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Abstract 

This paper addresses one of the key contemporary issues in avionics and Air Traffic Management (ATM) 
systems research: the development of a certifiable Detect-and-Avoid (DAA) system for trusted autonomous 
Unmanned Aircraft System (UAS) operations. DAA systems for unmanned aircraft are required to achieve a 
level of safety that is at least equivalent to the see-and-avoid capabilities of their manned counterparts. To 
achieve this overarching goal, DAA systems must account for the uncertainty arising from a number of different 
sources within the available Separation Assurance and Collision Avoidance functionalities. This paper proposes 
a novel approach to UAS DAA which accounts for the performance of the Communication, Navigation and 
Surveillance (CNS) systems, as well as a number of dynamic factors impacting the likelihood of a collision. The 
methodology is underpinned by rigorous modelling of the CNS performance characteristics, and the translation 
of those characteristics to the spatial domain to form a dynamic (i.e., performance-driven) geo-fence around 
each aircraft or ground obstacle track. Inflations are then applied to the volume to account for factors such as 
relative platform dynamics, uncertainty in wind forecasts, wake turbulence and adverse weather conditions. 
The methodology is demonstrated through case studies involving the use of Primary Surveillance Radar (PSR) 
and ADS-B to detect intruder aircraft.  

Keywords: UAS, avionics, navigation, ATM, detect and avoid, DAA, RNP, RCP, RSP, ADS-B, radar, CNS 
performance, separation assurance, d collision avoidance. 

1. Introduction

The current airspace is in a state of transition owing to the ongoing introduction of Unmanned Aircraft 
System (UAS) operations in the existing airspace. The UAS Traffic Management (UTM) concept [1] 
is envisaged as a means of safely and efficiently integrating and managing unmanned traffic. At a 
fundamental level, the basic UTM concept is a cooperative network which is separate from, but 
complementary to Air Traffic Management (ATM) separation services and based primarily on the 
sharing of information between operators on flight intent and airspace constraints. Apart from 
unmanned aircraft, the emergence of on-demand Urban Air Mobility (UAM) will also place increasing 
demands on the airspace. As UAM and UTM operations scale in size, transitions of conventional air 
traffic and unmanned aircraft across UAM corridors will have to be accounted for and managed. The 
management of the airspace and operations require the use of metrics or safety indices that 
characterize the airspace. These metrics are used to assess the safety of ongoing operations as well 
as the impact of proposed changes to operations. Consequently, evaluation of the metric(s) against 
safety thresholds are used to trigger remedial actions to avoid safety hazards. Traditionally, the 
probability of aircraft collision or collision risk, or alternatively, conflict risk has been widely used in 
conventional ATM processes as a safety metric to assess operations and to trigger remedial actions 
to avoid hazards. Since air-air/air-ground collisions are the primary hazards associated with 



unmanned aircraft operations, this metric is well-suited to drive airspace management in the different 
timeframes of a UAS operation. The relevant operational timeframes are adapted from manned 
aircraft [2] to the UAS context and are illustrated in Figure 1. Offline conflict evaluations are applicable 
before the mission commences i.e., when the aircraft is on the ground. During the online phase, while 
the mission is in progress, conflict assessment is performed over aircraft intents spanning multiple 
sectors (strategic) or within one sector (tactical).  
 

 
Figure 1 - Operational timeframes for UAS missions. 

Within the tactical online and emergency timeframes, DAA robustness is crucial in ensuring that 
aircraft can self-separate with the likelihood of collision maintained below a designated (extremely 
low) threshold. The typical sequence of events in assessing the likelihood of a collision is as follows. 
At any given epoch, the own (host) aircraft and intruder aircraft states are estimated. The uncertainty 
in these estimates depend on the employed sensors, their update rates, and fusion algorithms. 
Depending on whether a cooperative or non-cooperative surveillance modality is employed, the state 
information may or may not be shared between aircraft. These states are then propagated over a 
time horizon using known, assumed or estimated dynamic and/or kinematic models of the own and 
intruder aircraft. Knowledge of perturbations can be incorporated in the propagation such as model-
forecasts of wind and other weather phenomena. At each iteration of the time horizon, a set of metrics 
are evaluated to check for a collision. Different metrics are used in the literature. A common practice 
is to explicitly evaluate the probability of collision or collision risk. Alternatively, metrics that are 
surrogates for collision risk can also be used. These include the estimated time and distance to 
closest point of approach assuming constant velocities and headings.  
This paper proposes a unified approach to DAA (suitable for both cooperative/non-cooperative 
scenarios) which accounts for the performance of Communication, Navigation and Surveillance 
(CNS) systems of the aircraft involved in the encounter, in addition to weather phenomena and wake 
turbulence. A new analytical approach is presented to translate these factors to buffer layers that 
jointly form a dynamic geofence around each aircraft or ground/human-made obstacles (e.g., in low-
level flight operations). 
Section 2 briefly presents prior work in this domain. Section 3 presents the overview of the 
methodology followed by its mathematical underpinnings. Section 4 demonstrates the generation of 
each buffer layer as a function of CNS performance. Section 5 presents the simulation case studies 
and the demonstration scenarios. 

2. Prior work 



 
Most prior work in this application area is captured in the review of Conflict Detection and Resolution 
(CD&R) methods by Kuchar and Yang [3] (up to 2000), and subsequently, in the review by Tang [4] 
(up to 2019). The methodologies in the literature are primarily differentiated by the state propagation 
method, as well as the sources of uncertainty that are considered. Aircraft positioning errors are 
typically considered with suitable worst-case assumptions made regarding the navigation and 
surveillance equipment. Host and intruder aircraft uncertainties are typically combined using 
rotational transformations to a common coordinate system. An often-used methodology for this is 
provided in [5]. State propagation methods typically fall into one of three categories [3]: Nominal, 
worst-case, and probabilistic. Most methods either employ nominal propagation methods with the 
inclusion of safety buffers [6], or probabilistic approaches [5]. Worst-case propagation methods are 
less frequently employed owing to the propensity for a high false alarm rate. In time-propagating the 
states, it is necessary to account for the impact of the wind on the predicted relative positions of the 
aircraft. The frequency and accuracy of wind forecasting tools has steadily increased over the 
decades. However, wind forecasts are subject to uncertainty which must be accounted for during the 
propagation stage of conflict prediction. In [7], a stochastic wind field model is used to describe the 
wind over the propagation interval. Subsequently, a simulation-based approach is adopted wherein 
multiple trajectories are propagated to derive a probabilistic reach set. A conflict is predicted if the 
reach sets of two or more aircraft intersect. In addition to wind uncertainty, it is also necessary to 
account for uncertainty arising from system performance, mainly the performance of the 
Communication, Navigation and Surveillance (CNS) systems used in the encounter. However, 
accounting for all these variables on unmanned aircraft with Size, Weight, Power and Cost (SWaP-
C) constraints is challenging owing to the limited onboard computational resources. As a result, much 
of the research on conflict detection for unmanned aircraft employ surrogate metrics rather than the 
explicit collision risk. A large body of research on the UAS Detect-and-Avoid (DAA) problem does not 
explicitly evaluate the risk as a function of the actual probability of collision. Rather, a set of DAA 
metrics and thresholds are defined that serve as proxy variables for defining a collision. For instance, 
the Minimum Operational Performance Standards (MOPS) for DAA systems [8] defines time- and 
distance-based metrics (tau, modified tau, DMOD) and thresholds for issuing caution and warning 
alerts to initiate avoidance manoeuvres. This framework was extended in [9], where a methodology 
for assuring the integrity and continuity of estimating these metrics was presented.  
 

3. Model overview 
 
The degradation in CNS performance propagates to the downstream systems such as guidance, 
control and surveillance (in cooperative surveillance modalities such as ADS-B). Accurate, precise, 
and reliable navigation is a prerequisite for autonomous Separation Assurance (SA) and Collision 
Avoidance (CA). This is particularly true for Beyond Visual Line of Sight (BVLOS) operations where 
the remote pilot cannot visually assess the likelihood of loss of separation from other aircraft or the 
ground/terrain features. A similar dependency is present in the case of cooperative-surveillance 
scenarios, wherein state estimates of aircraft are shared across a network to assess and respond to 
collision threats in a timely manner. The relevant modules in a DAA system are shown in the 
architecture illustrated in Figure 2. The DAA system (airborne in this instance) receives inputs from 
the navigation and surveillance systems to estimate the relative distance between the host aircraft 
and a detected intruder aircraft or obstacle. 



 
Figure 2 - Functional architecture for SA & CA 

An erroneous navigation estimate can ultimately lead to a collision threat flag being issued late or not 
at all, increasing the likelihood of a collision. Performance degradation, e.g., a loss of accuracy or 
integrity in navigation, surveillance and communication must, therefore, be captured in DAA systems. 
In essence, the cause of a collision can be traced back to a failure of the overall CNS+A infrastructure, 
namely: 

• Failure of Navigation systems - Loss of accuracy beyond a specified limit without timely detection. 
This constitutes hazardously misleading information preventing timely redressal action from 
remote pilots; 

• Failure of surveillance systems - Loss in accuracy of intruder aircraft localization and non-timely 
relay of surveillance information to downstream sub-systems for recovery actions; 



• Failure of Communication - Loss/degradation of link to the point where necessary recovery 
actions cannot be implemented in a timely manner; 

Our proposed approach is to characterize the uncertainty in these performance factors and translate 
them to a virtual volume or dynamic geofence around each aircraft. This is conceptually illustrated in 
Figure 4 for a host and intruder aircraft involved in an encounter.  

 
Figure 3 - Scenario representing an encounter between two aircraft. 

The errors in aircraft positions and velocities are assumed to follow a Gaussian distribution. This is 
in line with the de-facto standard for navigation and surveillance systems in aviation. Gaussian 
distributions are widely used since they provide a relatively simple means of characterizing 
uncertainty in system states (aircraft states are characterized by a mean and standard deviation). For 
completeness, the basic formulation of a multi-variate Gaussian probability density function is 
presented here. Let 𝒩𝒩𝓃𝓃(𝜉𝜉, 𝜂𝜂,𝑃𝑃) represent a normal distribution for an 𝑛𝑛-dimensional variable 𝜉𝜉 with 
mean 𝜂𝜂 and covariance matrix 𝑃𝑃, i.e 
 

𝒩𝒩𝓃𝓃(𝜉𝜉, 𝜂𝜂,𝑃𝑃) = 1
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Figure 4 - Uncertainty volume emerging as a result of the multi-dimensional                                             
probability density functions. 

As an example, Figure 3 shows the aircraft positioning error modelled as a Gaussian random variable 
with three dimensions. A 3D Gaussian is represented by an ellipsoid. Its projection onto a two-
dimensional plane is an ellipse. Under the Gaussian assumption, the motion of each aircraft is 
characterized by a six-dimensional vector (position and velocity). For the host aircraft, the states as 
estimated by the navigation system is distributed according to: 

𝜌𝜌𝑎𝑎(𝑥𝑥𝑎𝑎, 𝑡𝑡; 𝑡𝑡0) = 𝒩𝒩6(𝑥𝑥𝑎𝑎 , 𝜇𝜇𝑎𝑎,𝑃𝑃𝑎𝑎)                                                      (2) 

The intruder aircraft is perceived through a set of surveillance sensors. The corresponding state 
estimated of the intruder aircraft are distributed according to:  

𝜌𝜌𝑏𝑏(𝑥𝑥𝑏𝑏 , 𝑡𝑡; 𝑡𝑡0) = 𝒩𝒩6(𝑥𝑥𝑏𝑏 , 𝜇𝜇𝑏𝑏 ,𝑃𝑃𝑏𝑏)                                                      (3) 

with mean μ𝑎𝑎, μ𝑏𝑏 and covariance 𝑃𝑃𝑎𝑎, 𝑃𝑃𝑏𝑏. In order to construct the dynamic geofence around each 
intruder aircraft in the scenario, the navigation uncertainty of the host aircraft is first centered on the 
nominal position of the intruder and then combined with the uncertainty of the intruder position (as 
estimated by the surveillance sensors). This process is illustrated in Figure 5. 

 

 
Figure 5 - Process to generate the dynamic geofences. 



Navigation sensors are characterized through a modelling effort to capture the distribution of 
measurement errors which cause aircraft position errors to deviate from nominal fault-free 
performance. Each error source is represented by a Gaussian distribution carefully chosen so as to 
conservatively bound the true underlying distribution of the error i.e. each error distribution is replaced 
by a Gaussian distribution that is ensured to capture the worst-case performance. The rationale for 
this overbounding process is presented in the next sub-section. The residual error from each error 
source is combined and the resulting Gaussian distribution is a conservative error budget of the 
sensor measurements. The conservative sensor errors are then translated from the sensor 
measurement domain to the aircraft position domain resulting in a volume around the true aircraft 
position. The dynamic geofence at a given epoch is illustrated in Figure 6 with the navigation and 
surveillance layers, and a buffer for wind. Further buffers can be added to the volume to account for 
additional failure modes potentially leading to a collision. A wind buffer layer accounting for the 
uncertainty in the wind forecast over the trajectory propagation horizon is also illustrated in the 
diagram. In this manner, each system failure mode is translated to a spatial bound to form the overall 
risk protection volume. Three sources of uncertainty are covered in this paper – navigation, 
surveillance and wind forecasts. Each of these sources of uncertainty are described in turn. 

 

 
Figure 6 - Conceptual depiction of the layers of the risk protection volume. 

 

4. Uncertainty Modelling 
 
The localization error that must be accounted for in geofence generation is mathematically described 
in this section.  
 

4.1 Primary Surveillance Radar errors 
 
Radar calculates target location by measuring its range and two angular coordinates with respect to 
the radar position. The angular coordinates commonly used are the elevation angle that is relative to 
the local horizontal, and the azimuth measured relative to the true north [10]. A tracking radar has to 
initially identify the target in space and then determine its range and angular coordinates [11]. Curry 
[10] summarises the multiple sources that can cause errors in radar measurements as: 

• A Signal to Noise (S/N) dependent random measurement error; 
• Random measurement error with fixed standard deviation due to noise sources in the radar 

receiver’s final stages. These errors are usually small and correspond to the S/N dependent 



errors that are produced when S/N is high; 
• A bias error that occurs due to radar calibration and measurement; 
• Errors due to conditions of radar propagation and the uncertainties in correcting these errors; 
• Interference errors that occur due to various reasons such as radar clutter; 

A  range measurement error equation is determined based on the major causes of range error [10]: 

𝜎𝜎𝑅𝑅 =  (𝜎𝜎𝑅𝑅𝑅𝑅2  +  𝜎𝜎𝑅𝑅𝑅𝑅2 + 𝜎𝜎𝑅𝑅𝑅𝑅2 )1 2⁄                                                         (4) 

where 𝜎𝜎𝑅𝑅𝑅𝑅  is the S/N dependent random range measurement error, 𝜎𝜎𝑅𝑅𝑅𝑅 = ∆𝑅𝑅

�2�𝑆𝑆𝑁𝑁�
  S/N is the signal to 

noise ratio and ∆𝑅𝑅 is the Radar Range Resolution (∆𝑅𝑅 = 𝑐𝑐
2𝐵𝐵

, c is the speed of sound and B is the 
bandwidth of the signal) 
𝜎𝜎𝑅𝑅𝑅𝑅 is the random error with fixed standard deviation produced when S/N is high.  
𝜎𝜎𝑅𝑅𝑅𝑅 is the range bias error as a result of calibration and measurement. 
Tracking refers to a radar identifying the position of one or more objects in space. Errors also occur 
when determining the target’s azimuth and elevation angles and the requirements determining the 
accuracy of these angle measurements for a tracking radar are more exacting than those for a search 
radar [11]. An angular measurement error equation is based on the major causes of angular errors 
on a radar system: 

𝜎𝜎𝐴𝐴 =  (𝜎𝜎𝜔𝜔2  +  𝜎𝜎𝜀𝜀2 + 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸2 )1 2⁄                                                                     (5) 

where 𝜎𝜎𝜔𝜔  is the rotational error of the radar system occurring due to the jitter of the motor mounted 
at the base of the radar that enables the rotation of the radar antenna; 𝜎𝜎𝜀𝜀 is the error in determining 
the elevation of the target; 𝜎𝜎𝐸𝐸𝐸𝐸𝐸𝐸  is the error from the electron beam generated. 

4.2 GNSS errors 
 
Various errors affect GNSS positioning, both computed frompseudorange and carrier phase 
measurements. Sabatini, et al. [12] summarises these errors into the following categories: 

• Receiver Dependent Errors such as Clock Error, Noise and Resolution 
• Ephemeris Prediction Errors 
• Satellite Dependent Errors that includes Clock Offset and Group Delays; 
• Propagation Errors such as Ionospheric Delay, Tropospheric Delay and Multipath 
• User Dynamics Error 

The User Equivalent Range Error (UERE) is a vector alongside the line-of-sight of the user-satellite 
that is a resultant of the projection of all system errors and is given by the following equation [12]: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 = ��𝜎𝜎𝑒𝑒+𝑐𝑐𝑐𝑐 + 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 + 𝜎𝜎𝑚𝑚𝑚𝑚 + 𝜎𝜎𝑛𝑛�                                                                        (6) 

Where 𝜎𝜎𝑒𝑒+𝑐𝑐𝑐𝑐 is the broadcast ephemeris and clock error, 𝜎𝜎𝑎𝑎𝑎𝑎𝑎𝑎 is the atmospheric (ionospheric and 
tropospheric) error, 𝜎𝜎𝑚𝑚𝑚𝑚 is the multipath interference and, 𝜎𝜎𝑛𝑛 is the receiver noise. The GNSS 
accuracy is not dependent on just the ranging errors, which determines position accuracy, but also 
on the navigation accuracy that is determined by the relative geometry of the satellites and the user 
and is given by the Dilution of Precision (DOP) factors [32]. 
 
Vertical Dilution of Precision (VDOP) 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =  𝜎𝜎ℎ                                                                             (7) 

Horizontal Dilution of Precision (HDOP) 



𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 =  �𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑒𝑒2                                                                     (8) 

Position Dilution of Precision (PDOP) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  �𝜎𝜎𝑛𝑛2 + 𝜎𝜎𝑒𝑒2 + 𝜎𝜎ℎ2                                                                   (9) 

Time Dilution of Precision (TDOP) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =  𝜎𝜎𝜏𝜏                                                                           (10) 

 Where 𝜎𝜎𝑒𝑒 ,  𝜎𝜎𝑛𝑛,  𝜎𝜎ℎ   are variances of east, north and height components 𝜎𝜎𝜏𝜏 is standard deviation in the 
receiver clock bias. The Estimated Position Error (EPE) and the Estimated Time Errors (ETE) of a 
GNSS receiver can be calculated using the PDOP (contributing to EPE in 3D), the HDOP 
(contributing to EPE in 2D) and the TDOP and are given by the following equations [32]: 

𝐸𝐸𝐸𝐸𝐸𝐸3𝐷𝐷 =  𝜎𝜎𝑅𝑅 .𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                                                                   (11) 

𝐸𝐸𝐸𝐸𝐸𝐸2𝐷𝐷 =  𝜎𝜎𝑅𝑅 .𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻                                                                   (12) 

𝐸𝐸𝐸𝐸𝐸𝐸 =  𝜎𝜎𝑅𝑅 .𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇                                                                      (13) 

Where 𝜎𝜎R is the standard deviation of pseudo-range measurement error 
 

 

4.3 ADS-B errors 
 
ADS-B is a cooperative surveillance system, wherein aircraft share data through a network. The 
relevant messages shared via the communication link include aircraft position, velocity, and ID, which 
are transmitted through a Mode-S Extended Squitter (1090 MHz). This type of scenario is illustrated 
in Figure 7. As per aviation standards [13], the aircraft position and velocity is obtained from the 
onboard GNSS receiver. Therefore, the localization component of the error associated with a given 
ADS-B system is essentially the error affecting the position estimate of the GNSS receiver. In aviation, 
GNSS-based navigation systems are categorized on the basis of their performance into distinct 
Required Navigation Performance (RNP) groups, which specify most importantly for the collision risk 
problem, the accuracy of the computed position solution and its integrity. In addition to the localization 
error, the latency between when the measurement is made and when it is utilized to assess risk must 
also be accounted for. ADS-B performance is placed into discrete accuracy and integrity categories. 
The performance category is part of the broadcast message along with the position and velocity 
information used to determine potential conflicts. The Navigation Accuracy Category-Position (NACp) 
specifies the 95% accuracy bounds of the position solution. The Navigation Integrity Category (NIC) 
specifies the horizontal and vertical integrity containment regions (essentially Protection Levels) as 



one of twelve possible integrity categories. These categories and corresponding latency contributions 
as specified in [14] are summarized in Table 1. 

 
Table 1 - Navigation Integrity Categories and corresponding bounds and latencies 

NIC Horizontal and Vertical 
Containment Bounds 

Latency 
contribution 

0 Rc≥ 37.04 km (20 NM) 

1.2 s 

1 Rc< 37.04 km (20 NM) 

2 Rc<14.816 km (8 NM) 

3 Rc<7.408 km (4 NM) 

4 Rc<3.704 km (2 NM) 

5 Rc<1852 m (1 NM) 

6 Rc<1111.2 m (0.6 NM) 

7 Rc<370.4 m (0.2 NM) 

8 Rc<185.2 m (0.1 NM) 

0.4 s 
9 Rc< 75 m and VPL< 112 m 

10 Rc< 25 m and VPL< 37.5 m 

11 Rc< 7.5 m and VPL< 11 m 
 

4.4 Wind forecast uncertainty 
In propagating trajectories over time to detect conflicts, it is necessary to account for the non-
stationary, inhomogeneous and correlated components of the uncertainty in the wind field. 
Additionally, uncertainty in wind components at the same location and time of day and season may 
differ under different weather conditions. Wind forecasts are provided through periodic Numerical 
Weather Prediction (NWP) models that are accessible to UAS Service Suppliers (USS) through 
Application Programming Interfaces (APIs). For conflict detection and risk assessment over the online 
timeframes (5-20 minutes), models such as the HRRR model in the United States is well suited owing 
to its high frequency data assimilation and update capability. A commonly applied practice in the 
literature which is also adopted in this paper is to model the wind field as the sum of a nominal and 
stochastic component. The nominal component is deterministic and is determined from NWP model 
forecasts that incorporates measurements from radiosondes, aircraft and other sensors. The 
stochastic component arises due to errors in the model forecast and have typically been determined 
based on comparison with empirical data, and subsequent extraction of error statistics. Vertical wind 
components are assumed zero in this work and are to be addressed in future work. Following the 
approach in [15], the stochastic horizontal components of wind 𝑤𝑤(𝑡𝑡,𝑃𝑃) are modelled as a function of 
time and location: 

𝑤𝑤(𝑡𝑡,𝑃𝑃):ℝ × ℝ3 → ℝ2                                                       (14) 
These errors are correlated over space (position 𝑃𝑃) and time 𝑡𝑡, and prior work has been done in 
characterizing forecast error statistics. In particular, the Rapid Update Cycle (RUC), the precursor of 
the HRRR model has been investigated in detail [16]. As documented in [15], 𝑤𝑤(𝑡𝑡,𝑃𝑃) is a gaussian 
random variable with two dimensions (considering horizontal wind fields), and a covariance matrix 
defined by: 

𝑅𝑅(𝑡𝑡,𝑃𝑃, 𝑡𝑡′,𝑃𝑃′) = 𝐸𝐸[𝑤𝑤(𝑡𝑡,𝑃𝑃)𝑤𝑤𝑇𝑇(𝑡𝑡′,𝑃𝑃′)] = �𝑟𝑟(𝑡𝑡,𝑃𝑃, 𝑡𝑡′,𝑃𝑃′) 0
0 𝑟𝑟(𝑡𝑡,𝑃𝑃, 𝑡𝑡′,𝑃𝑃′)�                (15) 



 
The wind field is assumed isotropic in the horizontal plane with independent components. As a 
simplifying assumption, the mean wind velocity vector is assumed to be zero and reflects the 
deterministic wind forecast. Table 2 lists the RUC model error standard deviations for different 
altitudes which are verified based on wind measurements obtained from ACARS. 

 
Table 2 - Forecast error standard deviation [16], [17] 

Pressure (mb) 𝝈𝝈(𝒉𝒉) 
900-800 5.01 

800-700 4.96 

700-600 4.75 

600-500 4.48 

500-400 4.54 

400-300 4.57 

300-200 5.17 

200-100 5.35 
 
An alternate simplifying assumption is sometimes applied in the literature to ignore the correlation 
altogether, implying that forecast error standard deviation is constant over the horizontal dimensions 
and time. If the aircraft is in level flight, then a conservative assumption can be made: 

𝑟𝑟(𝑡𝑡,𝑃𝑃, 𝑡𝑡′,𝑃𝑃′) = 𝜎𝜎2(ℎ)                                                        (16) 

4.5 Coordinate transformation 
In order to combine the different layers into a unified risk volume, the layers must be described in a 
common coordinate system. Assumed uncertainties for navigation and tracking based on GNSS and 
Radar are defined as [𝜎𝜎𝑋𝑋_𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆,   𝜎𝜎𝑌𝑌_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ,   𝜎𝜎𝑍𝑍_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺], [𝜎𝜎𝑅𝑅_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,   𝜎𝜎𝐴𝐴_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,   𝜎𝜎𝐸𝐸_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅] respectively. The 
tracking uncertainty ellipsoid resulting from the azimuth, elevation and range errors is given by the 
following equations: 

𝑅𝑅𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =  𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                (17) 

𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝛼𝛼𝑇𝑇 + 𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                  (18) 

𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =  𝜀𝜀𝑇𝑇 + 𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                          (19) 

Where 𝑟𝑟𝑇𝑇, 𝛼𝛼𝑇𝑇, and 𝜀𝜀𝑇𝑇 is the position of the detected target in terms of range, azimuth and elevation. 
The practice employed in this paper will be to transform the radar observations of the host and intruder 
aircraft to a local cartesian coordinate system. Transformation of this ellipsoid is given by the following 
equations: 

𝑋𝑋𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                              (20) 

𝑌𝑌𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                               (21) 

𝑍𝑍𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                               (22) 

Substituting 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ,𝛼𝛼𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 , 𝜀𝜀𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 from the equations above: 

𝑋𝑋𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × cos(𝛼𝛼𝑇𝑇 + 𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × cos (𝜀𝜀𝑇𝑇 + 𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)         (23) 

𝑌𝑌𝑇𝑇_𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × sin(𝛼𝛼𝑇𝑇 + 𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) × cos (𝜀𝜀𝑇𝑇 + 𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)          (24) 

𝑍𝑍𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) × sin (𝜀𝜀𝑇𝑇 + 𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)  (25) 



 
Expanding the above equations: 

𝑋𝑋𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)[cos𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
 cos𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −  sin𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +
 sin𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑛𝑛𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)]                                                                                       (26) 

𝑌𝑌𝑇𝑇_𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)[sin𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
 sin𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +  cos𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
 cos𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)]                                                                                       (27) 
 𝑍𝑍𝑇𝑇_𝑟𝑟𝑎𝑎𝑑𝑑𝑎𝑎𝑎𝑎 = 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)[sin 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − cos 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)                              (28) 
Mean error of the tracking error ellipsoid is given by the following equations 

𝜇𝜇𝑥𝑥,𝑅𝑅𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜇𝜇𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 . 𝑐𝑐𝑐𝑐𝑐𝑐𝜇𝜇𝛼𝛼,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇𝜀𝜀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                         (29) 

𝜇𝜇𝑦𝑦,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜇𝜇𝑅𝑅,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 . 𝑠𝑠𝑠𝑠𝑠𝑠𝜇𝜇𝛼𝛼,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇𝜀𝜀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                        (30) 

𝜇𝜇𝑧𝑧,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 +  𝜇𝜇𝑅𝑅,𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 . 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝜀,𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅                                      (31) 

Assuming the range, azimuth and elevation of the target tracked by the radar as 𝑟𝑟𝑇𝑇 ,𝛼𝛼𝑇𝑇 , 𝜀𝜀𝑇𝑇 respectively, 
the tracking error uncertainty ellipsoid is given by the following equations 

𝜎𝜎𝑋𝑋_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)[cos𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
 cos𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −  sin𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +
 sin𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)] −  𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −  𝑟𝑟𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝛼𝛼𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐𝜀𝜀𝑇𝑇                                               (32) 

𝜎𝜎𝑌𝑌_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)[sin𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
 sin𝛼𝛼𝑇𝑇  cos(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) +  cos𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . cos 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) −
 cos𝛼𝛼𝑇𝑇 sin(𝜎𝜎𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) . sin 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)] −  𝑌𝑌𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎 −  𝑟𝑟𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝛼𝛼𝑇𝑇𝑐𝑐𝑜𝑜𝑠𝑠𝜀𝜀𝑇𝑇                                               (33) 

 𝜎𝜎𝑍𝑍_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + (𝑅𝑅𝑇𝑇 +  𝜎𝜎𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)[sin 𝜀𝜀𝑇𝑇 cos(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) − cos 𝜀𝜀𝑇𝑇 sin(𝜎𝜎𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)] − 𝑍𝑍𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 −
 𝑟𝑟𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝜀𝜀𝑇𝑇                                                                                                                                             (34) 

Since the rotation transform is non-linear, the Jacobian of the rotation matrix is used. This locally 
linear approximation of the rotation is performed so as to preserve the Gaussianity of the tracking 
errors. Considering a GNSS-based navigation system, the navigation uncertainty ellipsoid is given 
by the following equations which are natively in the cartesian frame: 

𝜎𝜎𝑋𝑋_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =   𝜎𝜎𝑋𝑋_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                   (35) 

𝜎𝜎𝑌𝑌_𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =   𝜎𝜎𝑌𝑌_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                   (36) 

𝜎𝜎𝑍𝑍_𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖_𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆 =   𝜎𝜎𝑍𝑍_𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠                                                          (37) 

 

5. Simulation case studies 
 
A UAS encounter scenarios where the surveillance modalities are radar and ADS-B are simulated. In 
both cases GNSS is used as the navigation sensor on the host UAV. The parameters describing the 
scenario are summarized in Table 1. 
 
 
 



Table 3 – Radar and ADS-B scenario specifications 

Radar surveillance 

Operational 
factors 

Specifications 

Aircraft 
Fixed wing UAVs 
Wingspan: 15 m 

Radar parameters 

Monostatic scanning Primary Surveillance Radar 
• 𝜎𝜎𝑅𝑅= 4 m  
• 𝜎𝜎𝐴𝐴𝐴𝐴 = 13° 
• 𝜎𝜎𝐸𝐸𝐸𝐸 = 26° 

Trajectories 
Level flight 
Constant speed and heading 
Intersecting routes 

ADS-B surveillance 
Operational 
factors Specifications 

Aircraft 
Fixed wing UAVs 
Wingspan: 15 m 

Navigation 
GNSS receiver: GPS  
• RNP 0.1; Accuracy: 185.2 m 
• RNP 0.05; Accuracy: 92.6 m 

Trajectories 
Level flight 
Constant speed and heading 
Parallel routes 

 
For the first scenario, the error uncertainty ellipsoids due to Radar and GNSS are plotted in Figure 8, 
along with the combined dynamic geofence at one epoch. 
 

 
Figure 8 – Combined GNSS and Radar errors 

 



 
Figure 9 – Navigation (red) and surveillance (blue) volumes, and inflation                                                        

due to wind uncertainty (magenta) 

For the second case, the surveillance modality in this instance is ADS-B. The host and intruder aircraft 
follow parallel routes, travelling at a level altitude, with a constant speed and heading. The navigation 
accuracy category of 2σ = 185.2 m is considered. This corresponds to an RNP 0.1 accuracy 
specification. The altitude of both aircraft is 700 m (corresponding to 800-900 mb pressure). At this 
altitude, wind uncertainty is assumed constant at a value of 5.01 m/s, based on the data summarized 
in Table 2. At each epoch, the forecast trajectory is characterized by growing uncertainty over the time 
horizon due to the uncertainty in the wind forecast. 
 

6. Conclusion 
 
This article presented a flexible DAA analytical approach that accounts for the varying performance of 
the avionics sensors/systems and ATM ground equipment supporting aircraft flight operations. The 
model is intended to support the unsegregated access of Unmanned Aircraft Systems (UAS) to all 
classes of airspace, and the complexities associated with such operations. The relevant navigation, 
communication and surveillance performance factors were converted to a spatial bound to form a 
dynamic geofence surrounding each aircraft (the same concept can be easily applied to ground 
obstacles for low-level flight operations). Various inflation methods developed in previous research were 
summaries (i.e., relative dynamics, weather and turbulence) where briefly summarized and a new 
inflation model was introduced in this paper to account for uncertainty in wind forecasts. Future work 
will further investigate the impacts of communication performance and vehicle dynamics on the collision 
risk. Additionally, the potential to incorporate factors such as adverse weather and wake turbulence 
(including that of eVTOL aircraft) as buffer layers in the risk protection volume will be addressed. 
Furthermore, future work will tackle the application of the model to path planning and trajectory 
optimization for automated manned and unmanned aircraft collision avoidance tasks. 
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