complete airport dynamics. In such situations, feedback 
control techniques allow us to adapt the results to the changing conditions. Werbo’s work [68] 
illustrates the connection between various control theories and approximate dynamic programming. 
Methodologically, we approach the TTA optimization problem from a dynamic management 
perspective, based on reinforcement learning. This allows us to develop a continuous adjustment of 
the optimal TTA policy through a feedback control system, in order to evaluate scheduling questions 
such as the variation of scheduled time and the efficiency of turnaround operations under different 
conditions (airline strategy, airport congestion, air traffic regulations and level of inbound delay). 
Therefore, when setting the optimal TTA, we consider not only outbound delay and “buffer” costs, but 
also the costs of (a) perturbations in schedule adherence, (b) internal (local) delays and (c) airport 
level of congestion. 
Hence, the main contribution of the paper regarding the TTA problem is twofold: first, the introduction 
of a feedback control system approach, as a way to dynamically learn how to map situations to 
actions; and second, the consideration of additional costs, like those associated to system congestion 
and to the impact of schedule perturbations (availability of resources). This methodology that can be 
used to support decision making processes in balancing turnaround associated costs, improve 
departure time predictability (TOBT setting) and increase the system’s robustness. 

3. Problem statement and methodology 
Main opportunities to recover arrival delays and improve schedule adherence arise at the turnaround 
stage [11], [49], [69], [70]. For the purpose of this work, aircraft turnaround activities are aggregated 
as a “single” process or “black box”. This approach has proven its efficiency when assessing airline 
schedules and airport slot distribution [53]. It provides us with a “macro” view of aircraft turnaround 
operations and simplifies the observation and modelling work needed to adjust on-ground time 
allocation. To complete this approach we use a “timestamp” framework: the evolution of a flight, 
including the ground phase, can be described as a sequential flow of events [58], [71], [72]. Each of 
these events occurs consecutively, and if any of them gets delayed, this may result in subsequent 
processes also being delayed (unless certain “buffers” or “slacks” are added into the times allocated 
to the completion of certain tasks). The Airport Collaborative Decision Making (A-CDM) concept is 
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based on the definition of “timestamps” to enable close monitoring of significant procedures. It aims 
at increasing the overall efficiency of airport operations by optimizing the use of resources and 
improving the predictability of events. The A-CDM framework focuses especially on aircraft 
turnaround and pre-departure sequencing processes [73]. The main contribution of this milestone 
approach is to achieve common situational awareness among all stakeholders by tracking the 
progress of a flight from initial planning to take-off. Regarding the aircraft turnaround time at an airport, 
the following timestamps and metrics are considered in the proposed methodology for the TTA 
problem [12], [73]: 

• SIBT (Scheduled In-Block Time): The time that an aircraft is scheduled to arrive at its first 
parking position. 

• SOBT (Scheduled Off-Block Time): The time that an aircraft is scheduled to depart from its 
parking position. 

• TOBT (Target Off-Block Time): The time that an aircraft operator/handling agent estimates 
that an aircraft will be ready, all doors closed, boarding bridge removed, push back vehicle 
present, ready to start up/push back immediately upon reception of clearance from the TWR 
(air traffic control tower). 

• AIBT (Actual In-Block Time): The time that an aircraft arrives in-blocks. Equivalent to 
Airline/Handler ATA (Actual Time of Arrival) and ACARS (Aircraft Communications Addressing 
and Reporting System) = IN. 

• AOBT (Actual Off-Block Time): Time the aircraft pushes back/vacates the parking position. 
Equivalent to Airline/Handlers ATD (Actual Time of Departure) and ACARS = OUT. 

• MTT (Minimum Turnaround Time): Minimum time required to complete the turnaround 
process. 

• Turnaround “Buffer” (b): Increased on-ground period, i.e., schedule contingencies. There are 
two main categories of turnaround buffers [74]: (a) “at-gate buffer”, defined as the additional 
time built into the schedule specifically to absorb delay whilst the aircraft is on the ground and 
to allow recovery between the rotations of aircraft (although it may be necessary to wait for 
connecting passengers or for a crew change), and (b) “slot buffer or slack time”, due to the 
availability of airport slots: waits imposed upon the airline by factors that are essentially 
exogenous to its scheduling. 

• STT (SOBT-SIBT): Scheduled Turnaround Time (MTT + b). 
• Arrival delay (AOBT-SIBT): d1, inbound delay. Inherited delays from previous flight segments 

are key elements for airlines when allocating the turnaround scheduled time. Reactionary 
delays (caused by late arrival of aircraft or crew from previous journeys) may accumulate their 
impact throughout the day due to network effects. This is why airlines often build in larger 
buffers on earlier legs, as these typically have greater operational impact [74]. Reactionary 
delays usually represent 40%-45% of all generated delay minutes [15], [75]. 

• Turnaround delay: d2 (local delay) + d3 (ATFCM - Air Traffic Flow and Capacity Management 
delay). Local delay is due to perturbations in the system during turnaround operations 
(passenger and baggage processes, cargo, weather, airport facilities and procedures, 
technical and aircraft equipment, airline operations and handling), according to IATA delay 
coding system [7]. ATFCM delay is due to flow and capacity regulations: aircraft are hold on 
ground, preventing them to encounter airborne delays (holdings and/or path stretching) during 
which fuel is burnt and emissions are produced [76], [77]. 

• ATT (AOBT-AIBT): Actual Turnaround Time (MTT + d2 + d3) 
• Turnaround excess time: STT - ATT = [(d2+d3) - b]. This concept shows that there is a 

difference between the aircraft scheduled turnaround time and the actual turnaround time that 
goes beyond operational delay. It is related to the idea that turnaround duration can be 
“artificially” enlarged by the presence of schedule “buffers” or ATFCM regulations. 

• Departure delay (AOBT-SOBT): d4, outbound delay. Departure delays result from various 
reasons, such as “inherited” arrival lateness, delayed ground processes and/or disturbed 
ground operations. 

• Arrival congestion index (K): For each operation, K is the ratio of aircraft landed in the previous 
hour to the airport’s declared arrival capacity at this hour. It ranges from zero to one for normal 
situations. Hence, K>1 indicates that the airport is operating in a congested state. Landing 
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airport capacity is the element of the network which causes congestion and potentially lengthy 
flight delays which spread over the network [50]. This index allows us to include in our 
optimization model not only airline schedules and delay costs, but also the airport level of 
congestion, as a precursor for far-reaching system-wide impacts. 

The relationship between delays and operational times (scheduled, actual and targeted), is depicted 
in Figure 2. 

 
Figure 3. Milestones for the turnaround time allocation problem (not at scale). 

Delays are defined as “schedule delays”: the difference between a planned time and the actual one. 
“Schedule delay” can refer to a difference in either the early or late direction [78]. Therefore, schedule 
delays can be positive or negative. Schedule delays are common occurrences in airline and airport 
operations, given the multiple agents involved, the stochastic nature of operating times, and the 
unexpected disruptions in tasks. “Negative” delays occur when the schedule is running close to plans 
and can cause issues for airport operations; e.g., disrupting the sequencing of flights and the 
allocation of resources (gates, handling equipment), especially during peak hours at busy airports [3]. 
“Positive” flight delays often cause significant problems for all the involved stakeholders; e.g., they 
affect operational and financial performance of airports and airlines, schedule adherence and use of 
resources, passenger experience and satisfaction, and system reliability [3], [45]. 
The problem we want to solve is stated as follows: given certain inbound delay and level of congestion 
(state variables), we seek to find the optimal turnaround time allocation (control law), by considering 
costs related to delays, congestion, schedule deviations and on-ground extra time. We use a hybrid 
approach between the classical empirical and numerical models: a dynamic management model 
through reinforcement learning, so a feedback control can be implemented. The use of congestion as 
a state variable allows us to include the impact of the time of day and the existence of potential “fire 
break times”; whereas the use of inbound delay considers the network effect (accumulated 
reactionary delays). These factors were found to be determinant in the TTA problem by previous 
studies [38], [49], [58]. 
We optimize the STT as a method for deriving global control policies. The STT is aggregated as a 
“single block” (including partial processes and on-ground “buffer”) so the methodology can be easily 
adapted to consider inherent factors (aircraft type, airport configuration, “buffer” strategies and 
handling operative characteristics) and external conditions (weather, air traffic regulations). 
 



A NOVEL APPROACH FOR TURNAROUND TIME ALLOCATION BASED ON REINFORCEMENT LEARNING  

7  

3.1 Dynamic management mathematical model 
We consider the following non-linear discrete-time dynamic system 

𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡), 𝑡𝑡 = 0,1,2, … 

with a continuous map 𝑓𝑓 ∶ 𝑋𝑋 × 𝑈𝑈 → 𝑋𝑋 on compact sets 𝑋𝑋 ⊆ ℝ2, 𝑈𝑈 ⊆ ℝ. 𝑋𝑋 is called the state space and 
𝑈𝑈 is the control space. Moreover, let us define the column vector 𝑥𝑥𝑡𝑡 = �𝑑𝑑1

𝑘𝑘
�
𝑡𝑡
, where 𝑑𝑑1𝑡𝑡 is a sequence 

(𝑡𝑡 = 0,1,2, … ) of arrival delays measured in minutes. On the other hand, 𝑘𝑘𝑡𝑡 is also a time sequence 
containing the values of the arrival congestion index, concretely 0 < 𝑘𝑘𝑡𝑡 ≤ 1. 𝑢𝑢𝑡𝑡 is the turnaround time 
at time 𝑡𝑡. Additionally, we define a continuous running cost function ∶ 𝑋𝑋 × 𝑈𝑈 → ℝ , such as 𝜋𝜋(𝑥𝑥𝑡𝑡 ,𝑢𝑢𝑡𝑡;𝑦𝑦), 
where 𝑦𝑦 is a value that depends on external parameters. We assume 𝜋𝜋 to be a bounded function with 
a lower limit. 

Provided an initial state 𝑥𝑥0 = �𝑑𝑑1
𝑘𝑘
�
0
, our goal is to find a feedback law 𝐹𝐹 ∶  𝑋𝑋 → 𝑈𝑈  that stabilizes the 

system, in the sense that discrete trajectories for the closed-loop system 
𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡 ,𝐹𝐹(𝑥𝑥𝑡𝑡)), 𝑡𝑡 = 0,1,2 … (1) 

minimizes the accumulated cost 

�𝛽𝛽𝑡𝑡𝜋𝜋(𝑥𝑥𝑡𝑡 ,𝐹𝐹(𝑥𝑥𝑡𝑡);𝑦𝑦)
𝑇𝑇−1

𝑡𝑡=0

 , 𝑡𝑡 = 0,1,2 …  (2) 

where 𝛽𝛽 is a discount factor, such as 0 < 𝛽𝛽 < 1. Moreover, 𝑦𝑦 includes costs related to delays, 
congestion, schedule deviations and on-ground extra time, through 𝑦𝑦 = 𝑔𝑔(𝑑𝑑2,𝑑𝑑3,𝑑𝑑4), where 𝑔𝑔 is a 
continuous function that assigns an input for the previous costs. d2 is the local delay, d3 is the ATFCM 
delay and d4 is the outbound delay, measured in minutes. 
In order to obtain the feedback policy, we use the following optimality principle 

𝑉𝑉(𝑥𝑥) = min
𝑢𝑢∈𝑈𝑈

�𝜋𝜋(𝑥𝑥,𝑢𝑢;𝑦𝑦) + 𝛽𝛽𝛽𝛽�𝑓𝑓(𝑥𝑥,𝑢𝑢)��  , 𝑥𝑥 ∈ 𝑋𝑋, (3) 

Where 𝑉𝑉 ∶  𝑋𝑋 → ℝ is the optimal value function [see Bertsekas (1995)]. Using  𝑉𝑉, we find the feedback 
map by 

𝐹𝐹(𝑥𝑥) ∈ 𝑎𝑎𝑎𝑎𝑎𝑎min
𝑢𝑢∈𝑈𝑈

�𝜋𝜋(𝑥𝑥,𝑢𝑢;𝑦𝑦) + 𝛽𝛽𝛽𝛽�𝑓𝑓(𝑥𝑥,𝑢𝑢)�� , 

whenever the minimum exists (under continuity of V, for instance). Let us define the Bellman Operator 
𝑇𝑇(·) in equation (4), such as 

𝑇𝑇𝑉𝑉(𝑥𝑥) = min
𝑢𝑢∈𝑈𝑈

�𝜋𝜋(𝑥𝑥,𝑢𝑢;𝑦𝑦) + 𝛽𝛽𝛽𝛽�𝑓𝑓(𝑥𝑥,𝑢𝑢)��, (4) 

denoting by 𝑇𝑇𝑛𝑛 the composition of the mapping 𝑇𝑇 with itself n times, so 
(𝑇𝑇𝑛𝑛+1𝑉𝑉0)(𝑥𝑥) = min

𝑢𝑢∈𝑈𝑈
�𝜋𝜋(𝑥𝑥,𝑢𝑢;𝑦𝑦) + 𝛽𝛽(𝑇𝑇𝑛𝑛𝑉𝑉0)�𝑓𝑓(𝑥𝑥,𝑢𝑢)��. (5) 

It can be proof [80] that lim
𝑛𝑛→∞

𝑇𝑇𝑛𝑛𝑉𝑉0 = 𝑉𝑉∗,  by means of the contraction mapping theorem [see Bertsekas 
(1995)] where, operating in equation (5), 

𝑉𝑉∗(𝑥𝑥) = min
𝑢𝑢∈𝑈𝑈

�𝜋𝜋(𝑥𝑥,𝑢𝑢;𝑦𝑦) + 𝛽𝛽𝑉𝑉∗�𝑓𝑓(𝑥𝑥,𝑢𝑢)��  , 𝑥𝑥 ∈ 𝑋𝑋, (6) 

being equation (6) a fixed-point equation to solve numerically [see Powell (2011)]. 

3.2 Reinforcement learning algorithm 
The following reinforcement learning algorithm is designed in order to solve the fixed point equation 
(5). The idea for the algorithm comes from a wide range of literature related to this field [see Buşoniu, 
Schutter and Babuška (2010) for an excellent review]. In our case, we deal with a continuous-space 
and infinite-horizon problems. According to the literature, we have to deal with the intersection 
between Value iteration and Model-based techniques. We show the main steps of our algorithm, also 
involving approximate value iteration as a way to get a continuous-space solution from a discretized 
method [31], [81]. 
Below we present the main steps of the algorithm, which is based on repeatedly solving equation (1), 
based simultaneously on an estimate of 𝑉𝑉(𝑥𝑥). From an initial guess (for instance, 𝑉𝑉0(𝑥𝑥)), we 
approximate 𝑉𝑉𝑖𝑖�𝑓𝑓(𝑥𝑥,𝑢𝑢)�, and then an initial optimal candidate is obtained 𝑢𝑢0 based on equation (3). 
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We get and optimal value 𝑉𝑉1(𝑥𝑥) associated to 𝑢𝑢0 and, in the same way, we get a new optimal 
candidate 𝑢𝑢1. A sequence of fixed-points iterations continues until the sequence {𝑉𝑉1,𝑉𝑉2, … } converges 
under the scheme defined in equation (5). 

 Algorithm for Optimal Turnaround Managing 

1 Define a set of n admissible values for 𝑑𝑑1 and 𝑘𝑘 such as 𝑥𝑥𝚤𝚤� = {[𝑑𝑑1, 𝑘𝑘]𝑖𝑖}𝑖𝑖=1𝑛𝑛  

 Formulate an initial guess for initial value 𝑣𝑣𝚤𝚤� = {0}𝑖𝑖=1𝑛𝑛 , usually zero. 

 Initialize a set of m parameters to approximate the value function 

𝑐𝑐𝚥𝚥� = {0}𝑖𝑖=1𝑚𝑚 , usually zero. 

 Fix 𝑡𝑡𝑡𝑡𝑡𝑡 > 0 and 𝛽𝛽 

2 WHILE 𝜖𝜖 > 𝑡𝑡𝑡𝑡𝑡𝑡 

 Set  𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑣𝑣� 

3           FOR  𝑖𝑖 = 1, … ,𝑛𝑛 

 Set 𝑦𝑦 according to a cost rule 

 𝑣𝑣𝑖𝑖,𝑛𝑛𝑛𝑛𝑛𝑛 = min
𝑢𝑢∈𝑈𝑈

�𝜋𝜋(𝑥𝑥𝚤𝚤� ,𝑢𝑢;𝑦𝑦) + 𝛽𝛽𝑣𝑣𝚤𝚤�𝑓𝑓(𝑥𝑥𝚤𝚤� ,𝑢𝑢)�� � 

     
𝑣𝑣𝑖𝑖�𝑓𝑓(𝑥𝑥𝚤𝚤� ,𝑢𝑢)� = �𝑐̂𝑐𝑗𝑗

𝑚𝑚

𝑗𝑗=1

𝜑𝜑𝑗𝑗(𝑓𝑓(𝑥𝑥𝚤𝚤� ,𝑢𝑢)) 

           END FOR 

 Set  𝑣𝑣� = 𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 

4 Get  𝑐̂𝑐 = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝜇𝜇
‖𝑣𝑣� − Φ(𝑥𝑥�)𝜇𝜇‖2 

5 𝜖𝜖 = ‖𝑣𝑣𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑣𝑣𝑜𝑜𝑜𝑜𝑜𝑜‖ 

 END WHILE 

The notation used to approximate the value function (see step 3 in the algorithm) is: 

1. 𝑣𝑣 is a column vector of dimension n (corresponding to a discrete 𝑉𝑉(𝑥𝑥)) 

2. 𝑐𝑐 is a column vector of dimension m 

3. Φ(𝑥𝑥�) is a matrix 𝑛𝑛 × 𝑚𝑚 as follows Φ(𝑥𝑥�) = �
𝜑𝜑1(𝑥𝑥1�) … 𝜑𝜑𝑚𝑚(𝑥𝑥1�)

… ⋱ …
𝜑𝜑1(𝑥𝑥𝑛𝑛�) … 𝜑𝜑𝑚𝑚(𝑥𝑥𝑛𝑛�)

� 

4. 𝜑𝜑𝑗𝑗(𝑥𝑥𝚤𝚤� ) is the j-esim basis function for the i-esim point [generally, a radial basis function, see 
Murray et al. (2002)]. 

We approximate the value according to the following learning model 

𝑣𝑣 =  Φ(𝑥𝑥�)𝑐𝑐 + 𝜀𝜀 (7) 

Where 𝜀𝜀 is a random error (white noise). 

The algorithm works as follows: in step (1), it starts with a set 𝑥𝑥� ∈ 𝑋𝑋 of possible values for the state 
variables (in this case, arrival delay and congestion), an initial value array 𝑣𝑣� (generally zero) and an 
initial value for the set of parameters 𝑐𝑐. In (2), we iterate by minimizing the value function. At any 
algorithm step in (3), the cost 𝜋𝜋 is computed. The target is to learn from the iterative mechanism in 
order to minimize the value by finding the best policies for 𝑢𝑢. In (4), at every step, the algorithm uses 
equation (7) to get the best fitting parameters to approximate the value function. An approximator for 
𝑣𝑣(𝑓𝑓(𝑥𝑥�,𝑢𝑢)) is needed because, in general, 𝑥𝑥′ = 𝑓𝑓(𝑥𝑥�,𝑢𝑢) are points out of the initially set defined in step 
(1), as we have applied 𝑓𝑓(·) to an optimal candidate to policy choice 𝑢𝑢 ∈ 𝑈𝑈. This problem arises from 
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the difficulty of working with a very fine discretization [due to the curse of dimensionality, see Powell 
(2011)] in the state space. Finally, when the algorithm converges in step (5) we have attained a set 
of optimal policies 𝑢𝑢∗ (proposed turnaround times), linked to the initial state variables’ points. We can 
approximate the optimal policy to any possible point in the state space. 
The main key of our algorithm is that it reads from the intersection of the Bellman Equation, suitable 
for discrete-time Optimal control problems, the principle of approximate dynamic programming (ADP) 
[79] and some of the approaches of value iteration algorithms taken from the literature of 
reinforcement learning [84]. The approach of reinforcement learning used in this paper mainly deals 
with problems in which there is an agent in a data driven dynamic system. The agent makes some 
policy decisions regarding a set of control variables, so a reward is provided. But this policy also 
affects future rewards. When the optimum is reached, we obtain a feedback control law: the optimal 
policy is conditional to state variables (hence, it is a function, not only a value). One of the advantages 
of this technique is the possibility of the agent to readapt its policies in concordance with the possible 
sudden changes in the state variables, due to external shocks in the system. The way to synthetize a 
feedback policy from a data base is, firstly, to estimate a statistical time series model, mainly non-
linear, that links the policy decisions to the state variables. We use a designed value iteration algorithm 
for this purpose. Hence, we adapt the cost functions to the airline characteristics and the previously 
estimated dynamic system. We also take advantage of mesh-free techniques in order to deal with the 
curse of dimensionality [81] and we apply ADP. One of the advantages of using ADP is that reduces 
the cost of computing (since we do not need, for instance, a rectangular mesh) and the amount of 
points needed to get the optimal value. Finally, we also apply Radial Basis Functions (RBF), very 
common in reinforcement learning literature [84], to approximate both the value function and the 
feedback policy at every point inside the continuous state space. The methodology for solving the 
TTA problem is illustrated in Figure 4. 

 
Figure 4. Functional block diagram for the methodology development 

4. Case study 
The TTA optimization problem is applied to a case study at Adolfo Suárez Madrid-Barajas 
Airport (LEMD). The observation period corresponds to July and August of 2016, when 
67,678 aircraft movements (arrivals and departures) were registered at LEMD. Data 
regarding the aircraft and the flight (type, call sign/tail number and registration number) 
enable us to link the inbound and outbound movements, assessing each aircraft turnaround 
operation (i.e., trace the airport-airspace integrated operations). Therefore, by linking arriving 
and departing aircraft we can obtain the operational milestones and metrics for the TTA 
problem. The data preparation phase covers all activities required to arrange the final dataset 
from the initial raw operational data provided by the airport, including locating and refining 
erroneous measurements. 
We perform an initial data analysis in order to understand the operational profile of turnaround 
operations at LEMD. Figure 5 (a) shows the demand profile against the declared capacity of 
the airport for the 22nd of July 2016 (a busy Friday with no significant disruptions in the 
network). Meanwhile, Figure 5 (b) illustrates the evolution of arrival average hourly delay over 
the day (with one standard deviation intervals), for the complete sample of operations. Arrival 
delay presents two peak periods (midday and late night), with higher levels at the end of the 
day. The operational analysis of the scenario shows that arrival delay increases and 
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accumulates its impact over the day, due to the network effect. Therefore, a potential 
opportunity for delay recovering arises in turnaround operations. 

 
(a) 

 
(b) 

Figure 5. (a) Traffic demand profile for the 22nd of July and (b) Evolution of average hourly arrival 
delay (min/op) throughout the day for the complete sample (the error bars denote one standard 

deviation intervals). 

We analyse the turnaround operations of two airlines based on LEMD. The study is focussed 
on short-medium range routes (intra-European) with limited scheduled turnarounds (below 
150 minutes). Therefore, no “parking” or overnight based aircraft are considered. Moreover, 
we appraise operations with medium-short delays (between -15 min and +40 min delay in 
arrival), since causes of short delays are often quite different from causes of long delays 
(drivers for long delays are more related to irregular operations than to operational 
inefficiencies) [15], [85]. 
Each of the appraised airlines has a different business strategy. Airline A is a Low Cost Carrier 
with a point-to-point model. Meanwhile, Airline B follows a hub-and-spoke distribution system, 
with LEMD acting as its “central” hub (we therefore analyse the feeder traffic to long-haul 
flights). In order to obtain meaningful comparisons between the turnaround time allocation 
policies of both airlines, we select routes that are operated by similar aircraft in terms of on-
ground service time (the Boeing 737 family and Airbus A319/A320/A321 models). We can 
obtain the minimum recommended turnaround time for each aircraft type and configuration 
from its Airplane Characteristics for Airport Planning manual [34], [36]. Therefore, we obtain 
a sample size of around 3,000 flights for each carrier (operated in the same season by similar 
aircrafts). 
Figure 6 shows a statistical description of the turnaround process for Airline A (Low Cost 
Carrier) by depicting (a) the histogram and (b) the cumulative density function. Although the 
sample is rather heterogeneous (a range of 150 min), almost 80% of turnaround operations 
are scheduled to last less than 60 min. 58% of operations fall within the interval from zero to 
40 min. The mean, median and mode for the turnaround’s scheduled length are 49 min, 35 
min and 35 min respectively. Figure 7 (a) illustrate the boxplot for the scheduled turnaround 
time; the “sample outliers” (that could be due to faulty data or potential non-representative 
operations) might be excluded from the main sample, because of the possibility of biased 
results. Nevertheless, for a sample which is highly centred in the 35-45 interval with a wide 
range of variation, these outliers are important for the analysis, as they provide significant 
operational information. Figure 7 (b) represents the actual turnaround time (ATT) against the 
scheduled turnaround time (STT) for Airline A. Points below the diagonal line represent 
operations where the turnaround time has been compressed, by the use of buffers or 
improved ground operations efficiency or the allocation of more resources to speed up aircraft 
turnaround (b > d2 + d3). Meanwhile, points above the diagonal illustrate delayed turnaround 
processes (b < d2 + d3). Tighter scheduled turnarounds (lower values of STT), show a pattern 
of higher delayed operations. 
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(a) 

 
(b) 

Figure 6. (a) Histogram and (b) Cumulative Density Function for the Scheduled Turnaround Time 
(min) for Airline A. 

 
(a) 

 
(b) 

Figure 7. (a) Boxplot for the Scheduled Turnaround Time (min) and (b) Actual Turnaround Time (min) 
against Scheduled Turnaround Time (min) for Airline A. 

Figure 8 and Figure 9 illustrate a similar analysis of the turnaround process for Airline B 
(Network Carrier). The mean, median and mode for the turnaround’s scheduled length are 
now 58 min, 50 min and 35 min respectively. Data shows a higher dispersion in the STT of 
the Network Carrier; approximately 60% of turnaround operations are scheduled to last less 
than 60 min and 27% of operations fall within the interval from zero to 40 min. Hence, for 
similar routes and aircraft models, the Low Cost Carrier tends to schedule tighter turnarounds 
(in the purse of high daily aircraft utilization). Moreover, Figure 9 (b) illustrates that points 
above and below the diagonal (“positive” and “negative” turnaround excess times) are more 
equally distributed than in Figure 7 (b). 

 
(a) 

 
(b) 

Figure 8. (a) Histogram and (b) Cumulative Density Function for the Scheduled Turnaround Time 
(min) for Airline B. 
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(a) 

 
(b) 

Figure 9. (a) Boxplot for the Scheduled Turnaround Time (min) and (b) Actual Turnaround Time (min) 
against Scheduled Turnaround Time (min) for Airline B. 

Figure 10 illustrate the arrival delay histogram for (a) Airline A and (b) Airline B. Data show 
that in the group of considered delays (-15 min < d1 < 40 min), the Low Cost Carrier presents 
a "skewed left" distribution: the tail of “negative” delays is considerable longer. For the 
Network Carrier, are more symmetrically distributed. 

 
(a) 

 
(b) 

Figure 10. Arrival delay (min) histogram for (a) Airline A and (b) Airline B. 

Some arriving delayed flights might propagate this delay to their subsequent departure leg 
(reactionary delay). In order to model this propagation effect, and asses the optimal 
turnaround time allocation, the scheduled turnaround times (STT) and the minimum time 
required to perform the turnaround operation (MTT) are computed for each flight. STT is 
obtained from the airport operational data by linking inbound and outbound flights. 
Meanwhile, MTT is estimated based on the aircraft type as follows. Figure 6 (b) and Figure 8 
(b) provide the turnaround Cumulative Density Function (CDF) for the scheduled turnaround 
times of both airlines. For airline B, the MTT has then been computed for each individual flight 
as a random value between the 10% and the 50% interval of the probability distribution. Note 
that if this MTT is lower than the STT, then the MTT has been considered to be the STT. 
Montlaur and Delgado (2017) already found this procedure to be efficient when analyzing the 
MTT. For airline A, where 58% of operations fall within the interval from zero to 40 min, MTT 
for each aircraft type is obtained by comparing the minimum recommended turnaround time 
(at the Airplane Characteristics for Airport Planning manual) with the scheduled and actual 
turnaround time for each operation. 
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5. Results and discussion 
This section shows how a novel machine learning approach is used for the TTA problem, 
illustrating the main results. 

5.1 Models and estimated functions 
We estimate a set of models corresponding to the discrete-time dynamic systems related to 
equation (1). Considering equally spaced time gaps in the data generating process, we 
estimate discrete-time series models [86] following an iterative methodology, in order to find 
the best specification under our sample conditions. 
Regarding the state variables, we find as best models a logarithmic one for the arrival 
congestion index (k) and a linear-log for the arrival delay (d1). The functional form of the 
estimated equations is as follows 
𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘𝑡𝑡) = 𝛽𝛽0 + 𝛽𝛽1 log(𝑘𝑘𝑡𝑡−1) + 𝛽𝛽2𝑑𝑑1,𝑡𝑡−1 + 𝛽𝛽3 log(𝑢𝑢𝑡𝑡) + 𝛽𝛽4 log(𝑢𝑢𝑡𝑡) × log(𝑘𝑘𝑡𝑡−1) + 𝛽𝛽5 log(𝑢𝑢𝑡𝑡) × 𝑑𝑑1,𝑡𝑡−1 + 𝜖𝜖𝑡𝑡 
𝑑𝑑𝑡𝑡 = 𝛿𝛿0 + 𝛿𝛿1 log(𝑘𝑘𝑡𝑡−1) + 𝛿𝛿2𝑑𝑑1,𝑡𝑡−1 + 𝛿𝛿3 log(𝑢𝑢𝑡𝑡) + 𝛿𝛿4 log(𝑢𝑢𝑡𝑡) × log(𝑘𝑘𝑡𝑡−1) + 𝛿𝛿5 log(𝑢𝑢𝑡𝑡) × 𝑑𝑑1,𝑡𝑡−1 + 𝑎𝑎𝑡𝑡 

Where 𝜖𝜖𝑡𝑡 and 𝑎𝑎𝑡𝑡 are uncorrelated, independently and identically distributed white noise 
processes. The parameters are estimated by Least Squares (see Table 1) where we show 
the best fitting alternatives. 

Table 1. Parameters for the model 

 Airline A Airline B 
VARIABLES log (𝑘𝑘) 𝑑𝑑1 log (𝑘𝑘) 𝑑𝑑1 
     

log (𝑘𝑘𝑡𝑡−1) 0.188*** 69.06*** 0.947*** 2.984** 
 (0.0651) (8.443) (0.0657) (0.819) 

𝑑𝑑1,𝑡𝑡−1 0.00324*** -0.265*** -0.000337 0.120* 
 (0.000606) (0.0786) (0.000616) (0.0152) 

log (𝑢𝑢) 0.0561*** -3.388*** -0.0134 4.366*** 
 (0.00894) (1.159) (0.00903) (1.102) 

log (𝑢𝑢)
× log (𝑘𝑘𝑡𝑡−1) 0.105*** -17.08*** -0.0494*** 1.113** 

 (0.0149) (1.934) (0.0156) (0.402) 
log (𝑢𝑢) × 𝑑𝑑1,𝑡𝑡−1 -0.000738*** 0.0771*** 7.54e-05 0.00496 

 (0.000136) (0.0176) (0.000143) (0.0174) 
Constant -0.469*** 15.37*** -0.0801** -6.328 
 (0.0415) (5.379) (0.0387) (4.728) 
     
Observations 2,990 2,990 3,892 3,892 
R-squared 0.613 0.680 0.757 0.748 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 

The parameters shown in Table 1 are used to feed the algorithm for turnaround managing in 
step (2).  
For the model total cost function we consider the costs associated to: (a) departure delay (d4), 
(b) “buffer” extra time on-ground, (c) perturbations in schedule adherence, (d) local and 
ATFCM delays (d2 + d3) and (c) airport level of congestion. The internal parameters of the 
cost function shape the sensitivity of the system to these perturbations and are modelled 
using past studies [3], [38], [47], [64]. 

5.2 Policy results 
We run our algorithm considering a discount parameter of 𝛽𝛽 = 0.95, similar to the one used 
in the literature [63], [64]. The main outcome of the algorithm is the feedback map displayed 
on Figure 11 and Figure 12. The optimal turnaround policy time is a function of both state 
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variables: arrival congestion index (k) and arrival delay (d1). The numerical solutions of the 
method allow airlines to obtain policy recommendations. 

 
Figure 11. Optimal turnaround time allocation policy for Airline A (Low Cost Carrier). 

For Airline A (Low Cost Carrier), “negative” inbound delays with low levels of arrival 
congestion (below 0.2) provide an optimal policy for turnaround times that is slightly above 
the minimum turnaround time (MTT). The optimal policy is highly influenced by arrival delays: 
turnaround time grows with d1 at a significant rate when d1 is in the interval between 20 and 
40 minutes (aiming to absorb inbound delays on the ground). Nevertheless, for this range, 
congestion indexes greater than 0.2 considerably reduce the optimal policy (the costs of extra 
on-ground time and induced system congestion limit the enlargement of the turnaround time). 

 
Figure 12. Optimal turnaround time allocation policy for Airline B (Network Carrier) 

For Airline B (Network Carrier), the optimal turnaround time is almost always set in the MTT, 
especially with high values of the congestion index (driven by the high costs related to losing 
connectivity of the feeder traffic during the hub windows -highly congested periods-). 
However, there is area defined by arrival delays between 20 and 80 minutes and congestion 
indexes between zero and 0.2 where the optimal turnaround time abruptly grows with d1. 
Congestion indexes between 0.2 and 0.4 limit the growth of the optimal policy with d1. k 
affects the turnaround time in a discrete way: certain ranges of k have an impact on the 
optimal policy, but it is not a monotonous effect as in the case of d1, where marginal changes 
in the variable clearly affect the objective. 
Results regarding turnaround time allocation are in line with those obtained by previous 
studies: punctuality performance of inbound aircraft highly influences the optimal turnaround 
policy [49], [58]. This conclusion is especially significant for Low Cost Carriers. Likewise, 
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results concerning the impact of congestion on turnaround processes are aligned with the 
conclusions of previous studies: during highly congested periods, limiting scheduled “buffer” 
times on the ground reduces the cost of system saturation [42], [64], [71]. 

5.3 Comparison between recommended and real decisions 
Figure 13 illustrates the histograms that represent the distribution of the difference between 
the real policy decisions (obtained from the historical data) versus the optimal 
recommendations of the model (obtained by applying the values of the state variables 
recorded at the database to the feedback decision rule). In both cases the distributions are 
centered in zero. Even so, we find different patterns regarding the optimal policy. For Airline 
A [Figure 13 (a)], although there is a high quantity of probability accumulated around zero, 
we can observe that this carrier uses to unbalance its policy with more probability in negative 
values (the turnaround time is “underprovided”; i.e., they are scheduling tight turnaround 
times). Therefore, their real policies are, generally, slightly needing more time to achieve the 
recommended optimal turnaround time. However, the distribution is also skewed to the right, 
which means that there are some extreme points (in which their scheduled turnaround time 
is remarkably greater than the optimal policy). In the case of Airline B [Figure 13 (b)], the 
distribution also has a tendency to be right skewed. But, in general, their probability is more 
concentrated around zero, which means that their planned turnaround time is closer to the 
optimum one. 

 
(a) 

 
(b) 

Figure 13. Distribution of the difference (min) between the real policy decision and the recommended 
one for (a) Airline A and (b) Airline B. 

6. Conclusions 
Turnaround time allocation models usually consider static and fixed strategies. The 
optimization methodology developed in this paper improve the traditional view by considering 
a feedback control technique based on a reinforcement learning approach. Therefore, the 
model is capable to adapt the proposed policy to changes in the system. This is particularly 
important for airline scheduling problems: the stochastic characteristics of airline operations 
make them dependent on their strategy and procedures, but also on the operating 
environment (airport and air traffic regulations). Furthermore, the nature of the airline 
business model (more connecting traffic or more point-to-point traffic) and the schedule 
planning (the usage of “buffer” time) are key elements when managing on-ground operations, 
and the proposed method is capable to adapt the results to the airline sensitivity to external 
factors. Moreover, traditional turnaround management methods focus their analysis only on 
delay and “buffer” costs. Our model widens this approach to a system-level solution by also 
considering cost related to perturbations in schedule adherence, local and ATFCM delays 
and airport level of congestion. 
Results show that an accurate use of turnaround time allocation methods (through schedule 
“buffer” time) is able to manage the punctuality performance of turnaround aircraft by 
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minimizing system costs. The influence of arrival punctuality of inbound aircraft is found to be 
significant on the departure punctuality of aircraft. This is particularly important for Low Cost 
Carriers, as these airlines tend to schedule tighter turnaround. The level of congestion is also 
a key element when assessing an optimal turnaround policy. This is remarkable for Network 
Carriers, as they tend to operate during highly congested hub windows and have the risk of 
losing connectivity of the feeder traffic. Regarding the analysis of real turnaround policies, the 
appraised Low Cost Carrier tends to schedule “underprovided” turnaround times, while the 
Network Carrier plans turnaround times closer to the optimum ones. The scheduling of 
turnaround time is driven by the airline business model and should consider the individual 
punctuality performance of each route and airline; i.e. different schedule “buffer” times should 
be applied depending of the particular characteristics of the route, the airline and the airport. 
The proposed method has two main applications: (a) from a planning point of view, it allows 
us to obtain optimal policies that react to the state variables (i.e., we provide a decision-
making rule and not only a static optimal value); and (b) from a post-analysis perspective, the 
methodology allows us to appraise past strategies, by comparing the real decisions to the 
optimal solutions proposed. 
Machine learning techniques, particularly reinforcement learning, has proven to be an 
excellent method to solve the turnaround time allocation problem. It may help airlines to reach 
schedule adherence, absorb inbound delay, ensure crew and passenger connectivity and 
improve operational predictability for departure times. 
Future work will be focused on improving the accuracy and reliability of the model (more 
complete testing data and methodological improvements), and on comparing the results 
when the methodology is applied to other airline and airports (generalize the case study, 
particularly regarding the cost function and the functional form of the state variables). 
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