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Abstract

The linearized potential flow theory predicts that the aerodynamic center of thin airfoils at small angles of
attack shifts from the quarter—chord point in the subsonic regime to the half—chord point in supersonic flows.
However, this linearized theory is not valid for transonic flows and, therefore, it is not possible to predict the
correct position of the aerodynamic center analytically in this regime. The goal of this paper is to study the
influence of compressibility effects on the aerodynamic center for 2-D airfoils at transonic speeds by means of
the continuous adjoint method with an appropriate treatment of boundary conditions. In addition, the theoretical
framework of the method is extended to include time dependent flows as well.
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1. Introduction

Over the past twenty years the adjoint method has been consolidated as one of the most versatile
and successful tools for aerodynamic design [7, [10]. It has become a research area on its own,
spawning a large variety of applications and a prolific literature. The use of the adjoint method in
rotating machinery [13], surface design [8 9], refinement of meshes [11}|12], etc. proves its potential
as optimization tool. Yet, some relevant aspects of the method seem to have remained relatively less
explored. Such is the case with the adjoint boundary problem. In particular for Euler flows, both fluid
dynamic and adjoint equations entail complementary Riemann problems, and these yield boundary
conditions that are fully consistent with well-posedness.

This work takes full advantage of that complementarity on using characteristics—based boundary
conditions to solve the adjoint problem. On doing so, it enables one to use a single adjoint solution to
compute sensitivity gradients in a more general framework, that is, with respect to both geometric and
non—geometric control parameters. It is worth noting that the usual homogeneous adjoint boundary
conditions at far—field boundaries would not allow this kind of application. One of the main objec-
tives of the research is to use the method as a reliable and cost—effective tool to evaluate stability
derivatives.

2. Control theory for General Systems

This section aims to briefly present the control theory for general systems. It is based on [1], however
the time-dependency is considered throughout the text. Although the results for the aerodynamic
center shift are focused on steady state flows, a general unsteady formulation is discussed in order
to present the theoretical basis developed by the authors.

Consider the system of n-PDE’s subject to boundary conditions B. They can be represented in the
operator form given by equation (1).

N[Q(x.1).P|=R(x,P)

B(Q(z.1).P], =0 0
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The vector Q represents the coordinates in the state space of a point x from the phase space. The
vector P contains the set of control parameters.

Q(x)=101(x),- ,Qn( )]
P(x)=1Pi(X)s s Pn(X)] (2)
X = X1, 2)

The traditional approach used on design problems relies on writing the system of PDE’s as function
of the control parameters; usually, they correspond to the geometric parameters of the aerodynamic
surface. However, one can notice that the boundary condition operator B is also explicitly written as a
function of P in this work. The idea behind it is to expand the types of control parameters that can be
chosen, in other words, it opens up the possibility to compute non-geometric sensitivities associated
to physical parameters at the permeable boundaries (e.g. temperature, pressure etc.).

The measure of merit to be improved in aerodynamics is usually described as an integral of the flow
variables over the surface. In unsteady flows, the functional can be evaluated as a time-average over
a certain period T =t; —1, as in equation (3).

/to ! / P(x.t), x]dxdt (3)

The first variation of the measure of merit yields:

[ /to / 8Qdyds + / / ﬁl’,Sdedt} (4)

The first and second terms of the RHS are usually denoted, respectively, as oI and oIp. The term
olp is the variation associated to the parametric change; and it has a closed form for many cases.
On the other hand, the term 61 is more difficult to be computed since 6Q is unknown, it depends on
the flow solution.

The term 81y can be computed through different flow simulations. Alternatively, if one is able to
guarantee that all the 6Q are realizable, then there is no need for additional simulations. In order to
do it the governing equations are imposed as constraints to the variational problem with the Lagrande
multipliers ®, ¥ and a. It yields to the augmented functional:

G=1[Q,P|—(®,N-R)—(¥,B); — (a,P—Py) (9)

The second and third terms on the RHS are the constrains originated from the system equations
and its boundary conditions. The fourth term restrains the set of control parameters to a given
configuration baseline Py of prescribed values. The symbol (-,-) is the inner product defined as
follows:

t
<F,G>:/F.Gd§z:/'f/ F-Gd¥di
Q o 9
I/' (6)
<F,G>5:/ F-GdQ:/ /F~Gdet
0Q Iy S

One can take the differentials of equations to find a local optimum for the variational problem.

From (1):
L6Q =SéP

7
B,5Q = —Bp5P @

Where L =N;, and § = R, — Nj,. One can equally define them in terms of their components:

L= (Ny)}, k=1,..n, r=1,..,n
Sir=(Qk)p —(Ni)p, k=1,...n; r=1,...m
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The first variation of the augmented functional can be computed by taking the Gateaux variations of
each term from equation (5):
8G =(F4,0Q) + (Fp,6P) — (6®,N—R) — (®,L5Q)+
+(®,S0P) — (6, B); — (¥,B6Q)+ (9)
—(¥,BpSP); — (6a,P —Py) — (a, 5P)

One can integrate by parts the term (®,L5Q):

The expression above introduces the adjoint operator of L, represented by a L*. The term P[®,06Q],
is called bilinear concomitant and it is computed as an inner product; it can be decomposed into two
parts:

P[®,5Q], = (P (P),By5Q), + (B (@), M5Q), (11)

The first product is between P; (@) and the linearized boundary operator B,5Q. The second one
introduces the adjoint boundary operator B* (®) and M§Q. The operator M must be linearly indepen-
dent from B,. It should be highlighted that both the decomposition of the bilinear concomitant and M
are not unique [1]. Finally, 8G can be expressed as:

8G =—(6®,N—R)—(6¥,B),— (6a,P—Py) — (L*®—.7,,5Q)+
(F}, 5P) — (W, BpSP), — (a, SP)

And for the local optimums of the augmented functional:
0G =0 V{6Q,d8P,6D,8¥,da} € {locus of realizability} (13)
As explained in [1], the following condition have to be achieved:

1. The governing equations are satisfied along with the specified boundary conditions as in (T).
The parameter vector corresponds to the baseline configuration P = Py. This implies in the
annulment of the three first terms from equation (12).

2. If
¥Y=-P (D) (14)

then the fifth and sixth terms are cancelled and the vector ¥ can be written in function of ®.

3. The adjoint equation and the adjoint boundary conditions are satisfied for ®:

L'®—.7(=0
(15)
B*(®)=0
4. The vector a is given by:
(a,5P) = (®,SOP) + (Fp, 5P) — (¥, BpOP), (16)

which gathers the remaining terms when 6G = 0.

The last condition gives the realizable part of the sensitivity gradient, meaning (a, P) = §1. The proof
of this statement can be found in [1].
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3. Time-dependent Adjoint Method applied to Compressible Euler Equations

The further development is an extension of the work done in [4] and [3]. The adjoint method is
applied to the Euler equations as formulated in the previous section; however, one can notice two
generalizations presented here which are different from the previous cited works: first, the method
is applied to the time-dependent Euler equations; second, the control parameters can be associated
with the inflow and outflow boundaries. The former consideration leads to a time-dependent adjoint
method and the latter one allows one to compute sensitivities with respect to parameters at the
outflow and not only at the inflow.

Equation represents the Euler equations in a general system of coordinates &X.

0(JQy) OFk
5 + 98k 0 (17)
Where J is the transformation Jacobian for different coordinates. The state vector Q, and the flux
vector /X are:
p put
Qo = <P7> fE = ( pu'* 4 pg'* ) (18)
e (e+p)uf

Where e = p (e;+ %) and ¢; is the specific internal energy, and g'* is the metric tensor, which is the
identity matrix in Cartesian coordinates.
One can write the augmented functional as:

/ QP“’S det+<¢a, (JQ“>+k>+<w,B>s+<avP—P0> (19)
by ot I ) = ——~—
V I I

ol

The term denoted by I is the measure of merit and it is written explicitly in a integral to highlight the
fact that it is a time-averaged measure; the ratio of areas 4 shows the change of coordinates and
the subscript b,, stands for the wall boundary. By proceedlng as described before, the variation of the
augmented functional can be written for the unsteady Euler equations:

k
- <5¢a, o (g?“) > + <6¢a, ggi> +(6y,B),;+ (6a,P—Py) +

() Physical problem

a¢a aﬁa J¢a
<a (JOOx) < JEE 5Qﬁ>+

() Adjoint equation

JB 9B
<WaaQ;+¢aC]&ﬁ”ka5Qﬁ> +< aQ +¢aCa/3”k75QB> +

So

(1) Adjoint boundary conditions

0 |dS'| . 9p .
(50 5|+ 35 tornim). 5Q“>bw+ |, 9a0500)0] . 20)
(1) Adjoint boundary conditions (IV) Time condition

{<¢“’6(m">f“nk> <¢a’ <JB"I/<) fgnk>sr}]—farfield <3$ ° Cfl’g

> ¥
(V) Adjoint gradient
«0J 19 (JPo
<¢a, (Qat )> <5 (JB{f) ,f7 (82‘ )> +(p, [0r-18 (IB7) ma] Y, +

(V) Adjoint gradient

(y,BpdP), + (a, 5P)

(V) Adjoint gradient
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As it can be seen, the final form of equation is slightly different from the previous works [4} [3].
In equation (20), ) is the transformation between Cartesian and transformed space, Cl&/s are the

generalized Jacobian flux matrices, fZ is the flux vector in Cartesian coordinates. Each set of terms
in this equation characterises a determined part of the overall problem. Particularly, the term (V)
consists of the sensitivity gradient. If one wants to compute the sensitivities related to the inflow and
outflow with no geometry variations, term (V) becomes simply:

— (v, BpdP),. (sensitivity with respect to an inflow parameter
<a’5P>:{ (v, BpSP),, ( y p p ) 1)

— (v, BpdP), (sensitivity with respect to an outflow parameter)

4. Adjoint Contour Problem

Some novel developments have been built on what was accomplished in [4, 3] and, hence, on what
was originally proposed for the present work. The adjoint Euler problem has since been extended to
time—dependent flows, and to evaluate the sensitivity with respect to the outflow boundary condition,
namely the static pressure on that boundary. Now both inflow and outflow boundary conditions can
be parameterized, controlled and time-dependent. We are, as yet, in the process of implementing
these new resources in the computation of stability derivatives. Nonetheless, we have decided to
discuss their derivation in what follows, and to include a simple, yet illustrative application of it in Sec.

BPp

4.1 Time Conditions
The time condition comes from the annulment of term (IV) in equation (20). It is presented below:
Iy
)= | [ 0a80a0] =0 22)
Q o
It is interesting to work with the adjoint problem in terms of the variable r* =t; —¢, which can be
associated with a reversion in time. Consequently, the adjoint equations given in terms of r* have an
hyperbolic behavior complementary to the Euler's equations, where their difference lies in the signal
of the convective term.
As the initial condition of the physical problem is imposed, one can see that §Qu;, = 0. Due to
equation (22), the volume integral at time 7, is also null. As 75 =17 and } = 1, the initial condition of
the adjoint equation is simply:
Pa| iz =0 everywhere (23)

The initial condition of the adjoint problem corresponds to the final condition of the physical problem.

4.2 Boundary Conditions

The adjoint boundary conditions for steady flows are discussed in the works [6, |2, |4, 3]. Unsteady
flows are subject to the exact same adjoint boundary conditions [3], with the only change that one
must integrate them in reverse time as well. To that end, one must keep track of the whole time
evolution of the physical problem. In this work we introduce the appropriate form for active control of
the outflow boundary, which is presented below.

The number of conditions imposed depends on the flow regime and, therefore, they are analyzed
separately. For the supersonic outlet, there are four physical characteristics (in two dimensions) that
travel from the inside to the outside of the domain; thus, four adjoint characteristics travel from the
outside to the inside. There are four adjoint conditions to be imposed [4]:

@ils, =0 (24)

One physical condition must be imposed at the subsonic outlet. On the other hand, three adjoint
conditions must be imposed and one is determined by the flow solution in the interior of the domain.
The static pressure is usually chosen as the outlet condition and it can be described by a function
controlled through the parameters P[’,‘:

Outlet property {p = (x,y,z, t, PI’,‘) (29)
5
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The static pressure can be written in terms of the primitive variables Q1, Q2, Q3 and Q4. The linearized
form of this function can be presented in the convenient matrix form of equation (26).

0o 0 0 0]fso 0
0 0 0 o|ls 0
0 0 0 0 5% ==| o |[5P] (26)
u*+v d
(27;2) —u —v 1| 604 ﬁ% op
——
B, 6Q B,

The matrix By, is essentially the same as the one found in [4]. The interesting fact is that, although
that work did not consider a controlled outlet, one could apply the same adjoint boundary condition
from that reference. The boundary condition for the geometric case can be used for the present one:

01— Cips =0
P2 —Cr04=0 (27)
03 —C304=0

The coefficients C; depend on flow properties at time r = ¢, —¢*. In terms of operator, the adjoint
boundary conditions can be translated as:

1 00 -
01 0 -G

*

B = 001 -G (28)
000 O

The gradient with respect to an outflow parameter can be computed substituting the B} from equation

in equation (21).

5. Results

The adjoint problem thus formulated is used to compute the derivatives of the lift and pitching moment
with respect to the angle of attack for different Mach numbers. The airfoils profiles used are the NACA
0012 and RAE 2822. The present approach allows one to find the aerodynamic center shift according
to the Mach number.

The sensitivity gradients for steady flows are compared to their finite differences counterparts, in a
validation procedure that is similar to that presented in previous works. The adjoint method proposed
for steady state cases and the code used are validated in [5] |6l |2, |4, [3]. A test case for the time
dependent formulation of the adjoint method for non-geometric parameters is included at the end of
the section.

5.1 Aerodynamics Center Shift

This approach opens up the possibility of employing the adjoint method to assess the sensitivity of
a given measure of merit with respect to changes in aerodynamic variables as the Mach number,
in addition to the usual geometry—design applications. Figure [1| shows, for instance, gradients of
nondimensional lift, L, and pitching moment about the leading edge, M., with respect to the angle
of attack, «, for the NACA 0012 profile at zero angle of attack, as functions of the far—field Mach
numbers. The values of the gradients were also computed with finite differences for the values of
Mach 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0.
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(a) Gradient of the nondimensional lift with respectto  (P) Gradient of the nondimensional pitching moment
the angle of attack. about the leading edge with respect to the angle of
attack.

Figure 1 — NACA 0012: Sensitivities with respect to the angle of attack.

The continuous adjoint method shows agreement with the finite differences as expected. One of
the advantages of the adjoint method is the lower number of simulations it entails; one must do four
simulations to compute one point of j—g and one point of % with FD, while the same points can be
found with three simulations using the adjoint method (the flow solution and two adjoint solutions
according to the measure of merit chosen). In problems with a great number of parameters, the FD
method can become impracticable.

Analogous results are plotted for the RAE 2822 in figures [2a] and [2b]
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(a) Gradient of the nondimensional lift with respectto  (P) Gradient of the nondimensional pitching moment
the angle of attack. about the leading edge with respect to the angle of
attack.

Figure 2 — RAE 2822: Sensitivities with respect to the angle of attack.

Note that those sensitivities, given by the adjoint computations, enable one to determine the aerody-
namic center position, xa¢, of the airfoil by the expression:

Xac (dMie/da)

Xac _ 29

c (dL/da) (29)

where c is the chord of the airfoil.
Figure [3al shows the aerodynamic center shift for the NACA 0012 profile obtained by equation (29)
and the results from figure It is worth noting also that, on using this approach, it is possible to
obtain the sensitivity of the aerodynamic center position with respect to the far—field Mach number.
The aerodynamic center shift is also computed from the finite differences results. Figure |[3b| shows
the aerodynamic center for the RAE 2822.
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(a) Aerodynamic center shift of the NACA 0012 pro- (b) Aerodynamic center shift of the RAE 2822 profile
file in transonic flow regime. in transonic flow regime.

Figure 3 — Aerodynamic center shift of different airfoils in transonic flow regime.

5.2 Time-dependent case

A first result of the unsteady adjoint method for non-geometric parameters is presented. A totally
divergent supersonic nozzle with the geometry used in [4] is considered due to its simplicity for a
preliminary test case. A steady state solution is computed with the inlet conditions given in table [f]
and the outlet condition in table

Table 1 — Inlet initial conditions for subsonic flow

Inlet Conditions (non-dimension)
Total Pressure 1.01
Total Temperature 0.75
Inlet Angle 0.0

Table 2 — Qutlet initial condition for subsonic flow

Outlet Conditions (non-dimension)
Pressure | 0.95

This solution is used as initial condition for the time-dependent case. From there, the inlet total
pressure becomes a function of time and it can be written as p, (1) = p,, + A - p,, - sinwt, where p,, is
the initial total pressure, A is the amplitude of oscillation and w is the frequency. These are the control
parameters of the function. The total pressure is plotted for some frequencies in figure [4]

—w=12
—ow=15
=20

Po(t)

0 0.1 02 03
t

Figure 4 — Inlet stagnation pressure for different frequencies

8



ADJOINT-BASED STUDY OF THE AERODYNAMC CENTER SHIFT

All the values, including time, are given in non-dimensional form defined as:

P l Ui p
e Tt Y Ta P

cw T em o (30)
+_Ct= + +
t"T=—t T'=— ¢ =

The measure of merit chosen is the non-dimensional lateral force applied to the nozzle wall and
integrated over a given time interval T ~ 0.4. The sensitivity of the measure of merit with respect
to the frequency of the inlet total pressure is then computed with both adjoint method and FD. Fig-
ure [5a presents the pressure distribution at 7 ~ 0.2385 for @ = 20 and figure [5b| presents ¥; at the
corresponding t* = 0.1582.

9.5e-01

— 085
0.8

8
075 o

0.7
[065
62601

(a) Pressure at r = 0.2385

(b) ¥, at r* &~ 0.1582

Figure 5 — Subsonic divergent nozzle

The computed derivative g—({) is shown in figure @ Both results from FD and the time-dependent
adjoint method agree. In conclusion, some important aspects should be highlighted: the method
proposed can be applied to both internal and external flows; the physical initial condition is computed
as solution of a steady state flow, in other words, it belongs to the space of realizable flows and the
gradient of the time-averaged functional can be computed for an arbitrary time starting from this point
(as long as the solution is time accurate); as the adjoint solution depends on the physical solution at
each time step, the latter one needs to be saved entirely (or it must contain enough information for its
reconstruction).
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10-3 Inlet: p, = po, +A - po, - sinwt
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Figure 6 — Sensitivity of I with respect to the oscillation frequency w of the inlet total pressure
(subsonic case)

6. Conclusion

The adjoint method used to compute gradients with respect to geometric parameters is a current tool
in aerodynamic shape optimization problems; however, its use can be extended to non-geometric
parameters as well. The present work shows its capability to compute the aerodynamic center shift
for different airfoils with respect to the Mach number. The study indicates that the method can pro-
vide reliable results when compared to the finite differences approach with the advantage of less
simulations.

The development of the time-depend continuous adjoint method for non-geometric parameters is also
developed in the framework of this study. The preliminary results concerning a test case simulation
is used as a first validation of the method. Although the method is applied to an internal flow, it can
be used to external flows as well. The main difficult lies in the large data storage capacity that is
required to keep the whole time evolution of both flow and adjoint solutions.
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