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Abstract 

Trailing edge noise is a major contribution to the airframe noise and has been studied in various processing 

methodologies such as wavelet analysis and velocity field comparison. To further understand the noise 

mechanism and improve the result quality in wind tunnel, microphone array technique has been applied to 

obtain the sound source distribution by different traditional processing algorithms such as beamforming 

algorithms and deconvolution algorithms. Rather than solving the sound transfer function, a convolutional 

neutral network (CNN) method has been proposed based on machine learning for complex objects, and proven 

efficient in limited number of incoherent monopole sources. However, trailing edge noise is an emission of 

distributed sound sources and most phased array methods including the CNN method assume the monopole 

sources. In this study, CNN method is investigated from monopole sources to simple line sources in order to 

find out an applicable condition for trailing edge noise. By using different definitions of accuracy and loss, the 

network is trained, tested, and compared with other researchers’ results to validate on monopole sources. 

Then a new test strategy has been proposed and proven helpful in understanding the wrong prediction of the 

CNN model. The confidence level of the applied region and the method to use the prediction results are 

proposed to standardize and normalize the applicable range of the phased array. Then, a new training strategy 

is proposed by adding statistical parameters of the line sources as training data to get a direct source strength 

distribution of line sources. An experiment of the trailing edge noise of NACA0012 airfoil is conducted in 

Beihang D5 aeroacoutics wind tunnel to validate the methods. These results indicate that CNN method might 

be able to detect a more general feature of the sound source distributions, which might be helpful in 

constructing a network with a statistical output. 
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1. Introduction 

Trailing edge noise is a remarkable problem of the airframe noise reduction concerning about the 

next generation quiet aircraft [1]. To understand the location and strength distribution of the trailing 

edge noise, microphone array [2,3] has been used to study the noise mechanism and noise reduction 

methods such as serrations [4,5]. However, a robust and high spatial-resolution map of the source 

strength distribution requires sophisticated methods and high computational costs [3,6]. In order to 

increase the calculating efficiency while maintain a high spatial resolution, machine learning methods 

[7] have been introduced in dealing with source localization. Convolution neural networks [8] have 

been widely used in computer vision [9] and shown potential to solve the problem in recognizing the 

direction of arrival (DOA) estimation [10,11] and locations of incoherent monopole sound sources 

[12,13]. Still, for large number of monopole sources or the line sources, there lacks further research 

in the training and testing parts. 

The raw data acquired by multiple microphones are processed based on the phase and amplitude 

difference between each microphone and the assumptions of the noise characteristics. A single 

microphone or pressure receiver is affected by the background noise and other unconcerned or 

interference noise such as the facility noise. More than one microphone is needed in trailing edge 

noise experiments to exclude the facility noise influence on the experiment result [14]. A classical 

microphone technique called beamforming [2] has been a standard method for aeroacoustics 

measurement due to high efficiency and robustness [15]. Using Delay-and-Sum method, 

conventional frequency domain beamforming (CFDBF) [16] has a high signal noise ratio (SNR) in 

high frequency but has poor spatial resolution in low frequency and poor dynamic range due to high 

side lobes in the source strength distribution map. Aimed at SNR improvement in intensive 

background noise, high spatial resolution and strength precision and low-to-moderate frequency 

range application, various processing methods have been developed. Functional beamforming (FB) 

[17] and orthogonal beamforming (OB) [18] are aimed at reducing side lobes. Adaptive beamforming 

for coherent signal [19], and blind beamforming for non-gaussian signals [20] are developed for 

sophisticated noise condition. In the past twenty years, deconvolutional methods such as DAMAS 

[21,22], DAMAS2 [23,24], CLEAN [25], CLEAN-SC [26], HR-CLEAN-SC [27] and NNLS [28] are 

applied in phased array to increase the source accuracy in spatial resolution especially in high 

frequency. But deconvolutional methods have a sacrifice in calculation efficiency.  

Furthermore, due to the Rayleigh limit [29], the microphone array techniques are commonly used in 

high frequency condition and treated as an indication of the noise source location validation for the 

noise data acquired by the microphones. To guarantee a reliable result, a balance between efficiency 

and accuracy should be achieved. Due to the rapid development of computer science in deep 

learning (DL), the correlation between the input microphone signals and the output source 

distribution has attracted researchers in using deep neural network (DNN). In 2017, Chakrabarty et 

al. [11] published a breakthrough finding in using CNN to process microphone array data in speech 

recognition field on NIPS (Conference and Workshop on Neural Information Processing Systems). 

The inputs are M × K matrix as the amplitudes of each frequency band of each microphone in a 

given time frame(M is the number of microphones; K is the number of Fourier transform blocks). And 

the outputs are the vectors as the amplitudes in different angles. With limited number of microphones, 

the learning result is better in spatial resolutions compared with SRP-PHAT (Steered Response 

Power-Phase Transform-based) [30]. The idea of using neural networks attracted attentions from 

researchers in phased array. In 2018, Ma Wei et al. [12] proposed a CNN algorithm to processed 

multi-monopole equal-strength independent sound sources. It proved that under the condition of a 

certain frequency and grid density, the results of the distribution of up to 6 sound sources showed 

that the spatial resolution was not worse than the DAMAS algorithm, and the calculation speed is 

much faster than the DAMAS algorithm. Vera-Diaz J, Pizarro D, Macias-Guarasa J [13] has applied 

CNN to the three-dimensional sound source localization according to a similar idea. Because deep 

learning methods are trained, tested, and validated on tremendous number of samples to prove its 

efficiency, researchers need to use statistical parameters to defend their models. And because these 

machine learning methods treat the spatial position relationship between the microphones and the 

grid density of the scanning map, and the physical model of the sound source as hidden variables, 
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researchers also need to validate their results in a form of normalization description. Rather than 

using the descending order to judge accuracy like Ma Wei [12], Xu Pengwei et al. [31] used the mean 

square error between the true value and the predicted value to investigate the effectiveness of a 

deep neural network (DNN) algorithm in normalizing the frequency with distance, array diameter and 

scanning grid density. However, the pattern of these statistical parameters is unconvincing for 

quantifying the reliability of the predictions, and new distinct statistical parameters are needed to 

strictly refine the appliance range of the deep learning models. Therefore, it is necessary to see the 

results of monopole sources in details. 

For trailing edge noise, the present results have shown potential in recognizing the correct locations 

of sound sources with fewer number of sources for training parts than the testing parts [31]. However, 

due to the flatten layers in the CNN architecture which fail to catch the topology relationship between 

each grid, the predicted results are unconvenicing. Based on the idea from recent result by 

Castellomo etc in Applied Acoutics [32] who paid attention to grid-less noise and proved the ability 

of CNN in acquiring detailed information of the sound sources, new statistical parameter is proposed 

to strengthen the topology information in the training process. 

In this study, core issues are validation of the result correctness, patterns of these significant 

parameters and the new training strategies. Firstly, to validate the methods, the basic CNN model 

would be almost the same as Ma Wei [12]. Secondly, the accuracy and the loss functions are 

discussed in detailed with the normalization of the frequency, which relates to the grid length, array 

bandwidth or Rayleigh limit, distance between the array and scanning planar and the opening angle. 

And the wrong predictions are examined by different test sets and focusing area. Then the results 

are discussed about the reasons of failure. At last, an adjustment of input data according to the 

accuracy definition is proposed and applied to predict simulations of line sources. For trailing edge 

noise as line sources, the spatial resolution in the flow-direction resolution is focused on and 

experiment data of NACA0012 is used to justify the results. The predictions are illustrated and judged 

by the new criterion to offer relatively reliable description of the sound source distributions. 

Section 2 is composed of the methods of traditional phased array, CNN structures, phased array 

configurations and array ratio as a normalization factor of frequency, general simulation 

configurations of training and testing sets, the definitions of accuracy and loss and a general result 

of line sources. Section 3 consists of the validation of the CNN method on monopole sources, a 

thorough investigations of array ratio, a detailed illustration of accuracy and loss with respects to the 

frequency, and the CNN procedure into simulations of line sources and predicted results of 

experiment data. 

2. Methods 

2.1 Beamforming and Deconvolutional Algorithms 

By using equation (1), Leclère [33] classified frequency domain methods to solve the source strength 

distribution map problem into two categories, namely beamforming-related methods and inverse 

methods.  

p Gq=  (1) 

where p stands for the microphone pressure signal, G is the sound transfer function or matrix which 

depends on the noise characteristics and the environment parameters, and q is the demanding 

unknown noise source strength. The basic setup for an array would be like figure 1. The scanning 

planar is assumed to be a square. D is the diameter of the microphone array, rm is the vector towards 

the number m microphone, r is the vector towards a point on the scanning planar, z is the distance 

between the array scanning planar, Nx and Ny are the number of grids on each line, and α is the 

opening angle. In this study, the scanning surface is square, so Ngrid=Nx2=Ny2 and the length L 

would be L=2ztan(α/2). The distance between two nearest points in vertical or horizontal line is 

identical as Δx, which also means that L=NxΔx. 
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Figure 1 – Array and the scanning grids. 

 

For frequency domain methods, microphone vector p is 

1[ ( ), , ( )]T

Mp p f p f=  (2) 

where M is number of all microphones and pj(f) is a frequency domain pressure result of number j 

microphone by Fast Fourier Transformation (FFT) at frequency f. 

Sound source distribution vector q on the grids is 

1[ ( ), , ( )]T

Ngridq q f q f=  (3) 

where Ngrid is number of grids on the scanning surface and qj(f) is source amplitude in terms of the 

pressure produced at grid j. 

The cross-spectrum matrix (CSM) is defined as C by 

*C pp=   (4) 

where ( )*  denotes the complex conjugate transpose, and    denotes time average of the several 

time snaps.  

The conventional beamforming is 

*
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where  is the 2-norm, vector r is the center of the array or the reference point towards the focus 

point and the steering vector e(r) at vector r is  

1( ) [ ( ), , ( )]T

Me e e=r r r  (6) 

Although there are many different formulations for steering vector [35], under monopole source 

assumption and for the standard strength of noise source to the center of array is   

0( ) exp{ 2 / }me j f c
−

= − −m

m

r r
r r r

r

 (7) 

where c0 is the sound speed and vector rm is from the center of the center of the array or the reference 

point towards the location of microphone number m. 

In equation (1), the deconvolution method based on beamforming is to assume that p can be 

decomposed into S sources: 
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And for incoherent sources, CSM would be: 
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And the CFDBF result would be: 
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                               (10) 

For a unit-power monopole source at location r, equation (10) is known as point-spread function 

(PSF) of the array to evaluate the spatial resolution performance and is defined as: 

2

4

( ) ( )
( | )

( )

se e
PSF

e
=s

r r
r r

r
                                                           (11) 

And the deconvolution method like DAMAS is to solve equation (1) by using equation (9) in 

constructing linear equations within the whole scanning grids or some preferable grids 

22

1[ ( ), , ( )] [ , , ]T T

i Ngridb b A q q= Ngridr r  (12) 

where A is a Ngrid×Ngrid matrix as: 

2

4

( ) ( )
[ ] [ ]

( )
ij

e e
A A

e
= =

i j

i

r r

r

 (13) 

In this study, to ensure that the input CSM and the output x would be normalized of the same unit 

respectively, the strength q would be either 1 Pa or 0 Pa to represent existence and non-existence 

of the source, and the output x would be: 

22

1[ , , ]T

Ngridx q q=  (14) 

2.2 The Structures of CNN 

The basic network structure applied in this work is illustrated in table 1, which is almost the same as 

the structure by Ma [12]. However, the microphone number (M) is 28 rather than 30 and number of 

grids (N) is 121 rather than 100. The backend is a Tensorflow backend on Keras framework. The 

input is CSM (an M×M matrix) divided into real and imaginary as a tensor of M×M×2. The output is 

a N×1 tensor of the square noise strength on each grid. Conv2D is a two-dimensional convolutional 

layer, MaxPooling2D is a two-dimensional pooling layer to acquire the maximum values over each 

kernel size sub-region, Flatten is a flatten layer for the input data only, and Dense is a regular densely 

connected neural networks layer. The padding is valid, if the layer changes the output size and it will 

be same, if not. A rectified linear unit (ReLU) filter is applied as the activation for the output of 

convolutional layer. In this study, the number of trainable parameters is 1,018,617, which is a large 

number on the same level with the maximum number of training samples. 

The noise sources to train are incoherent monopole sources. A CSM and a corresponding N-tuple 

vector compose a sample to test and train, whilst the values in a training sample should be either 

0.0 or 1.0 𝑃𝑎2 for non-source or source grid with the input CSM in accordance with. The input data 

are randomly divided into two parts: the training part and the validation or testing part. The model is 

assessed on the testing part after training a sufficient large number of epochs of samples on the 

training part with a frequency ranging from 400Hz to 5000Hz and a maximum total samples of 

100,000, which still occupies less than 0.0025% of all possible samples. During the training process, 

the training part comprises 80% of the total samples and the testing part comprises 20%. The 

evaluation and validation of the model are based on the difference between the output or predicted 

vectors by the CNN model and the vector corresponding to the input CSM in the testing part. The 

vectors corresponding to the input CSM are N-tuple vectors consisting of true values 𝑇𝑖, and the 

output vectors or the predicted vectors are N-tuple vectors consisting of predicted values 𝑃𝑖. 
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In the calculations of the model, the default configurations for Keras are applied. The number of 

epochs is 20 with a batch size of 32 samples and the Adam stochastic optimization algorithm is used 

with a learning rate of 0.001. The network training takes several hours on a desktop computer with 

a processor of 3.2 GHz Intel Core i7 8700. 

Table 1 – CNN structure 
Layer no. Layer type Kernel number Kernel size Stride Activation Padding Output size 

1 Conv2D 64 3×3 1×1 ReLU Yes M×M×64 

2 Conv2D 64 3×3 1×1 ReLU Yes M×M×64 

3 MaxPooling2D - 2×2 2×2 - No 
M

2
×

M

2
×64 

4 Conv2D 128 3×3 1×1 ReLU Yes 
M

2
×

M

2
×128 

5 Conv2D 128 3×3 1×1 ReLU Yes 
M

2
×

M

2
×128 

6 MaxPooling2D - 2*2 2×2 - No 
M

4
×

M

4
×128 

7 Flatten - - - - - (
M

4
*

M

4
*128) ×1 

8 Dense 1 Ngrid×(
M

4
*

M

4
*128) - - - 121×1 

 

2.3 Phased Array Configurations and Array Ratio 

The microphone array used for source localization contains 28 channels within a 0.45m diameter 
circle region. 0.45m is the diameter of the array (D). The scanning planar is parallel to the array 
surface at 1m and is a square area as is shown in Figure 1. The scanning grids are uniformly 
distributed in the vertical and horizontal lines. Number of grids on a horizontal line Nx is 11 and the 
length of a line L is 1m. To quantify the performance of the array and normalize the relative parameters, 
researchers have used bandwidth and Rayleigh limit as the spatial resolutions of phased array. 
Defined by the width of the PSF in -3dB, Bandwidth (Bwd) is a function of the microphone array spatial 
distribution and the distance between the array and the scanning surface.  
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Figure 2 – Scheme of the microphone array  

 

Rayleigh limit (RL, has been defined in [29] but different in the assumption of opening angle α) is 
about the distance z, sound speed c, array diameter D, frequency f and the opening angle α: 

3

1.22

cos ( / 2)

zc
RL

Df 
=  (15) 

Figure 1 shows that length L of the square evenly distributed scanning grid is 

tan( / 2)xL N x z =  =  (16) 



MICROPHONE ARRAY TECHNIQUES FOR TRAILING EDGE NOISE BASED ON CNN 

7 

 

 

where Nx is the number of points on x-line of scanning grids and Δx is the distance between two 
nearest points in vertical or horizontal line. Then it can be known that: 

2

1.22

sin( / 2)cos ( / 2)

xcN x
RL

Df  


=  (17) 

Three variables could be used for normalizing the frequency by the performance of the array. They 
are the bandwidth (Bwd), Rayleigh limit (RL) and Rayleigh limit simply (RLS, assume in equation (17) 
that α→0). Figure 3 shows the three variables with respects to frequency. To normalize these 
variables, a dimensionless coefficient, namely array ratio (AR), is defined by using one of these 
variables divided by Δx. Table 2 shows the different array ratios as normalizations of frequency.  
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Figure 3 – Array spatial resolutions at 1m. 

Table 2 – Frequency normalization 
Name A B AR=B/A 

AR_Bwd Bandwidth Δx 
x

Bwd


 

AR_RL RL Δx 

2sin( / 2)cos ( / 2)

1.22 x

Df

cN

 
 

AR_RLS RL(α→0) Δx 
1.22

Df x

zc


 

  

These array ratios have been proposed in previous studies in different forms to define the application 
of deep learning methods in phased array and proven effective in limit condition.  Ma [12] suggested 
that AR_RL should be larger than 0.3 to ensure the accuracy. Xu [31] concluded a trend for the loss 
in convergence when AR_RLS was larger than 0.1. However, they are not thoroughly investigated in 
comparison in using deep learning methods. Nevertheless, considering that the array and the shape 
of scanning grids are constant, diameter of the array D and number of grids on a line Nx should be 
unchangeable. α could be obtained by α=2arctan(z/(2NxΔx)), so Δx, z, f are the main variables to 
change array ratio. In this study, different array ratios were compared in simulation results to evaluate 
in a limited condition. 

2.4 Accuracy and Loss 

The general definitions of accuracy and loss parameters used in this study are shown in Table 3. 

Accuracy and loss are both evaluations of the average difference between the predicted samples 

and the true samples. The predicted samples and the true samples are both Ngrid-tuple vectors 

consisted of true values and predicted values respectively. 

The loss is an average of samples in the mean variance between the predict values and the true 

values in training and testing samples. Loss_total is the mean variance of the subtract of predicted 

value and the true value. Loss_source is the fluctuation of the prediction near the true value in the 
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source existence location. Loss_zero is the fluctuation of the prediction near the true value in the 

source non-existence location. Loss_sratio is a ratio of the contribution to the total variance by the 

source existence location. The four loss functions are aimed at quantifying the predictions’ 

correctness ratio in grids with or without sources. 

Accuracy is the correctness ratio to predict the values on the right locations. Acc_5 is the accuracy 

criterion applied by Ma [12], which is sorting the output vector in a descending order and comparing 

locations of the maximum values in the predicted vectors. Unlike Acc_5, for accuracy criteria named 

Acc_1, Acc_2, Acc_3 and Acc_4, threshold is applied as a value to determine whether the predicted 

value is large enough to be recognized as a source. If the prediction is larger than the threshold, it 

would be selected to be compared with the source existence area with true values, otherwise it would 

be ignored and compared with non-existence area with zero values. After filtering, the accuracy is 

the about predicting the values with the right locations. Acc_1 needs the prediction to be right on the 

correct location of source and non-source, while Acc_2 just needs to offer the source location 

correctly. Acc_3 and Acc_4 compare only 6 locations in this study and these locations are selected 

by the maximum values in the descending order respectively. Acc_3 sort the predicted values in a 

descending order, and the locations of the filtered predicted values should be correct to the locations 

of the source and non-source. Acc_4 is a weak version of Acc_3 like Acc_2 as a weakened version 

of Acc_1. Acc_4 only needs the predicted values larger than threshold are in the right positions of 

the source. 

Table 3 – Definition of accuracy and loss  

Category Name Equation Definition 

Loss 

Loss_total 
2

, ,

1

1
( )

Ngrid

i predict i true

i

x x
Ngrid =

−  
The mean square of the predict and 

the true 

Loss_source 
2

, ,

1

1
( )

Nsource

i predict i true

i

x x
Nsource =

−  
The mean square of the predict and 

the true in source 

Loss_zero 
2

, ,

1

1
( )

Nzero

i predict i true

i

x x
Nzero =

−  
The mean square of the predict and 

the true in non-source 

Loss_sratio 

2

, ,

1

2

, ,

1

( )

( )

Nsource

i predict i true

i
Ngrid

i predict i true

i

x x

x x

=

=

−

−




 

The source contribution ratio to the 

total 

Accuracy 

Acc_1 

Ncorrect

Ngrid
 

Under the threshold setting, all 

sound source points and zero 

source points are recognized 

Acc_2 
Under the threshold setting, all 

sound source points are recognized 

Acc_3 

Under the threshold setting, sorted 

from large to small results within a 

finite number, both sound source 

points and zero source points are 

recognized 

Acc_4 

Under the threshold setting, sorted 

from large to small results within a 

finite number, and the sound source 

point is recognized 

Acc_5 
Sorted from large to small results 

within a finite number, both sound 
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source points and zero source 

points are recognized 

2.5 Simulations of Trailing Edge Noise 

Trailing edge noise can be simulated as an emission of line sources. And the pattern of line sources 

could be assumed as a set of equal-strength sources distributed in the vertical line. Therefore, a 

CNN model of training a few monopole sources is applied to predict on the samples with vertical line 

sources distributed in the flow direction. Figure 4 shows some samples of the vertical line pattern 

and the prediction results. The CNN predictions are based on the previous network about limited 

number of incoherent monopole sources. In this study, Section 3.4 would check the results of line 

source simulation in details. 

 

Figure 4 – The source distribution map in 4000Hz and 5000Hz without normalizing the input CSM 
(From left to right are the true monopole sources, beamforming result, DAMAS result and CNN 

predictions). 

 

3. Result and Discussion 

3.1 The validation of the methods 

The training result is compared with the result of Ma Wei [12]. The network structures are almost the 

same and the accuracy criteria are both Acc_5. As is shown in figure 5, the accuracy trends are not 

close enough. This pattern is due to the different conditions of the array in the microphone spatial 

distributions and the distance between the array and the scanning planar. To evaluate the network 

in different array configurations, the results should be normalized. 



MICROPHONE ARRAY TECHNIQUES FOR TRAILING EDGE NOISE BASED ON CNN 

10 

 

 

1000 2000 3000 4000 5000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
c
c
u

ra
c
y

Frequency (Hz)

100k Samples

 max6,28mic,1m

 max6,30mic,2m,Ma Wei

20000 40000 60000 80000100000
0.0

0.2

0.4

0.6

0.8

1.0

 

 

A
c
c
u

ra
c
y

Samples

 max6,4000Hz

 max6,3500Hz

 max6,5000Hz Ma Wei

 max6,3000Hz

 max6,2500Hz

 max6,2000Hz

  

Figure 5 – A curve of accuracy with respects to frequency and samples. 

 

As is discussed in Section 2.3 about the array ratio (AR), the frequency should be normalized by the 

characteristics of the array spatial resolution and the grid characteristics. For a total of 100k samples 

to train, the result is shown in figure 6, which is also a normalization of figure 5. D is 0.45m and z is 

1m. 
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Figure 6 – A curve of AR with respects to frequency and a curve of accuracy with respects to AR. 

 

As is shown in Section 2.4 and Table 2, z,f and Δx are  what matter to change the result. And what 

of much interest is Δx which decides the lower limit of the spatial resolution of the methods. To give 

the users of the CNN model a prudent prediction, at least Δx should be given in reference to a 

relatively lower value. Assuming that accuracy should be larger than 0.8, the minimum AR on each 

criterion would be that AR_RL should be 0.23, AR_Bwd should be 0.39 and AR_RLS should be 0.32. 

Assume Bwd linear to f. It can be inferred from equation (17) and the definition of opening angle α 

that 

2

2 2

( )
_

0.61 (( ) 4 )

x

x

Df N x
AR RL

c N x z


=

 +
 and _

1.22

Df x
AR RLS

zc


= . To normalized Δx by f and c, some 

equations can be introduced that: 

( , )

_

Bwd z f
x

AR Bwd
 =  (18) 

2 0.61 * _

0.61 * _x

z c AR RL
x

N Df c AR RL
 =

−

 (19) 
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1.22 _zcAR RLS
x

Df
 =  (20) 

Figure 7 shows different criteria of Δx with respects to the lower limits of different array ratios 

respectively. In comparison, in order to be small enough and easy to do in the experiments, RLS is 

used as criteria to normalize the frequency by AR_RLS. 
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Figure 7 – A curve of Δx with respects to different frequency according to the lower limit of different 
AR. 

3.2 New definition of accuracy and loss  

As is defined in Section 2.4, Acc_3 is a further accuracy definition from Acc_5, because Acc_5 is a 

relatively unstrict evaluation criterion. In above Section 3.1, a comparison between different array 

ratio is applying Acc_5 as an accuracy criterion. Acc_3 differs in the threshold, which is a value as a 

filter to quantify the correctness ratio of the prediction to the sources. A high threshold would mean 

that the result is correct only the value is high enough compared with the true value. Figure 8 shows 

the source strength map in a dynamic range of 10dB. The map which is correct for Acc_5 criteria is 

wrong for Acc_3 criteria if the threshold is too high to filter too many or too low to filter too few sources. 

 

Figure 8 – The source distribution map in 3000Hz (From left to right are the true monopole sources, 
beamforming result, DAMAS result and CNN predictions). 

 

Using different threshold would mean different dynamic range to be selected as the potential source 

locations for CNN prediction, which means that there would be different results for Acc_1, Acc_2, 

Acc_3 and Acc_4. The test set used in comparing different accuracy criteria contains 50k samples 

of 6 sources. Figure 9 shows the evaluation results in different accuracy definitions.  
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Figure 9 – A curve of accuracy with respects to frequency in different threshold. 

 

The loss is not enough for researchers to have a general view of how close the result is to the true 

sources, as is shown in Section 2.4 about the loss_source, loss_zero and loss_ratio. They would 

help scientists understand the result better than loss_total, namely the mean square error. Figure 10 

shows the result of new and old accuracy and loss definition. 
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(c) Loss_sorce     (d) Loss_sratio 

Figure 10 – A curve of different loss functions with respects to frequency and training samples. 

 

Loss_source is the average of samples in mean square of the difference between the predicted 

values and the true values of 1 Pa2. Figure 10 shows that if the frequency is larger than 1000Hz, 

loss_source should be below 0.4 Pa4.  Assuming the prediction following Gaussian distribution, 

achieving a probability of over 0.9 would mean that the threshold should be smaller than 
11 (0.9)* 0.4 0.1588 −−   for frequency around 1000Hz. However, in this study, the usable 

frequency should be larger than 2500Hz. As a result, the mean square is smaller than 0.15 Pa4 and 

the threshold should be 
11 (0.9)* 0.15 0.4849 −−  , which means that 0.5 Pa2 or -3dB is preferred 

as the threshold. -3dB is the value compared with 1 Pa2 as 0dB in sound power. 

Due to above analysis by accuracy and loss, the threshold should be decided as 0.5 Pa2
. Figure 11 

shows the result of 100k training samples for different accuracy criteria. Array ratio is AR_RLS. 

Acc_3 is chosen as the accuracy criteria in this study. In order to obtain an accuracy with a lower 

limit of around 0.8, the frequency should be not less than 3000Hz and array ratio should be not less 

than 0.374. 
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Figure 11 – A curve of accuracy with respects to frequency and AR. 

3.3 Testing strategy and result 

Another factor to influence accuracy is the random selection of test samples. The above analysis 

uses the testing data occupying 20% of the total samples. But this selection is influenced by the 

regions of the grids and number of sources. To evaluate the predictions in an overall way, the test 

samples are selected according to the strategy in Section 2.4. 

For number of sources, the model is tested on a series of testing sets in Table 5. Figure 12 shows 
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that the accuracies in different number of sources test sets are different. The more training samples, 

the higher accuracy for 5,6 sources and the less accuracy for 1,2,3 sources would happen. 
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Figure 12 – A curve of accuracy with respects to different number of sources for test sets in different 
frequency. 

For different regions, the scanning planar can be divided into regions from outer to inner. Figure13 

shows the probability ratio of these regions. The grid on scanning planar has are colored with 

0,1,2,3,4, or 5. Region ‘all’ contains 0,1,2,3,4,5, ‘inner1’ contains 1,2,3,4,5, ‘inner2’ contains 2,3,4,5, 

‘inner3’ contains 3,4,5 and ‘inner4’ contains 4,5. The composition of samples in different regions are 

not selected evenly. To select different number of sources, the probability ratios are obtained by the 

combinations in different regions over the whole area of 121 grids. Figure 14 shows the accuracy of 

different regions in Acc_3 with respects to frequency and AR_RLS. The test sets are 50k samples 

on regions in Figure 13 with 6 sources. From high frequency to low frequency or high AR_RLS to 

low AR_RLS, the accuracy is not changed evenly for all regions. The inner regions are more sensitive 

to the frequency change than the outer regions and the inner regions contains more wrong prediction 

ratios. 

There are two theories to explain what wrong predictions occur after large enough number of training 

samples for the model: 

1.A not fully learning of the sources at the edge. 

2.The increasing AR due to the frequency which is especially for the sources close enough. 

The first theory is related to small number of individual sources. The second theory is concerned 

with the probability ratio due to the area of the region for the samples with large number of sources 

aggregating together. Because the number of sources influences a lot on the theories, the accuracy 

for different number of sources should be investigated. 
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Figure 13 – The different regions of the scanning planar. 
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Figure 14 – The accuracy of test sets in different regions with respects to frequency and AR_RLS. 

 

Due to the high slope in Figure 5, 3000Hz model is chosen to test different number of sources in 

different regions. Figure 15 shows that when in 3dB threshold, the less noise detected in the inner 

region, the more reliable the prediction is. And the more sources detected in the outer edge, the less 

convincing the result is.  
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Figure 15 – The accuracy of test sets in different regions with respects to number of sources. 

 

To further understand the result, a loss evaluation is done for the 6 sources test sets. Figure 16 

shows that the loss_total (as a mean square error of all grids) becomes larger with test samples 

centralizing. It indicates that failure to predict sources close together contributes significantly to the 

wrong predictions. And the predictions with sources near the edge don’t contribute greatly to the 

mean square error. The loss_zero (as a mean square error of only grids without sources) remains a 

relatively low value which indicates that the CNN model predicts the non-source girds close to zero. 

But the loss_sratio(as a ratio of the square error of all grids with sources over the square error of all 

grids) becomes small when the frequency is around 3000Hz, which indicates that although the non-

source grids are detected at a stable level, more source grids are not detected. The wrong 

predictions appear first as a form of ignoring true source on the grids especially in the central regions. 

However, due to the nonrandom selection of test sets in Figure 13, wrong predictions of the edge 

region might be blamed. Figure 17 shows the loss_sratio multiply the probability ratio in Figure 13. 

Ma [12] indicated that the wrong predictions should be in the edge region. But according to Figure 

17, it was due to the non-random selection of the test sets. 

In conclusion, the wrong predictions of the sources near the edge of the scanning grids are always 

present but the wrong predictions due to the change of frequency or array ratio appears first and 

influence strongly in the inner regions, which indicated that the inner regions need to be handled 
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carefully for more clusters of sources to train and test. The new proposed statistical parameters in 

Section 3.4 about the average sound pressure square across the line is inspired by this pattern. 
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(a) Loss_total     (b) Loss_zero 
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(c) Loss_source     (d) Loss_sratio 

Figure 16 – Different loss functions of test sets in different regions with respects to frequency. 
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Figure 17 – Weighted loss_sratio of test sets in different regions with respects to frequency. 

 

3.4 New training strategy and simulations of trailing edge noise 

The CNN algorithm should be at least convincing for a limited condition. The limited condition is a 

large enough array ratio, a model of up to 11 monopole sources with over 100k samples to train and 

test, and -3dB threshold as a dynamic range. Array ratio is controlled by phased array spatial 
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distribution, scanning planar setting and frequency.  Trailing edge noise could be assumed as line 

sources. Figure 4 has shown a few sound source distribution maps of lines sources. In addition, 

Figure 18 shows the map of source distributions in different dynamic ranges. By filtering out the 

relatively small result, a -3dB map performs better in the flow-direction spatial resolution. The input 

CSM has not been normalized, which means that the model trained on 100k samples of maximum 

6 sources must predict with more sources and larger CSM. The simulation results indicate that if the 

line sources are larger than a number and result is not acceptable. By directly using CNN model to 

predict, the maximum number of line sources should be 3. 
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Figure 18 – The source distribution map (From left to right are the true results, beamforming result, 
DAMAS result and CNN predictions. All maps have a dynamic range of 3dB). 

Due to the input and output value of the same unit, a CNN procedure is proposed to normalize the 

input to process microphone data in wind tunnel test. There are two alternative ways to normalize R. 

One is to use the maximum value in the diagonal of R, and the other is to use beamforming at first 

to get a value of the whole scanning area and find the maximum values of all the grids on the source 

strength map. The repeated simulations have showed that using beamforming at first performs better. 

Figure 19 shows the process for the methods to deal with the microphone data. 

 

Figure 19 – CNN procedure in experiment measurement. 

To strengthen the topology relationship between each grid, an average of the flow-direction or the x-

direction is used as a statistical parameter to train and test. For present simulations, 11 parameters 

are added as an average of the 11 x-direction locations across the y-direction. As is shown in Figure 

20, this method (a) decrease the influence of the over-normalization, (b) increase the dynamic range 

and spatial resolution (c) smooth the map and (d) increase the number of line sources to predict. 
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(a)CNN predictions of one line source. 

 

 

(b) CNN predictions of two line sources. 
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(c) CNN predictions of three line sources. 

 

 

(d) CNN predictions of four line sources. 

Figure 20 – The source distribution map (From left to right are beamforming result, DAMAS result 
original CNN predictions, true result, CNN point predictions and line predictions based on the new 

added parameters. All maps have a dynamic range of 10dB). 

3.5 Validation of methods on wind tunnel experiment 

An aeroacoustics experiment is conducted in Beihang D5 aeroacoustics wind tunnel. A 300mm-

chordlength NACA0012 airfoil is tested in the Kevlar closed section. The incoming velocity ranges 

from 30m/s to 40m/s and the angle of attack is 2 degree and -2 degree. The phased array centers 

in the rotating axis of the airfoils. A general view of the experiment setup is shown in Figure 21. The 

scanning grids are 1.5 meters away from the array plane. 
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Figure 21 – Experiment setup in D5 wind tunnel. 

 

The CNN results are shown below in Figure 21. The trailing edge position is along the blue lines. 

Judging from the CNN point method (without the values along the x-direction of average square 

pressure across the y-direction to train) and CNN line method (with the values along the x-direction 

of average square pressure across the y-direction to train), the predicted source map is improved by 

adding new statistical parameter, which helps to locate the trailing edge that is indicated as the blue 

lines. As is shown in Figure 21, the CNN line methods decrease the possibility misidentifying the 

sound sources on the edge and strengthen the ability of detecting sound sources in the inner regions, 

which has been discussed and emphasized in Section 3.3. 

 

(a) 30m/s, 2 degree, 3000Hz, 1/3 octave 

 

(b) 40m/s, 2degree, 5000Hz, single frequency 
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(c) 30m/s, -2 degree, 3000Hz, 1/3 octave 

 

(d) 40m/s, -2 degree, 5000Hz, single frequency 

Figure 21 – The results of the source distribution after normalization(From left to right are 
beamforming result, DAMAS result, CNN point predictions and CNN line predictions based on the 

new added parameters. All maps have a dynamic range of 3dB). 

 

4. Conclusion 

Deep learning methods like CNN algorithms have shown potential for producing the sound source 

distribution map efficiently. However, the usage of the CNN has been limited by the vague applicable 

range of finite number of monopole sources and ambiguous performance in frequency and scanning 

grids. In this study, to evaluate the prediction results on the simulations and experiments of trailing 

edge noise, a thorough investigation was done and the prediction result about trailing edge noise 

was evaluated. 

To solve the range of application in quantifying the influence factors, a standardization of relevant 

parameters was achieved. In comparison with other researchers’ results, different array ratios were 

defined. Among them, AR_RLS, namely Δx over Rayleigh limit simply (Rayleigh limit, while α→0), 

were chosen to be the array ratio for normalizing frequency in this study. To filter out wrong 

predictions of the result in a strict way, new definitions of accuracy and loss to evaluate the prediction 

results of CNN algorithm were proposed. Acc_3, which used a threshold of -3dB to filter out the 

values in prediction results, was the accuracy criterion chosen in this study. By filtering out sources 

not larger enough in the predictions, the CNN model in this study had a relatively convincing 

performance when AR_RLS was larger than 0.374 under Acc_3, rather than 0.32 under Acc_5. To 

analyze the wrong predictions, models were tested on different test sets to conclude the trends of 

accuracy. According to Acc_3, the predictions had a reliable region dependent on the number of 

sources detected. Judging from loss_sratio, the wrong predictions should first appear in the inside 

central region than the outer region.  

Because the topology information of different grids influences the correctness ratio of the predictions, 

new statistics parameters are proposed based on the flow-direction average of the sound strength 

on each grid. In comparison with the general CNN point methods of simulations and NACA0012 wind 

tunnel experiment, the new CNN line methods increase the ability of the CNN to some typical 

distribution of sound sources. 

In the end, a procedure of using CNN in simulations of line sources and experiments were proposed. 
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Due to the network layers of non-linear operations, the values of output vectors might be a better 

representative of the source distribution maps when new parameters are trained in the dense layers. 

During future work, the network about the definition of the output should be further investigated in 

improving the spatial resolution for more complicated distributions of sound sources. 
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