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Abstract 

The design optimization considering both aerodynamic and stealth performances has been an important 

and challenging area for next-generation aircraft. One of the main difficulties is associated with the prohibitive 

computational cost of optimization with a large number of design variables. A two-rounds multi-fidelity 

aerodynamic/stealth design optimization method based on hierarchical Kriging (HK) model is developed in this 

paper by using the validated RANS solver and computational electromagnetics (CEM) methods based on the 

multilevel fast multipole algorithm (MLFMA) and physical optics (PO) algorithm. RANS method with fine grids 

and MLFMA method are used as high-fidelity CFD/CEM simulation. RANS method with coarse grids and PO 

method are served as low-fidelity CFD/CEM simulation. A low-fidelity optimization based on Kriging model is 

carried out to get lots of low-fidelity sample data which are used by HK model. The optimum shape is simulated 

by high-fidelity CFD/CEM methods to get the data used as high-fidelity sample points of the HK model. At the 

same time, some new initial high-fidelity sample points are generated by Latin hypercube sampling (LHS) 

method. The two kinds of high-fidelity sample points and lots of low-fidelity sample points are used to build initial 

HK model. Then an aerodynamic/stealth coupled design optimization of a flying wing aircraft with 108 design 

variables is carried out to validate effectiveness of the method. The objective is to reduce total drag of cruise 

condition and frontal RCS. Results indicate that with the method developed in this paper, the efficiency of 

aerodynamic/stealth optimization is improved significantly. The number of high-fidelity CFD/CEM simulations is 

reduced by seven times. Only 39 CFD/CEM simulations are used to get the optimum shape. The drag coefficient 

of optimized flying wing at a cruise condition is reduced by 3.5% and the average RCS in the frontal observation 

angle range is reduced by 44.3%, which validates the effectiveness of the developed method. 

Keywords: Aerodynamic shape optimization, Aerodynamic/stealth optimization, Surrogate-based optimization, 

Flying wing , Computational fluid dynamics 

 

1. Introduction 

Low radar cross section (RCS) has been viewed as one of the most important feature of next-

generation aircraft. Tailless configuration such as flying wing is regarded as an ideal layout to get 

lower radar signature and shorten detection range in all directions-especially in the lateral direction. 

Compared with the characteristic length of flying wing, the wavelength of modern radars is much 

smaller. The frequency bands of radar, that are commonly used to detect aircraft, are L,S,C and X 

bands. Their working frequencies vary from 1GHz to 12GHz, which belong to a high-frequency region. 

For scatter problems in high-frequency region, since aircraft shape is the primary factor to reduce 

radar cross section(RCS), meanwhile, shape details also have a great influence on aerodynamic 

performance, a coupled design optimization method to balance the two kinds of performance is 

urgently required.  

Many meaningful studies on design optimization methods have been conducted during the last 

decades. They can be divided into gradient-based and gradient-free methods. The advantage of 

gradient-based methods is that they require significantly smaller number of function evaluations, but 
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the difficulty lies on time consuming gradient calculations. To solve this problem, adjoint method [1] 

whose computational time of calculating gradient is nearly independent of design variables, has been 

applied to get the gradients of objective functions for different disciplines, such as aerodynamics [2], 

structure [3], and etc. Some researchers have successfully applied adjoint method to get the 

gradients of RCS in recent years. Wang et al. [4] developed a time-dependent discrete adjoint 

method based on the high-order discontinuous Galerkin (DG) method for electromagnetic scattering 

problems. Huang et al. [3] developed a multidisciplinary coupled adjoint system between 

aerodynamics and electromagnetics, including electromagnetic adjoint equations and 

aerodynamic/electromagnetic coupled adjoint equations. Based on these researches, Zhou et al. [5] 

developed a discrete adjoint method based on multilevel fast multipole algorithm (MLFMA) to 

calculate the gradients of RCS, which was applied to aerodynamic/stealth shape design optimization 

of a blend-wing-body (BWB). The research indicated that conflictions between leading edge with 

small radius and drag reduction are not very prominent at cruise condition, and the leading edge with 

small radius is beneficial to reduce RCS. Li et al. [6] developed an aerodynamic/ stealth optimization 

system for a certain flying wing aircraft, with discrete adjoint method based on Reynolds-Averaged 

Navier-Stokes (RANS) equations and automatic differentiation (AD) technology based on physical 

optics (PO) method. The influence of weight factors on aerodynamic/stealth optimization was also 

discussed in the paper. 

Though gradient-based methods require significantly smaller number of function evaluations, 

but they can’t find the global optimum theoretically. The studies on gradient-free methods are still 

necessary for aerodynamic/stealth optimization. Genetic algorithm (GA) is one of most popular 

gradient-free methods and has been widely used in aerodynamic/stealth shape design optimization 

of aircraft. In 1999, Mäkinen et al. [7] used GA, the finite volume discretization of Euler equations, 

and two-dimensional Helmholtz equation to study aerodynamic/stealth design optimization of airfoil. 

In 2008, D.S.Lee et al. [8] applied robust evolutionary algorithms to aerodynamic/stealth shape 

design optimization of UAV. In 2017, Xia et al. [9] applied rank altered differential particle swarm 

optimization (RADPSO) to design stealth airfoils for inner wing and outer wing of a flying wing 

configuration, in their paper, the flow solver was based on RANS equations and the RCS solver is 

based on PO method. Although GA has great ability to find the global optimum, but its computational 

cost of global optimization is prohibitive when high-fidelity aerodynamic/ electromagnetic simulation 

such as RANS and MLFMA method is adopted, especially for the optimization with more than 30 

design variables. In this context, surrogate-based optimization (SBO) [10][11], as a generalization of 

efficient global optimization method, has been developed. It was widely used in the aerodynamic 

design optimization and multidisciplinary design optimization [14][17] of aircrafts such as hypersonic 

vehicle[12], transonic transport aircraft[13][15][16][18]~[21], helicopter[22][23], and supersonic civil 

aircraft[24]. In aspect of aerodynamic/stealth design optimization of aircraft， Zhang et al. [25] 

developed an adaptive design space expansion method based on Kriging model，which was applied 

on aerodynamic/stealth optimization of NACA65,3-018 airfoil. The design space is dynamic and able 

to be expanded in the range of the most sensitive design variables. Chen et al. [26] used radial basis 

function (RBF) neural network to build surrogate model and used multi-objective genetic algorithm 

(MOGA) to get pareto solutions of stealth airfoil. The research indicated that design of stealth airfoil 

for flying wing aircraft is important and the airfoils with “eagle beak” leading edge can reduce RCS 

in frontal. Jiang et al. [27] built RBF surrogate model to optimize the aerodynamic and stealth 

performances of rotor. In their work, the CFD method is RANS equations with Spalart-Allmaras (S-

A) turbulence model, the CEM method is PO with method of equivalent currents (MEC) and method 

of quasi stationary (MQS). Gao et al. [29] adopted double-stage metamodel (DSM) that integrates 

advantages of both interpolation and regression metamodel to optimize a flying wing UAV, where 

RANS equations method with S-A turbulence model was used in CFD numerical simulation and the 

spare-matrix method (SMM) [30] was adopted to calculate RCS. Xu et al. [35] proposed a stealth 

inverse design method for twin-engine layout flying wing UAV and a kind of fuselage with leading 

edge similar to eagle mouth, their results confirmed that the leading edge similar to eagle mouth is 

helpful to improve both aerodynamic and stealth performance. 

All of the studies about gradient-free methods mentioned above only use single fidelity 

CFD/CEM simulation methods. Although SBO method is more efficient compared with GA [10], the 
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major difficulty of SBO lies on that its efficiency is low for high-dimensional global optimization, 

especially for the problems with more than 100 design variables. Therefore, some meaningful 

researches have been done to solve this problem. Some researches combined gradients and 

surrogate model to build gradient-enhanced surrogate model such as gradient-enhanced Kriging 

(GEK) [18][28]. By adopting adjoint method to get gradients of sample data [21], the number of time-

consuming simulation such as CFD can be reduced significantly. The other idea is to use low-fidelity, 

cheaper function to assist the prediction of a high-fidelity, expensive function, by which variable-

fidelity model (VFM) is built. Variable-fidelity Kriging is one of the most popular techniques for VFM, 

such as Cokriging [31][33] and Hierarchical Kriging (HK) [32]. In 2012, Han [32] proposed a simple 

and robust VFM called Hierarchical Kriging. It uses the estimated value of the low-fidelity model as 

a global trend function in the process of building the high-fidelity model. Compared with the traditional 

Cokriging model, HK model can provide more reasonable Mean-Squared-Error (MSE) estimation 

and can be more accurate with the same sample points. However, HK model only has two levels of 

fidelity and the efficiency improvement is limited. In 2020, Han et al. [34] proposed a Multi-level 

Hierarchical Kriging (MHK) model based on HK model. The fidelity levels of MHK were extended to 

three or more fidelities by comparison with HK model. The results of aerodynamic optimization with 

MHK model confirmed that the optimization efficiency with three-level-fidelity CFD simulations can 

be significantly improved compared with traditional single-fidelity or two-level-fidelity method. In 

aspect of engineering, the variable-fidelity method with HK model has been successfully adopted in 

aerodynamic/aeroacoustic optimization of helicopter rotor [23], with which the computational time of 

rotor design optimization was reduced by 35%. 

As a summary of literature review, it is observed that global aerodynamics/stealth coupled 

design optimization based on gradient-free method such as SBO suffers from low efficiency when 

the number of design variables is increased up to about 30 and beyond. It requires large number of 

high-fidelity CFD/CEM simulations such as RANS and MLFMA. However, sufficient number of design 

variables are necessary for the complex aerodynamics/stealth coupled design of whole aircraft. The 

purpose of present work is to develop an efficient global multi-fidelity aerodynamics /stealth coupled 

design optimization method with HK model, which is suitable for three-dimensional 

aerodynamic/stealth optimization with more than 100 design variables and can significantly reduce 

number of high-fidelity CFD/CEM simulation. 

This paper is organized as follows. In Sec. 2, the formulation of HK model and a multi-fidelity 

aerodynamic/stealth design optimization strategy based on HK model are derived. The accuracy of 

CFD/CEM solver are validated with benchmark case. In Sec. 3, the method is adopted for 

aerodynamics/stealth coupled design optimization of a flying wing aircraft with 108 design variables. 

At last, in Sec. 4, general conclusions will be drawn. 

2. Multifidelity Aerodynamic/Stealth Shape Design Optimization Method 

2.1 Hierarchical Kriging model 

The HK method is a modeling strategy based on Kriging model for different fidelity analysis. Hi-

gh-fidelity analysis usually uses more complex physical models and finer computation grids. The ca-

lculated results are more accurate, but the time costs are higher. The low-fidelity analysis uses 

simplified conditions, empirical formulas or coarse grids in the process of simulation. The accuracy of 

analysis is low than that of high-fidelity analysis, but its calculation time is much shorter. In this 

condition, building HK model is able to make the best advantages of different fidelity analysis. The 

assumption of HK model is that low-fidelity analysis can provide similar trends to the results of high-

fidelity analysis. The main idea is to use lots of low-fidelity data building global trend model, and use 

few high-fidelity data to modify the global trend model. With this modeling strategy, the number of 

high-fidelity sample points is reduced, and the convergence solution is obtained faster than Kriging 

model. 

Before building a surrogate model for high-fidelity function, we build a Kriging model for low-

fidelity function firstly to assist prediction. Assume that a random process corresponding to the low-

fidelity function 
lf

y x( )ˆ  is as follows: 

 ( ) ( ) ( )1

0 0

T

,lf lf lf S ,lf ,lflf
y β β−= + −x r x R y F  (1) 
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lf
R  is the correlation matrix representing the correlation between the observe points; 

1
F  is a column 

vector filled with digital one; lfr  is the correlation vector representing the correlation between the untr-

ied point and the observed points. S ,lfy  is response values. For details of building such a Kriging, ple-

ase refer to Ref. [11]. 

The next step is to build Hierarchical Kriging of high-fidelity function. Different from conventional 

Kriging mod-el, the low-fidelity Kriging model is employed as a trend function. We assume that the 

random process corresponding to the high-fidelity function is of the form: 

 0 lf
ˆY( ) y ( ) Z( )= +x x x  (3) 

The approximated low-fidelity function 
lf

y x( )ˆ  scaled by unknown constant factor 0  serves as the gl-

obal trend function. The HK predictor of ( )y x  at an untried x  is formally defined as : 

 ( ) T

Sŷ =x w y  (4) 

where 

 

( ) ( ) ( )

( ) ( ) ( )

1 2

1 2

=
T

n
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T
n

y , y , , y

w ,w , ,w

 
 
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 

y

w

 (5) 

Sy  is the observed functional response at high-fidelity level and w is a vector of weight coefficients a-

ssociated with the sampled high-fidelity data. Then we replace Sy  with its corresponding random qu-

antities ( ) ( ) ( )1 2
T

n
S Y ,Y , ,Y =

 
Y , SY  satisfies the following unbiased estimation condition: 

 
( ) ( )( ) ( )

1

n
i i

i

E w Y E Y
=

 
=    

 
 x x  (6) 

The mean square error (MSE) of HK model can be expressed as: 
  

 
( ) ( )( )

( )

2

2                     = 1

T

S

T T

ˆMSE y E Y

2

 = −     

+

x w Y x

w Rw - w r

 (7) 

Under the unbiased estimation condition, the MSE is minimized to obtain the optimal weight coefficie-

nt. We use the Lagrangian multiplier method to solve this minimization problem, which solves the foll-

owing equations: 

 ( ) ( ) ( )2

1

  1 1
n

iT T

i

min f , 2 w  
=

 
 = + − −  

 
w w Rw - w r  (8) 

The Lagrange multiplier   and the weight coefficients w  can be found by solving the following linear 

equations:  

 
20 2T

lf
y ( )/ 

    
=     

−      x

rR w

F

1
 (9) 

where 
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With the weight coefficient w , we can get the HK predictor y x( )ˆ  for any untried x : 
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The estimated value of HK model at any unknown position can be expressed as: 

 1
0 0 = T

lf S
ˆ ˆy( ) y ( ) ( ) ( ) −+ −x x r x R y F  (12) 

where 

 ( )
11 1

0 = 
T T

S
−

− −
F R F F R y  (13) 

The MSE of the HK model is found to be: 

   ( ) ( ) ( ) 
T

l

1
2 T 1 T 1 T 1 T

f

1

lf
M ySE 0ŷ( ) y1.

−
− − − −   = − + − −

   
r R r r R F F Rx xr Fx F R  (14) 

From the above process of modeling, we can see that HK model introduces influence of low-fide-

lity function through the trend model. It can avoid difficult calculation of cross-covariance between the 

high-fidelity and low-fidelity level. Meanwhile, the dimensions of correlation matrix are reduced becau

se of layering between different fidelity data. Fig 1 shows the optimization procedure based on HK m-

odel. 

 

Fig 1 Optimization procedure with HK model 

2.2 Multi-fidelity aerodynamic/stealth design optimization strategy  

The framework of the multi-fidelity aerodynamic/stealth design optimization strategy developed in 

this paper is shown in Fig 2. There are two rounds in the process of optimization. In the first round, a 

low-fidelity aerodynamic/stealth design optimization with Kriging model is carried out. CFD/CEM 

simulations use low-fidelity methods such as RANS equations with coarse grids and PO method, which 

makes optimization computationally cheap. We can obtain a low-fidelity optimization shape in a short 

time and then analyses its aerodynamic and stealth performance with high-fidelity simulation. In the 

second round, a variable-fidelity design optimization with HK model is done. To make the full use of 

lots of data obtained in the previous step, we take all sample data obtained from the low-fidelity 

optimization as low-fidelity data of the variable-fidelity optimization. Meanwhile, Latin hypercube 

sampling (LHS) method, which is one of the most popular design of experiments (DoE) method, is used 
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to generate some new initial sample points. These new initial sample points are simulated with high-

fidelity methods such as RANS equations with fine grids and MLFMA method. Both the new initial 

sample point data and the high-fidelity data that is obtained from optimum shape of low-fidelity 

optimization, are taken as high-fidelity data of the variable-fidelity optimization. HK model is applied to 

incorporate data with two levels of fidelity. Parallel infill-sampling method [19] is used to add new high-

fidelity samples. Four kinds of infill criteria are performed at the same time，which are Minimizing 

Surrogate Prediction (MSP)，Expected Improvement (EI)，Prob-ability of Improvement (PI), and 

Lower-Confidence Bounding (LCB). All above has been included in an in-house optimization code 

named “SurroOpt” [10] [36]. Fig 3 shows the framework of“SurroOpt”. The work in this paper is studied 

with this optimization code. 

 

Fig 2 Framework of multi-fidelity aerodynamic/stealth design optimization strategy 

       

Fig 3 Framework of “SurroOpt”[36] 
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2.3 Validation of CFD solver 

To validate the accuracy of CFD solver, we take the CRM configuration [37] as a validation 

example. The CFD solver used in this paper is named “PMNS3DR”, which is an in-house CFD code 

based on three-dimensional RANS equations and structured grid. RANS equations are spatially 

discretized by finite-volume method with JST scheme adopted, and LU-SGS method is used for time 

integration. Multigrid, local-time-stepping and variable-coefficient implicit residual smoothing are 

applied to accelerate convergence rate. In addition, S-A model is used for turbulence closure. The 

flow condition is 
6

LMa 0.85,Re 5.0 10 ,C 0.5= =  = . The structured grid used for CFD simulation is 

shown in Fig 4. The comparison of computed pressure distribution and experimental data [37] is 

shown in Fig 5, where η represents the nondimensionalized spanwise coordinates. As can be seen, 

the calculated results agree well with the experimental results, except for the position =0.95 , which 

is due to the static aeroelastic effect of wing tip. The comparison proves that the CFD solver in the 

paper is reliable. 

 

Fig 4 Sketch of surface grid for CRM configuration 

   

   

Fig 5 Comparison of computed pressure distribution and experimental data of CRM 

(
6

LMa 0.85,Re 5.0 10 ,C 0.5= =  = ) 

2.4 Validation of RCS prediction method 
The goal of stealth optimization is to reduce the RCS of a target, which is defined as the following 

equation: 

 =

2

s2

2
r

i

4 lim r 
→

E

E
 (15) 

where   represents the RCS, sE is the scatter electric field strength at the distance r  from a target, 

a-nd iE  is the incident electric field strength at the target. The unit of RCS is square meters (
2m ), but 
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we usually use decibels relative to a square meter (dBsm) to express it. The conversion relationship 

between them is as following:  

 ( )2dBsm m
10 log =  (16) 

To calculate the   in Eq. (15), we need to solve Maxwell equations as following: 

 

d

0

S V

S

l S

l S S

d V

d

d d
t

d d d
t

 =

 =


 = − 




 = + 



 



 

  

D S

B S

E l B S

H l J S D S

 (17) 

where E  is the electric field strength, B  is the magnetic induction intensity, H  is the magnetic field 

strength, D  is the electric displacement vector, J  is the current density, and   is the electric charge 

density. Based on Eq. (17), we can get the electronic field integral equation (EFIE) described in Eq. 

(18) and the magnetic field integral equation (MFIE) described in Eq. (19): 

 ( ) ( ) ( ) ( )( ) ( )( )
si 2

j 1
ˆ ˆ G , G , d

k

 
    −  =  +   

 
n E r n J r r r J r r r S  (18) 

 ( ) ( ) ( ) ( )i
s

ˆ ˆ1 G , d
4π

 
   = − − +   

 
n H r J r n J r r r S  (19) 

where  is the solid angle of tangent at observation point on surface. Then, we can get the surface 

current J  to calculate the scatter electric field strength sE  and the incident electric field strength iE . 

With the aim of making convergence of RCS calculation better for three-dimensional complex shape, 

the combined field integral equation (CFIE) [5] is used in the paper. It is described as following: 

 ( )CFIE = αEFIE + 1-α MFIE    (0 < α < 1)  (20) 

 is the combined field factor which is 0.2 in the paper. Among the RCS prediction methods, MLFMA 

and PO are the most common methods to solve Eq. (20). MLFMA [38] is a kind of frequency-domain 

method which is accurate but need lots of memory and time costs. PO [6] is a high-frequency 

approximation algorithm which is fast and requires less memory, but it is not accurate especially for 

the shape with large curvature edge. As for the material of stealth target, perfect electric conductor 

(PEC) is assumed in the current study. 

The double-ogive model, which is a benchmark model for CEM, is adopted to validate the CEM 

solver used in the paper. For one half-ogive, the half angle at tip is 46.4 deg and the length is 2.5 in. 

For another half-ogive, the half angle at tip is 22.62 deg and the length is 5 in. The frequency of incident 

wave is 9GHz and both horizontal and vertical polarizations are calculated. The average length of the 

triangle facets is / 16 . Fig 6 shows the directions of incident radar wave and the shape of double-

ogive model. The calculation methods are MLFMA and PO. 

 

Fig 6 Directions of incident radar wave 



Multifidelity Aerodynamic/Stealth Design Optimization Method for Flying Wing Aircraft 

9 

 

 

The comparison of computational results and experimental data is shown in Fig 7. We can see that the 

result of MLFMA is in good agreement with the experimental data for both horizontal and vertical 

polarizations. At the tips of double-ogive, the accuracy of PO method is poor compared with the 

experimental data because of its physics assumption. In the middle of double-ogive where curvature 

of the surface is small, PO method can capture the trend of RCS well. The results prove that the CEM 

solver used in present paper is reliable. 

  
(a) HH polarization (b) VV polarization 

Fig 7 Radar cross section for double-give at frequency 9GHz 

3. Aerodynamic/Stealth Shape Design Optimization of Flying Wing 

3.1 Problem statement of design optimization 
The detailed geometry parameters of baseline shape is shown in Fig 8. The initial geometry has a 

span of 18.92m and the length of fuselage is 11.63m. Geometric parameters of configuration are shown 

in the Table 1. Free form deformation (FFD) method [39] is used to parameterize the shape of flying 

wing. The corresponding FFD control volume is shown in Fig 9. The control points are divided into two 

layers. At each layer, there are 10 points streamwise and 6 points spanwise. We make the X 

coordinates and the Z coordinates of each control points unchanged. At the same time, Y coordinates 

of 6 points at the trailing edge of each layer are also remained unchanged. Only other 54 points of Y 

coordinates along streamwise are taken as design variables at each layer. There are 108 design 

variables in total. 

 

 

Fig 8 Baseline shape of a flying wing aircraft Fig 9 FFD control volume of a flying wing 
aircraft 
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Table 1 Geometric parameters of a flying wing configuration 

Geometric parameter Value 

Span (m) 18.92 

Length (m) 11.63 

Sweep angle（°） 55/30 

Reference wing area (m2) 84.42 

Reference center (m) (6.143, 0. 0) 

Mean aerodynamic chord (m) 6.687 

The aim of shape design optimization is to reduce drag of cruise condition and frontal RCS. The 

aerodynamic and electromagnetic computational states are shown in the Table 2. The coordinate 

system for the directions of incident radar wave is shown in Fig 11.The observation angle range used 

in the paper is = ， =90 0 180  . The optimization problem formulation is described as following, 

which with constrains of lift coefficient, pitching moment, and maximum thicknesses at three spanwise 

sections: 

 

( )

0~60

L

-

      

             . ,  .

. .          = .

             .

              , ,

VVD
1 2

D0 0

1 2

M

n n low

C RCS
min. w w

C RCS

w 0 8 w 0 2

s t C 0 2

C 0 001

t t n 1 2 3

  
+   

   

= =



 =

 (21) 

where DC  is the drag coefficient of flying wing at the cruise condition. D0C  is the drag coefficient of 

baseline shape. 0~60 VVRCS  is average RCS in the observation angle range =0 60 . 0RCS is the 

corresponding RCS value of the baseline shape. LC  is the cruise lift coefficient. MC  is pitching 

moment coefficient about the reference center. 1w  and 2w  are weight coefficients of the aerodynamic 

and stealth objectives. ( ), ,nt n 1 2 3=  is the maximum thickness of different key position along the wing 

span. There are three key positions where the maximum thickness need to be constrained. They are 

shown in Fig 10, ( )- , ,n lowt n 1 2 3=  is the maximum thicknesses of baseline shape in the sec1,sec2 and 

sec3. 

Table 2 Computational states of aerodynamic/stealth design optimization 

Parameter Value 

Cruise Mach number 0.75 

Cruise lift coefficient 0.2 

Reynolds number 4.26 x 107 

Incident wave frequency(GHz) 1 

Polarization mode VV 
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Fig 10 Sections where the maximum thickness 
need to be constrained 

Fig 11 Definition of the coordinate system 

3.2 Selection of high-fidelity and low-fidelity analysis model 

Selection of high-fidelity and low-fidelity simulation methods is crucial for variable-fidelity 

optimization. In this paper, RNAS equations with coarse grid are used as low-fidelity CFD simulation 

and PO algorithm is used as low-fidelity CEM simulation. As for the methods of high-fidelity CFD and 

CEM, RNAS equations with fine grid are used as high-fidelity CFD simulation and MLFMA algorithm 

is used as high-fidelity CEM simulation. The CFIE equation with the combined field factor =0.2  is 

solved to calculate RCS.  

A grid convergence study is carried out to determine the grids for high-fidelity and low-fidelity 

CFD simulations. There are five levels used for grid convergence study. Fig 12 shows the partial grid 

levels. Fig 13 and Table 3 show the drag coefficient and computational time varied with the number 

of grids. As shown in Table 3, the change of drag coefficient is smaller than 1 counts when the grid 

size is larger than 4560000. Thus, L1 grid is used for high-fidelity CFD simulation and L3 is used for 

low-fidelity CFD simulation. 

   

(a) L0 grid (b) L1 grid (C) L3 grid 

Fig 12 Comparison of different grids 
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Fig 13 Drag coefficient and time varied with the number of grids 

Table 3 Grid convergence study for the baseline shape 

Grid level Grid size CL CD(cts) Relative CPU time 

L0 8000000 0.2 119.88 1 
L1 4560000 0.2 118.90 0.895 
L2 2900000 0.2 124.77 0.563 
L3 1170000 0.2 133.41 0.242 
L4 500000 0.2 227.98 0.083 

In the process of low-fidelity optimization in the first round, LHS method is used to generate 110 

initial sample points. Minimizing Surrogate Prediction (MSP)，Expected Improvement (EI)，Prob-

ability of Improvement (PI), and Lower-Confidence Bounding (LCB) are implemented. When the 

number of sample points is up to 492, the low-fidelity optimization is finished. At the begin of variable-

fidelity optimization in the second round, LHS method is used to generate 10 new initial sample points 

which are simulated with high-fidelity CFD/CEM methods. The optimum shape of low-fidelity 

optimization is also simulated with high-fidelity CFD/CEM methods to generate the corresponding high-

fidelity data. Thus, there are 11 high-fidelity initial sample points and 492 low-fidelity initial sample 

points in the variable-fidelity optimization. 

3.3 Design results and discussion 

After the low-fidelity optimization, the aerodynamic and stealth performance of the optimum shape 

is calculated by high-fidelity CFD/CEM method, which is shown in Table 4 and served as high-fidelity 

data to build HK model. Fig 14 and Fig 15 show the convergence process of the multi-fidelity 

aerodynamic/stealth design optimization. As the comparison, a high-fidelity optimization with Kriging 

model is carried out. The number of initial sample points is 10. Fig 14 shows the objective value varied 

with the number of low-fidelity CFD/CEM in the low-fidelity optimization. Fig 15 shows the objective 

value varied with the number of high-fidelity CFD/CEM. The method developed in the paper and 

traditional high-fidelity optimization with Kriging model is compared in Fig 15. The legend “HK” 

represents the method developed in the paper and the legend “Kriging” represents high-fidelity 

optimization with Kriging model. We can see that the method developed in the paper can significantly 

accelerate the convergence of optimization. Table 5 shows evaluation number of high-fidelity 

CFD/CEM required by the different optimization methods. As we can see, method developed in this 

paper only need 39 high-fidelity CFD/CEM simulations to get the optimum shape. However, the 

traditional high-fidelity optimization with Kriging model requires 285 high-fidelity CFD/CEM simulations 

and the results are not as good as the HK method. The number of high-fidelity CFD/CEM simulations 

which is time-consuming, is reduced by a factor of 7. 

Table 4 High-fidelity CFD/CEM simulation results of the first-round optimum shape 

 CL CD(cts) CM RCSaverage (m2) t1(m) t2(m) t3(m) 

Baseline 0.2 118.924 -0.0006 1.1389 1.985 0.369 0.138 

Optimum 0.2 115.057 0.00007 0.7634 1.985 0.371 0.139 
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Fig 14 convergence process of low-fidelity 

optimization 

Fig 15 convergence process of variable-fidelity 
optimization 

Table 5 Calculation costs of different optimization methods 

Method Objective value Number of high-fidelity CFD/CEM 

HK 0.8814 39 

Kriging 0.9485 285 

Fig 16 shows the pressure distributions on the upper surface of the baseline (lift) and the optimum 

(right). Fig 17 shows geometry and pressure distributions at different sections of the baseline and the 

optimum. η represents the nondimensionalized spanwise coordinates. The strength of shock wave at 

the outer wing is reduced after optimization and the radius of the leading edge is reduced. Fig 18 shows 

the RCS comparisons of the baseline and the optimum. The RCS of the optimum in the range 

= ， =0 180 90   is reduced compared with the baseline. In the range =90 120 and 

=150 180 , RCS value is significantly reduced. Table 6 shows the design objective and constraints 

of the optimum shape. As we can see, drag coefficient of flying wing at the cruise condition is reduced 

by 3.5% and average RCS in the observation angle range is reduced by 44.3%. All constraints, 

including lift coefficient, pitching moment coefficient, and maximum thicknesses at three spanwise 

sections, are satisfied. 

 
Fig 16 pressure distributions on upper surface of the baseline shape and the optimum shape 



Multifidelity Aerodynamic/Stealth Design Optimization Method for Flying Wing Aircraft 

14 

 

 

 
  

Fig 17 Geometry and pressure distributions at different section of baseline and optimum shape 

(
7

LMa 0.75,Re 4.26 10 ,C 0.2= =  = ) 

 

Fig 18 RCS comparisons of the baseline and optimum shape (0~180°VV) 

Table 6 Comparisons of design objective and constraints between the optimum and the baseline 

 CL CD(cts) CM RCSaverage (m2) t1(m) t2(m) t3(m) 

Baseline 0.2 118.924 -0.0006 1.1389 1.985 0.369 0.138 

Optimum 0.2 114.763 -0.0004 0.6344 2.005 0.370 0.140 

Δ / -3.5% / -44.3% / / / 

4.  Conclusions 

In order to improve efficiency of the global aerodynamic/stealth design optimization for three-

dimensional complex shape with more than 100 design variables, a two-rounds multi-fidelity 

aerodynamic/stealth design optimization method based on HK model is developed in this paper. 

MLFMA and PO, which are two kinds of CEM simulation methods with different accuracy, are 

combined with HK model. Improved flying wing shapes are obtained via numerical optimization, 

effectively reducing the drag coefficient and RCS. Through the analysis of the optimization process 

and results, the following conclusions are reached: 

(1) The two-rounds multi-fidelity aerodynamic/stealth design optimization method based on HK 

model can greatly improve the optimization efficiency of high dimensional aerodynamic/ 

stealth optimization problem. In the present case, with the assistance of low-fidelity sample 

points, only 39 high-fidelity CFD/CEM simulations are used to get the optimum shape for the 
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flying wing aerodynamic/stealth optimization with 108 design variables. As a comparison, 

traditional optimization method with Kriging model and high-fidelity CFD/CEM simulation 

needs 285 high-fidelity CFD/CEM simulations. The number of high-fidelity CFD/CEM 

simulations decrease by seven times. 

(2) 108 design variables are used for the global aerodynamic/stealth design optimization of a 

flying wing aircraft. The drag coefficient of optimized flying wing at a cruise condition is 

reduced by 3.5%. The average RCS in the frontal observation angle range is reduced by 

44.3%, much lower than that of the baseline flying wing under all constraints. The stealth 

performances in other observation angle range such as side direction and backward 

direction are also improved. 

The future work beyond the scope of this article will focus on aerodynamic/stealth design 

optimization considering the wide-Mach-number-range aerodynamic performance and wide-radar 

wave-band stealth performance. 
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