
RESEARCH OF THE HYPERSONIC BOUNDARY LAYER INSTABILITIES
AND TRANSITION WITH THERMAL-CHEMICAL NON-EQUILIBRIUM

EFFECTS

Xianliang Chen & Song Fu

Tsinghua University, Beijing, 100084

Abstract

Compared to the widely-studied linear instabilities, the nonlinear analyses of the high-enthalpy and hypersonic
boundary-layer transition had received much less attention. In this paper, the tools of the nonlinear parabo-
lized stability equations (NPSE) and the Floquet analysis (or the secondary instability theory, SIT) methods
are employed to study the two important transition mechanisms in the hypersonic and high-enthalpy boundary
layers with thermal-chemical non-equilibrium effects, including the secondary instability of the axisymmetric
second-mode wave and the second-mode oblique-wave breakdown. The case studied is the flow over a blunt
cone with the free-stream Mach-number of 15 and zero angle-of-attack. The fundamental resonance is found
to dominate over the subharmonic resonance. Taking advantage of the high efficiency of SIT, the optimal
azimuthal wavenumber is determined corresponding to the strongest secondary growth. For the fundamental
resonance, the effects of TCNE on the secondary instability are found similar to increase the primary wave am-
plitude that leads to a higher maximum secondary growth rate and the corresponding azimuthal wavenumber.
For the oblique-mode breakdown, the higher growth rate of the second-mode waves leads to faster growth of
the streamwise vortex and other harmonic waves.

Keywords: hypersonics, transition, thermal-chemical non-equilibrium

1. Introduction
The accurate prediction and effective control of the hypersonic boundary layer transition are espe-
cially helpful in designing thermal protection systems and engine intake for high-speed vehicles.
However, the transition process is extremely complicated, mainly because of its high nonlinearity and
sensitivity to many factors [1]. The flow transition is even more complicated in high-enthalpy boundary
layers with the appearance of "high-temperature (real-gas) effects" [2]. Specifically, high temperature
excites the vibrational and electronic energies in molecules, as well as causes chemical dissociation
and even ionization, which invalidates the calorically perfect gas (CPG) assumption. It is a question
of how high-temperature affects the boundary layer transition process.
In flight where the free stream is usually "quiet", the natural transition is a more likely route [3]. Here
the disturbance within the boundary layer is excited through receptivity mechanisms, experiences
linear amplification, and then parametric resonance before the final breakdown to turbulence. From
the linear stability theory (LST) [4], it is known that the second-mode instability becomes dominant
when the free-stream Mach number is over 4. When the most unstable two-dimensional second-
mode wave is linearly amplified to sufficiently high amplitude, nonlinear interaction comes into play
leading to the rapid growth of three-dimensional waves. Here the large amplitude two-dimensional
wave is referred to as the primary instability wave, in contrast to the three-dimensional one as the
secondary instability wave. According to the frequency relation between the primary and secondary
waves, the resonance mechanisms are divided into three types, namely fundamental, subharmonic
and detuned resonance [5]. Besides, the oblique breakdown is also a viable path to turbulence with
initially only a pair of oblique waves [6]. For the numerical study of these nonlinear processes, a
series of numerical techniques were established, including direct numerical simulations (DNS) [6],
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parabolized stability equations (NPSE) [7], and secondary instability theory (SIT) [5]. Researchers
using these techniques emphasized the important role of the fundamental resonance [8] and oblique
breakdown [7] concerning the second-mode wave for hypersonic boundary layers. Besides, the
mechanism of the detuned resonance was highlighted where the low-frequency first mode and Görtler
mode were heavily amplified through the interaction with the second mode [9].
For high-enthalpy boundary layers, physical models and numerical methods for laminar flow solutions
were primarily established. When the time scales of these thermal-chemical processes are compara-
ble to that of the flow, finite-rate models of the energy relaxation and chemical reactions are required
to simulate the thermal-chemical non-equilibrium (TCNE) flow [10]. Based on these TCNE mod-
els, linear instability characteristics were widely studied for high-enthalpy boundary layers. Results
showed that the first mode was more stable and the second mode was destabilized as the boundary
layer became cooler and thinner. Meanwhile, energy relaxation and chemical endothermic reactions
absorbed the disturbance energy to stabilize the modal growth [11]. The separate effects of these
two paths were reflected by the dimensionless Damköhler number (the ratio of the thermal/chemical
time scale to the flow time scale). Based on the linear instability results, the eN method can be used
to predict the transition onset. In contrast, the nonlinear stage of the disturbance evolution received
little attention in high enthalpy boundary layers. Marxen et al. [12] simulated the fundamental reso-
nance in the case of a Mach-10 adiabatic flat plate. They concluded that chemical reactions didn’t
directly influence the secondary growth but indirectly affected the change of the primary instability.
Nevertheless, the selecting mechanisms in the parametric resonance require further investigation
to find the dominant one. Also, the applicability of the Floquet theory for the secondary instability
analysis is not clear. In addition, the oblique-mode breakdown process with high-temperature effects
hasn’t been investigated yet. Its transition mechanism and characteristic flow structures need to be
explored. This paper aims to develop the nonlinear PSE and Floquet analysis methods for thermal-
chemical non-equilibrium flows. The selected case is the flow over a blunt cone with the free-stream
Mach number of 15. The two important transition mechanisms are separately studied, including the
secondary instability of the axisymmetric second-mode wave and the second-mode oblique-wave
breakdown.

2. Physical models and numerical methods
2.1 Governing equations
At the temperature lower than 9000 K, electronic processes are usually negligible. The five species
model of air (N2, O2, NO, N, O) is selected. Extra conservations of species mass and vibrational
energy are added to the governing equation as compared with that for CPG flows. The physical
models adopted for TCNE flows follow the authors’ previous works [13, 14]. The N-S equation is
written in an operator form as

L (qqq) = S(qqq) (1)

where the operator L includes unsteady, convection and diffusion terms, while S represents the TCNE
source term. The 10 basic variables are qqq = [ρ,u,v,w,T,Ys,Tv] with s ∈ [2,5]. Here ρ is the density;
u, v, w the velocities in the streamwise, wall-normal and spanwise/azimuthal directions; Ys = ρs/ρ
the species mass fraction of air; T the translational/rotational temperature and Tv the vibrational
temperature. A laminar mean flow is needed first for stability analyses. For axisymmetric mean flows,
the full N-S equation eq. (1) is solved through a 5th-order shock-fitting solver [13]. A non-catalytic
wall boundary condition is assumed for all the species.

2.2 Parabolized stability analyses
The framework of the PSE method is briefly introduced below. The flow variable is decomposed into
the steady laminar part q̄qq and the disturbance part q̃qq. The disturbance governing equation is then
written as:

N (q̄qq+ q̃qq)−N (q̄qq) = S(q̄qq+ q̃qq)−S(q̄qq) (2)

The following Fourier decomposition is introduced in the (x-y-θ) coordinates:

q̃qq = ∑
m,n

q̂qqmn exp
[

i
(∫ x

x0

αmndx+nkcθ −mωt
)]

(3)
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where q̂qq(x,y) is the disturbance shape function, kc and ω the specified azimuthal wavenumber and
circular frequency, α = αr + iαi the complex streamwise wavenumber. The notation (m, n) is intro-
duced for the disturbance with the frequency of mω and azimuthal wavenumber of nβ . Substitute
eq. (3) into eq. (2) to obtain the governing equation for each mode. The parabolized form is written
as:

ÂAAmn
∂ q̂qqmn

∂x
=−D̂DDmnq̂qqmn − B̂BBmn

∂ q̂qqmn

∂y
+ ĤHHmn

∂ 2q̂qqmn

∂y2 + N̂NNmn exp
(
−i

∫ x

x0

αmndx
)

(4)

where ÂAA, B̂BB, D̂DD, ĤHH are 10×10 matrix coefficients as the functions of q̄qq, frequency and wavenumbers,
and N̂NNmn is the decomposed nonlinear terms. Equation (4) is for the nonlinear PSE analyses. If the
nonlinear term N̂NNmn is ignored, the equation for each mode is decoupled from each other to give the
linear PSE analyses. The non-parallelism of the boundary layer equation is further ignored in LST.
One can refer to Ref. [15] for more details.

2.3 Secondary instability analyses
When the two-dimensional/axisymmetric disturbance increases to large amplitudes, the flow profiles
distorted by the primary instability disturbance can be again linearly unstable, leading to the rapid
growth of three-dimensional waves. The updated basic flow q̄qq′ takes the form as:

q̄qq′ = q̄qq+A00q̂qq00 + ∑
m

m̸=0

Am0q̂qqm0 exp [im(αrx−ωt)] (5)

where Amn is the modal amplitude. The shape functions and wavenumbers of these axisymmetric
waves are obtained from the PSE calculations. The governing equation of the secondary disturbance
q̃qqsd is written as:

N
(
q̄qq′+ q̃qqsd

)
−N

(
q̄qq′
)
= S

(
q̄qq′+ q̃qqsd

)
−S

(
q̄qq′
)

(6)

From Floquet theory, the solution takes the form as [5]:

q̃qqsd = ε
{

∑
m

q̂qqm exp [i(m+σd)(αrx−ωt)]
}

exp(γx+ ikcθ) (7)

Here ε is the wave amplitude and γ = γr + iγi is the characteristic exponent, with γr the secondary
growth rate. The detuning parameter σd is introduced to classify different modes: the fundamental
resonance is associated with σd of 0, while the subharmonic resonance with σd of 0.5. The others,
at 0 < σd < 0.5, are named detuned modes. Substitute eq. (5) and eq. (7) into eq. (6), the governing
equation of q̂qqm is obtained by further ignoring the terms of O

(
A2

)
, O

(
ε2
)

and higher orders. The
resulting eigenvalue problem is solved with the same numerical method as that in LST.

3. Simulation setup and linear instability results
The free-stream parameters of the blunt cone flow are shown in table 1, which corresponds to the
altitude of 28 km. The nose radius is 4 mm and the cone half-angle is 8°. The wall temperature is set
to be 800 K, but the radiative wall boundary condition is used in the head region to allow higher wall
temperature due to the extremely high local heat flux [16].

Table 1 – Free-stream conditions for the flow over a blunt cone

Ma∞ AoA (°) p∞ (Pa) T∞ (K) U∞ (m/s) Re∞ (1/m) YN2,∞
15 0 1616 224.5 4506 7.878×106 0.767

The laminar flow field is shown in fig. 1. Due to the high free-stream Mach number, the angle between
the far-field shock and the wall is less than 2°. Figure 1(b)∼(d) gives the contours of the temperature,
vibration temperature and oxygen mass fraction around the stagnation region. The temperature
around the stagnation region exceeds 7000 K but drops rapidly downstream along the wall surface.
The vibration energy is continuously excited, and the oxygen near the wall is almost dissociated.
The linear instability characteristics are studied using LST. The neutral curves are calculated first as
shown in fig. 2. The growth-rate contours of the axisymmetric (kc = 0) waves are plotted in fig. 2(a).
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Figure 1 – Contours of the laminar flow: (a) the whole field and (b)∼(d) the head region;
(b) temperature, (c) vibrational temperature and (d) oxygen mass fraction

Due to the relatively low wall temperature, the second and third modes are destabilized, while the first
mode is stabilized. The frequency range of the second-mode instability region is 280 kHz to 830 kHz
within the computational domain. Compared with those of the second mode, the third mode has
lower growth rates and higher frequencies. The highest frequency of its unstable wave is as high as
1.15 MHz. It is known that the most unstable Mack modes are two-dimensional, while the dominant
first mode is three-dimensional. This trend is in agreement with that in fig. 2(b), where the growth-rate
contours of three-dimensional disturbance waves are plotted at s = 1.4m. The first mode instability
appears in the azimuthal-wavenumber range of 49 to 119, but its growth rate is much smaller than
those of the second and third modes.
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Figure 2 – Growth-rate (−αi, 1/m) contours of the disturbances (a) for axisymmetric waves and
(b) with different azimuthal wavenumbers at s = 1.4m

Figure 3 gives a view of the N factor curves, contributed by the axisymmetric second mode, at different
frequencies and their envelopes. At the frequency range of 450 kHz to 500 kHz, the maximum N factor
of the disturbances is within 8 to 10, and the corresponding streamwise locations are from 1.07 m to
1.3 m. This is the estimated transition onset based on some flight test data [17].
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Figure 3 – N factor curves of the axisymmetric second-mode waves for the disturbances with
different frequencies

4. Fundamental and subharmonic resonance case
This section focuses on the secondary instability process that occurs when the axisymmetric second-
mode wave grows to a large amplitude. The two mechanisms studied here are fundamental reso-
nance and subharmonic resonance. Firstly, the axisymmetric second mode (1, 0) is superposed to
the laminar flow to see its streamwise evolution. From section 3., the frequency of mode (1, 0) is se-
lected to be 490 kHz, which corresponds to a maximum N factor of 9. The initial amplitude is 0.1 %,
measured by the temperature disturbance, at the computational inlet s of 0.69 m. The streamwise
evolution of mode (1, 0) and its harmonics are depicted in fig. 4(a). The primary wave follows the
linear growth downstream until it reaches an amplitude of O(1) at around s of 1.03 m and begins to
saturate. Higher-frequency harmonic waves and the mean flow distortion mode (0, 0) show similar
curves of the streamwise evolution with rapid amplification and then saturation. Based on the pri-
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Figure 4 – (a) Streamwise distribution of mode (1, 0) and its harmonics, as well as (b) contours of
the secondary N factors by SIT of the fundamental mode

mary disturbance flow in fig. 4(a), the growth rates of the fundamental resonance, γr (see eq. (7)),
are calculated using SIT at different azimuthal wavenumbers. The contours of the N factors of the
secondary disturbances, Nsd, are drawn in fig. 4(b) with the starting point at s = 1.02m. The op-
timal azimuthal wavenumber kc,opt, at which the secondary disturbance experiences the strongest
growth, is measured to be 356 under the current computational parameters. The growth rates of
the subharmonic resonance are also calculated at s = 1.1m, as is shown in fig. 5(a). It is shown
that the subharmonic resonance has much lower growth rates than those of the fundamental reso-
nance. Also, the azimuthal wavenumber corresponding to the maximum growth rate is smaller in the
subharmonic resonance case.
For verification, the NPSE calculation is performed with initial mode (1/2, 1) at kc of 200. As is shown
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in fig. 5(b), mode (1/2, 1) experiences the subharmonic growth with the saturation of mode (1, 0).
However, the growth rate is relatively low, and the amplitude is only increased by 10 times at 1.2 m.
In contrast, mode (1, 2), generated by mode (1/2, 1) through nonlinear interactions, experiences
rapid growth through the fundamental resonance with mode (1, 0) at kc of 400. Although the initial
amplitude of mode (1, 2) is only 10−12, its amplitude is equivalent to mode (1, 0) at s = 1.2m. The
phase velocity curves indicate that mode (1, 2) is phase-locked with mode (1, 0) in the resonance
region. This phase-locking state provides the optimal chance of the energy transfer from the primary
wave to the secondary [18]. In contrast, mode (1/2, 1) is phase-detuned with mode (1, 0), and the
phase difference between the two is alternately positive and negative. The resulting growth rate is
thus much lower in the subharmonic resonance.
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Figure 5 – (a) Growth rate by SIT of the fundamental and subharmonic modes with different
azimuthal wavenumbers at s = 1.1m, and (b) streamwise distribution of the amplitudes and phase

speeds of representative modes in the subharmonic resonance case

5. Oblique-mode breakdown case
Compared with the fundamental and subharmonic resonance, the oblique-mode breakdown case
only contains a pair of oblique second-mode waves (1,±1) at the inlet. The frequency of the sec-
ond mode is also 490 kHz, and the azimuthal wavenumber is selected to be kc = 40. Figure 6(a)
gives the streamwise evolution of the amplitudes of typical modes. At s = 1.04m, mode (1, 1) starts
to deviate from the linear trajectory towards saturation. The streamwise-vortex mode (0, 2) grows
stronger than mode (2, 0), and its amplitude exceeds mode (1, 1) downstream s of 1.10 m. Also, the
other streamwise-vortex modes, (0, 4), (0, 6), etc., all grow to the amplitudes of O(1) in the satura-
tion region. Moreover, the amplitudes of the modes with the same frequency and different azimuthal
wavenumbers are close to each other in the saturation zone and gradually decrease with the in-
crease in frequency. Therefore, the steady streamwise-vortex modes dominate the flow in the early
transitional region. Figure 6(b) gives the streamwise evolution of the Reynolds-averaged wall-friction
coefficient C f . In the NPSE calculation, C f has 5 % deviation from the laminar value at s = 1.08m,
which is defined as the transition onset in this paper. With the growth of the streamwise-vortex and
harmonic modes, C f continuously grows to exceeds two times of the laminar counterpart.

6. Effects of thermal-chemical non-equilibrium
For comparison, the cases in the above sections are also calculated within the CPG assumption.
To control variables, the transport model in section 2.1is used, instead of Sutherland’s law, in the
CPG calculations. The laminar temperature profiles are first compared at two streamwise locations
in fig. 7(a)&(b). The differences in the maximum temperatures decreases from 450 K at s = 0.15m
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Figure 6 – Streamwise development of (a) the amplitude of typical modes and (b) the
Reynolds-averaged wall-friction coeffcient in the oblique breakdown case

to 120 K at 1 m. The influence of TCNE on the linear instabilities mainly comes from the change in
the laminar flow profiles under the current physical models [19]. As a result, the cooler and thinner
boundary layers in TCNE flows destabilize the second mode and moves upstream the N-factor en-
velope by around 0.1 m for axisymmetric disturbances, as is shown in fig. 7(c). The growth rates of
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Figure 7 – Laminar temperature profiles at (a) s = 0.15m, (b) s = 1m, as well as (c) the N factor
curves for the TCNE and CPG cases

the fundamental resonance are compared in fig. 8 with the amplitude of the second-mode at 1 and
2, respectively. The growth rate and the azimuthal wavenumber corresponding to the most unstable
wave are both larger in TCNE flows. For the oblique-mode breakdown case, the higher growth rate of
the second-mode waves leads to faster growth of the streamwise vortex and other harmonic waves.

7. Conclusion
In this paper, the NPSE and SIT methods are used to study the two most important transition mech-
anisms, the secondary instability of the axisymmetric second-mode wave and the second-mode
oblique-wave breakdown, in the hypersonic and high-enthalpy boundary layers with thermal-chemical
non-equilibrium effects. The case studied is the flow over a blunt cone with the free-stream Mach-
number of 15 and zero angle-of-attack. In the fundamental resonance, the three-dimensional dis-
turbances are phase-locked with the primary axisymmetric waves, leading to the rapid growth of the
oblique and streamwise-vortex waves. In contrast, the three-dimensional waves are phase-detuned
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Figure 8 – Growth rates of the fundamental mode for the CPG and TCNE cases with different
amplitudes of the primary second-mode waves

in the subharmonic resonance, and the secondary growth rate is relatively low. Therefore, the fun-
damental resonance is found to dominate over the subharmonic resonance. Taking advantage of
the high efficiency of SIT, the optimal azimuthal wavenumber is determined corresponding to the
strongest secondary growth. For the oblique-mode breakdown case, the steady streamwise-vortex
modes have the largest amplitude in the saturation region compared to the unsteady modes. Large-
amplitude streamwise vortices lead to the rapid exchange of momentum, energy and mass between
fluid layers with different wall-normal heights. For the fundamental resonance, the effects of TCNE
on the secondary instability are found similar to increase the primary wave amplitude that leads to
a higher maximum secondary growth rate and the corresponding azimuthal wavenumber. For the
oblique-mode breakdown, the higher growth rate of the second-mode waves leads to faster growth
of the streamwise vortex and other harmonic waves.
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