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Abstract 

Dynamic stall prediction at high angles of attack is faced with the dual challenges of insufficient 

accuracy of calculation data and lack of experimental data. In order to make full use of the 

characteristics of different data sources to establish a dynamic stall aerodynamic time-domain 

prediction model, this paper proposed a data fusion modelling method, which combines a 

Computational Fluid Dynamics solver with a neural network model. By fusing experimental data and 

Computational Fluid Dynamics simulation data, combined with an integrated neural network model, 

an unsteady aerodynamic data fusion modelling framework for airfoil dynamic stall is established. 

Based on the NACA0012 airfoil dynamic stall test data, and the Computational Fluid Dynamics 

numerical simulation results, the proposed data fusion framework performs high precision in the 

prediction of wind tunnel test data, including lift and moment coefficients at different pitch angles,  

balanced angles of attack and reduced frequencies. Results show that the proposed data fusion 

framework not only has higher prediction accuracy, but also has strong abilities in both generalization 

and convergence.  
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1. Introduction 
 

The problems of dynamic stall in unsteady aerodynamic involve mass effect, flow separation,  

formation and shedding of leading-edge vortices [1-2]. Due to its complexity and importance, the issues 

of dynamic stall have received widespread attention in the fields of helicopter, turbomachinery, flapping 

wing aircraft and wind turbine industries. Because of the existence of flow separation, the nonlinear 

and unsteady effects of aerodynamic loads under dynamic stall are particularly prominent. At the same 

time, the existence of dynamic response problems and aeroelastic stability analysis problems raise 

higher requirements for the accuracy of aerodynamic data prediction under dynamic stall [3]. 

Focusing on the problem of dynamic stall of airfoils, researchers have carried out extensive wind 

tunnel tests and numerical calculations [4-6]. As early as 1978, NASA conducted a series of 
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experiments on the dynamic stall of the NACA0012 airfoil, analyzed the separation characteristics of 

the leading-edge vortex and obtained aerodynamic loads test results at different reduced frequencies 

[7]. With the development of Computational Fluid Dynamics (CFD), some high-precision numerical 

methods have also been applied to the dynamic stall problem [3]. John [3] reviewed the aerodynamic 

prediction problems of airfoil dynamic stall. However, due to the limitations of experimental conditions 

and computing resources, the dynamic stall research performed by the above two methods still cannot 

be directly applied to engineering practice. Its limitations are mainly reflected in two aspects: First, due 

to the limitations of the experimental environment, dynamic stall tests are often limited to simple 

harmonic motion in the frequency domain, it is difficult to perform load prediction under arbitrary motion 

conditions, and it cannot meet the requirements of time domain analysis and stability analysis . Second, 

it is difficult to simulate the flow separation and turbulence by numerical simulation methods, especially 

the vortex propagation and movement in the flow, which results in poor accuracy of the numerical 

simulation data. 

In order to balance the contradiction between calculation efficiency and calculation accuracy, 

unsteady aerodynamic models were proposed to improve the ability of the aerodynamic load prediction 

methods in aeroelastic simulations [8]. Unsteady aerodynamic models are mainly divided into two 

categories. One is a white box model (semi-empirical model) based on aerodynamic control equations 

and experimental data, such as Onera [9] and Beddoes–Leishman [10], which are widely used for 

dynamic stall problems. By combining a small amount of aerodynamic test data with classic 

aerodynamic prediction experience, some low-precision dynamic stall prediction methods have been 

developed. Due to their simplicity, these lower-precision models are often used in the initial design 

stage of the industrial design field [3]. Under the guidance of this research idea, many studies have 

been carried out: The United Technologies Research Center (UTRC) [11] developed a time-domain 

unsteady aerodynamic model based on a simple harmonic motion airfoil test, and introduced additional 

parameters characterizing the unsteady change of the angle of attack in order to achieve preliminary 

aerodynamic data prediction. Based on the MST theory proposed by De Laurier [12], Kim [13] 

developed the MST method. Considering the dynamic stall problem of pitching and heaving motion at 

the same time, it can predict the unsteady aerodynamic loads of a wing with a finite span. Suresh Babu 

[2] proposed a reduced-order discrete vortex method. By reducing the number of discrete vortices and 
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merging vortex positions, the computational efficiency was greatly improved and the model accuracy 

was retained. Rohit [6] predicted the dynamic stall aerodynamics of the OA209 wing with limited 

wingspan by combining the DDES method and the unsteady RANS model and compared the effect of 

the depth of stall on the aerodynamic boundary. With the development of data-driven models, the 

research on another type of black box models based on experimental or numerical simulation data 

have also developed rapidly: Zhang et al. [14] developed a Recursive Radial Basis Function (RRBF) 

method. By introducing output feedback on the basis of standard RBF neural network to reflect 

unsteady dynamic effects, a recursive neural network reduced-order model is obtained. Through this 

model, the unsteady aerodynamic prediction ability is realized and used for aeroelastic analysis 

problems. Kurtulus [15] used ANN to simulate the unsteady aerodynamic coefficients caused by the 

airfoil sinking movement. Winter [16] uses fuzzy neural systems to predict unsteady aerodynamic loads 

and flutter boundaries. These black box models are based on a large amount of aerodynamic data and 

can make up for the accuracy of empirical models. However, aerodynamic data for dynamic stall 

problems is difficult to obtain. These data-driven models have not yet been used for dynamic stall 

problems. 

The above two research methods have played a good guiding role in unsteady aerodynamic 

modeling. However, there are still drawbacks to the analysis of dynamic stall for a single source of data. 

For the semi-empirical models, the supplementary parameters introduced by the physical parameter 

model often depend on the test and motion state parameters to a large extent, and the parameter 

adjustment and generalization cannot be performed well. At the same time, the black box model relies 

on complex test data. The modeling requires a large number of complex test conditions for parameter 

training. These characteristics are difficult to meet in engineering. To make up for these shortcomings, 

new dynamic stall models are required to take advantage of both aerodynamic data sources. At this 

time, it is necessary to consider the modeling method based on data fusion technology to improve the 

accuracy of the theoretical model data while ensuring the generalization ability of the data-driven model. 

Data fusion refers to combining data and information from multiple sources in order to better 

improve, estimate and use the data [17]. This idea is now rapidly applied to rapid simulation and 

optimization evaluation of steady aerodynamics to improve the consistency of CFD method data and 

test data, and greatly reduce simulation costs. Ghoreyshi et al. [18] used the experimental data and 
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CFD simulation results to build a high-dimensional steady-state aerodynamic model of the aircraft, and 

built a steady-state aerodynamic data test and numerical data variable-precision model. However, the 

research on the fusion of unsteady data is currently less developed. Kou et al. [19] first adopted a multi-

core neural network model to generalize the variable precision model to the unsteady aerodynamic 

model, and realized the use of low-precision Euler results Approximation of N-S numerical results. Data 

fusion technology has also been applied to the development of turbulence models based on data-

driven technology, using high-precision experiments or numerical simulation data to modify the RANS 

model to achieve higher-precision CFD modeling [20] [21]. At present, the data fusion methods for 

aerodynamic data mainly use three methods [22], 1) a correction model based on addition and 

multiplication; 2) a fusion model based on comprehensive correction; 3) a spatial mapping (input 

correction) model. This paper adopts the third method.  

Based on the research status of the dynamic stall problem, this paper proposes a method for data 

fusion of integrated models with nested unsteady CFD solvers. Using different data sources of the 

dynamic stall aerodynamic data, the mapping relationship between aerodynamic data is established to 

ensure that the model’s results take into account the mapping relationship between the two sources 

for aerodynamic data. The low-fidelity model selects the unsteady Reynolds-Averaged Navier–Stokes 

(RANS) method commonly used in engineering to obtain preliminary results of the aerodynamic 

coefficient of dynamic stall. Based on the aerodynamic data output and motion state of the nested 

Navier–Stokes model, a black box unsteady aerodynamic model based on a small amount of test data 

is established to effectively approximate the unsteady dynamic stall test data. The nested layered 

framework model shows high generalization ability under different equilibrium angles of attack, 

reduction frequency and pitch amplitude. The convergence and accuracy of the model are verified 

through reinforcement training, which proves that the proposed data fusion framework can be effective. 

It performs high-precision dynamic stall load prediction in the time domain, and has higher prediction 

accuracy than traditional models and CFD methods. 

2. Methodology 

 
Here we mainly introduce the neural network model used for modeling framework construction-

scalar-based fuzzy neural network, and the unsteady RANS model that provides numerical solutions 

for aerodynamic estimation. The aerodynamic solution provided by the unsteady RANS model is used 
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to provide a numerical description of the unsteady effects. The overall dynamic process is implemented 

by a neural network framework to realize the mapping process of the dynamic stall aerodynamic 

unsteady and nonlinear output. 

This paper studies the data fusion framework by combining different types of models. The 

integrated model framework proposed is shown in Figure 1. The different surrogate models are used 

to build integrated models that reflect different data sets. Three different surrogate models are used to 

implement the aerodynamic prediction process. Surrogate model 1 implements the mapping from the 

dynamic input to the aerodynamic coefficients which is same as the traditional black box models. 

Surrogate model 2 uses the mapping from low-fidelity CFD solver‘s data to experimental data, and 

surrogate model 3 integrates the performance of the first two models to realize the high-confidence 

data output process. 

 

 

Fig. 1  Data Fusion Framework for dynamic stall 

Aerodynamic models based on fuzzy neural network model 

In order to reflect the current aerodynamic effects of the aerodynamic aerodynamics and the time 

lag effect of motion on the aerodynamics, Chen [23] proposed the use of autoregressive models for 

modeling and analysis to describe the effects of time lag effects on aerodynamics by input and output 

delay. This dynamic process can be embodied by the following dynamic model with input delay and 

output feedback, where n represents the delay order of input and output, ( )T ku represents the kinetic 

input at time k, and ( )T ky represents the kinetic output at time k: 

 
( ) [ ( )]

[ ( ), ( 1), ( 2),..., ( ), ( 1), ( 2),..., ( )]

T

T T T T T T T

k f k

f k k k k n k k k n

=

= − − − − − −

y x

u u u u y y y
                 (1) 
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Based on this mapping relationship, Zhang et al. Developed a static RBF neural network into a 

recursive radial basis neural network [14], and implemented transonic unsteady aerodynamic modeling 

for aeroelastic analysis problems. On the basis of this model, Wang [24] constructed aerodynamic 

black box model based on fuzzy scalar radial basis function (FSRBF) neural network by combining the 

fuzzy neural network method to overcome the limitation of the generalization ability of the model by the 

physical or numerical difference of the input quantity. 

 

 

Fig. 2 Scalar-based fuzzy neural network structure [24] 

A. Data fusion model based on fuzzy neural networks 

The purpose of data fusion is to use the numerical solution results of the low-precision model to 

achieve accurate mapping of aerodynamic data in the experimental state, so as to make up for the 

problem of low data confidence caused by the numerical error. Therefore, for each step of the model, 

it is necessary to consider both the time-lag effect of the unsteady motion of the airfoil and the unsteady 

effect of the corresponding numerical degassing power output. 

It should be pointed out that although the URANS model can obtain numerical solutions describing 

unsteady aerodynamics to some extent, because the URANS model is difficult to accurately capture 

the flow separation and the tail vortex motion, the result of the model solution cannot be directly used 

as the dynamic stall. The analysis basis, especially the more nonlinear moment coefficient, limits the 
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application of this CFD technique to dynamic stall problems. Therefore, we consider the use of 

integrated models to build a black box model based on CFD numerical results and unsteady motion 

input data fusion to improve the prediction accuracy of the experimental model. In this paper, the 

numerically calculated aerodynamic data are referred to as low-precision aerodynamic data. 

 

 

Fig. 3 Data fusion framework based on fuzzy neural networks 

 

Standard fuzzy neural network is mainly composed of four layers of neurons, including: input layer, 

fuzzy layer, fuzzy inference layer and output layer. A fuzzy neural network based on data fusion ideas 

is constructed here, as shown in Figure 3. Next, we will introduce the different layers of neurons above 

and below the neural network. The upper layer surrogate model 1 (superscript layer2-4) constructs the 

fuzzy mapping of the unsteady angle of attack. The target layer 1-6) contains 6 layers, of which the 

second layer is the input layer (Eq. 2) in which the numerical solution method is nested, and the 

dynamic input at each step requires the corresponding low-precision aerodynamic data. Finally, the 

surrogate model 3 (subscript layers 6-7) responsible for the output implements the weighted output of 

the two fuzzy neuron layers. The following contents introduce these models separately. 

1. Surrogate model 1 
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There are three layers of neurons in Surrogate model 1 (superscript Layer 2-4), where layer 2 is 

the input layer, which reflects the angle of attack value of the unsteady effect of wing motion. The n-th 

order input delay is used to reflect the effects of unsteady time delay. The pitch angle corresponding 

to each time delay term is used as input, as shown in Eq. 2: 

 1= [ ( ), ( 1),..., ( )]T T Tf k k k n− −u u u                                                           (2) 

The second layer is a fuzzy layer, which performs non-linear mapping on the input information to 

achieve data fuzzing. This layer uses a Gaussian function as the activation function to perform non-

linear operations on neurons in each input layer, as shown in equation (3). Among them, the mean and 

variance of the current neuron ,ij ijc   are respectively expressed. Each center value ijc  of the fuzzy 

layer is derived from the input value of the training sample, I, j represents the current input and the 

neuron sequence number of the current fuzzy layer, respectively. 

2
2

2 1 2
( , ) ( ( ), , ), ( ) exp( )

2
ij ij

r
f i j g f i c g r


= = −                                   (3) 

The third layer is the defuzzification layer. In order to reflect the time coupling characteristics of 

the time input parameters, it is necessary to reflect the delay effect in this neuron. By selecting the 

motion input at the corresponding time delay order and low-precision aerodynamic neurons, and 

multiplying the corresponding neuron output, the effects of aerodynamics and unsteady motion at a 

certain delay order at adjacent times are reflected. Among them, N represents the corresponding delay 

order. This layer of neurons reflects the role of the unsteady time-delay effect in the black box model. 

The reduction of the neuron order is achieved through the defuzzification layer. 

3 2

1

( ) ( , )
N

i

f j f i j
=

=                                                         (4) 

2. Surrogate model 2 

There are 6 layers of neurons (Subscript Layer1-6) in Agent Model 2, where layer1-3 represents 

the low-precision aerodynamic data solution process, as shown in Eq. 5. Among them, ( )T

LF ky  refers 

to the low-precision aerodynamic force obtained by the numerical solution at time k, and f represents 

the CFD solution process. 

 1( ), ( 1),..., ( ) [ ( ), ( 1),..., ( )]T T T T T T

LF LF LFk k k n f k k k n− − = − −y y y u u u                            (5) 
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The input layer of the second layer is inputted by the aerodynamics of the low-precision data of 

the unsteady solver at the corresponding time. The number of neurons in the input layer is n, where n 

represents the delay order. 

 2 ( ) [ ( ), ( 1),..., ( )]T T T

LF LF LFf i k k k n= − −y y y                                                 (6) 

Layers 3-4 are fuzzy layers, which non-linearly map the input information to achieve data fuzzing. 

The neural network operation is the same as the surrogate model 1. 

2
2

3 2 2
( , ) ( ( ), , ), ( ) exp( )

2
ij ij

r
f i j g f i c g r


= = −                                                 (7) 

4 3

1

( ) ( , )
N

i

f j f i j
=

=                                                                            (8) 

3. Surrogate model 3 

Agent model 3 is a data fusion layer. This model considers the effects of low-precision data and 

unsteady motion on the test aerodynamic data at the same time. It solves the weight of the neurons 

output from the two types of models to the overall output. The fuzzy neural network standard solution 

process realizes the mapping relationship for unsteady aerodynamic data. 

2 0 1

1

( ) . ( )
c

j

j

y k w w f j
=

= +                                                                        (9) 

     

0 1

1
1

( ) ( ) ( , ,..., , , )

( ) ( ), ( ),..., ( ), ,

HF j j i j i i i n ij ij

j i

i i i n
i i i j LF i LF i LF i n ij ij

j i

y w w g c

w g y y y c





− −

− −
− −

= + • +

 •
 

 

 

x x x x x

x x x x
                                     (10) 

In this way, the overall data fusion framework can be constructed, which can not only reflect the 

unsteady and non-linear characteristics of pneumatic data, but also improve the accuracy of CFD 

calculation results by coupling low-precision pneumatic data. The overall mathematical relationship can 

be expressed as Eq. 10. It can be seen that the solution of high-precision data is mainly represented 

by a combination of two models. One class represents the influence of unsteady motion on the 

aerodynamic results, and the other characterizes the influence of low-precision aerodynamic data on 

the results. The introduction of low-precision data here reflects the unsteady trend of aerodynamic data, 

avoids the over-fitting problem caused by the cumulative error effect of the regression model, and 

improves the adaptability and generalization of small samples of the overall model framework. 

C.  Model training and hyperparameters optimization 
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Particle Swarm Optimization (PSO) algorithm is an optimization algorithm proposed by Kennedy 

and Eberhart [25] in 1995. This method treats the parameters to be optimized as particles, calculates 

the fitness through particle movement, and gradually iterates to obtain the global optimal solution. PSO 

optimized neural network is a common method to improve network performance. The complexity and 

some parameters of the neural network can be adjusted, which makes it suffer from poor stability and 

inaccuracy. Optimizing the parameters of the neural network through PSO is helpful for accelerating 

network convergence and quickly locating the optimal value. 

 

 

 

Fig. 4 Data fusion model training and prediction process 

 

Recently，Kou [26] combined with the PSO algorithm to develop an aerodynamic modeling 

method with verification signals, and enhanced the generalization ability of aerodynamic ROM. This 

paper also uses this optimization algorithm, combined with data fusion neural network, to implement 

the neural network model training process with CFD solver nested. 

Results In this section, the proposed data fusion model will be tested. We used very little 

experimental data to verify the predictive ability of the model for dynamic stall problems. The advantage 
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of data fusion is that although it is difficult to conduct a large number of tests for the test data of dynamic 

stall, only a small amount of test data can be used to build a high-precision model based on numerical 

simulation methods and black box models to improve the application of test data. At the same time, 

the confidence of the numerical results can be greatly improved. This part will focus on the training 

process and application results of the data fusion framework. 

A.  Training data of data fusion model 

With the support of very few experimental data, three groups of experimental states (A, C, E) were 

extracted to construct a data fusion model, and the remaining three groups of experimental data (B, D, 

F) were used to verify the generalization ability of the data fusion framework. During the training 

process, two sets of experimental data (A, E) are selected as training signals, and the hidden layer 

center ijc  in Eq. 3 is provided. The PSO optimization algorithm is used to find the optimal solution of 

ij . The least squares method is used to solve the weight matrices W1 and W2, so that the estimation 

error of the remaining set of case (C) is minimized. Such a verification training process can effectively 

improve the generalization ability of the model and avoid overfitting problems [26]. Finally, the delay 

order n = 5 is selected, and the number of neurons in each layer of the neural network corresponds to 

5-10-480-48-2. 

In the particle swarm optimization data, the selection range is 0.01-100, the evolution number is 

20, and the particle population size is 40. Training data A, E and verification data C are shown in Fig. 

8. 

The training signal selection covers the wider aerodynamic boundary as much as possible. The 

cases with the largest and smallest pitch amplitudes are selected to construct the hidden layer data. 

The verification signal is used to improve the generalization ability of the sample and avoid over-fitting 

of small sample data. The aerodynamic data used for prediction not only contains the pitch amplitude 

and equilibrium angle of attack not included in the training data, but also extrapolates the reduction 

frequency to test the extrapolation ability of the model. 
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(a) Training data A： 0 =6°, m =6°, k=0.15 

 

(b) Training data E： 0 =15°, m =10°, k=0.2 

 

(b) Training data C： 0 =15°, m =10°, k=0.05 

Fig. 8 Training and validation data of high/low fidelity data 

B.  Prediction results and errors analysis 
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We make predictions on the aerodynamic data under B, D, and F test conditions, and check the 

prediction accuracy against the test data. The error here is the mean square error (MSE), which refers 

to the mean square error between the predicted data and the experimental data, as shown in Eq. 14.  

2

1

1
( ) ( )

N
predicton real

f i f i

i

MSE C t C t
N =

= −                                          (14) 

Fig. 9 shows the prediction result of calculation example F, in which the lift coefficient is compared 

with the aerodynamic result predicted by the FSRBF neural network model directly trained on the same 

data and the result of the data fusion algorithm. It can be seen that due to the small sample size of the 

training data, the direct establishment of the aerodynamic model cannot have a good generalization 

ability, but instead uses the CFD-nested data fusion model established by the numerical simulation 

results. Due to the full consideration of the auxiliary role of the low-precision unsteady aerodynamic 

data, even a small test sample can make the black box model capture the conversion characteristics 

between data well. In addition, a low-fidelity aerodynamic data model is used to obtain high prediction 

accuracy. Even with more complex moment coefficients, the CFD-nested data fusion framework also 

shows high prediction capabilities. 

 
Fig. 9 Test case F： 0 =15°, m =6°, k=0.24 
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Fig. 10 Test case D： 0 =15°, m =10°, k=0.15 

 
Fig. 11 Test case B： 0 =11°, m =6°, k=0.24 

Fig. 10 and Fig. 11 show the comparison of data fusion prediction aerodynamic coefficients with 

experimental aerodynamic data. It can be seen that during the pitch-up and pitch-up phase of the 

pitching motion, when the angle of attack is low, the CFD simulation results are better compared with 

the test because the airfoil separation is small. With the occurrence of dynamic stall effect, the CFD 

data starts to completely deviate from the test data. At this time, due to the black box mapping effect 

of the data fusion framework, the deficiency of the numerical simulation results is made up, so that the 

predicted aerodynamic force can accurately capture the dynamic stall characteristics. In the airfoil 

down-shooting phase, due to a large number of separations and vortex movements, the CFD method 

has completely deviated from the test results. At this stage, the aerodynamic numerical error is the 

largest, and the aerodynamic change trend is not consistent with the test data. At this time, the data 

fusion prediction results corrected by numerical simulation results also show some accuracy 

fluctuations, but they are generally in good agreement with the test results, which has improved the 

confidence of the data. The nested layered data fusion framework effectively captures the 
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aerodynamics of the experimental data under dynamic stalls, and uses a small amount of high-

precision data under the premise of not increasing the calculation cost, and obtains aerodynamic 

dynamic stalls with a certain generalization ability. Forecasting model. 

Considering the comparison of the prediction errors of the models, Table 2 shows the comparison 

of the prediction errors of the various examples. Under the results of model training, the model obtains 

smaller prediction errors under different equilibrium angles of attack, pitch amplitudes, and reduction 

frequencies. Compared with the numerical simulation results, the prediction data error is reduced by 

2-3 times, which proves the generalization ability and model accuracy of the model. 

 

Table 2. Mean square errors comparison of CFD method and data fusion method 

Test 
case 

MSE 

CFD  

LC  

Prediction 

LC  

CFD 

MC  

Prediction  

MC  

Case d 0.0528 0.0150 0.0491 0.0096 

Case e 0.0446 0.0169 0.0290 0.0057 

Case f 0.0351 0.0143 0.0073 0.0015 
 

C.  Model convergence analysis 

In the previous section, we verified the generalization ability of the aerodynamic coefficients under 

dynamic stall conditions with the data fusion framework nested with the CFD solver under a small 

number of training samples. Next, continue to study the impact of increasing training data on model 

accuracy. Considering that the training data reflects the conversion relationship between the numerical 

simulation data and the experimental data, more training samples should better improve the prediction 

accuracy of the experimental data. If the accuracy does increase with the increase of sample data, 

then the accuracy convergence of the model will be proved, and the auxiliary modeling role of data 

fusion will be reflected. 

For three prediction examples, non-predicted aerodynamic data is added to the training examples 

as training samples to optimize the data fusion model. In the three sets of traditional prediction models 

modeled, To establish a data fusion model using the remaining 5 samples as training signals, to 

investigate the model's convergence with increasing training samples. 

Fig. 12 to Fig. 14 show the prediction results of model with a lager training set. In the figure, 

Prediction 1 represents the modeling results of a small amount of training data, and Prediction 2 
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represents the prediction results from model with a large training set. It can be seen from Table 3 that 

the model prediction error is further reduced compared to section 3.2, which fully demonstrates the 

model's convergence to the training data. Compared with a small sample model, the model's prediction 

accuracy can be obtained with more certain test data. 

 

 
Fig. 12 Test case F： 0 =15°, m =6°, k=0.24 

 
Fig. 13 Test case D： 0 =15°, m =10°, k=0.15 

 
Fig. 14 Test case B： 0 =11°, m =6°, k=0.24 
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Table 3. Mean square error comparison between two prediction examples 

Test 
case 

MSE 

Prediction1 

LC  

Prediction 2 

LC  

Prediction 1 

MC  

Prediction 2 

MC  

Case d 0.0150 0.0102 0.0096 0.0047 

Case e 0.0169 0.0125 0.0057 0.0043 

Case f 0.0143 0.0118 0.0015 0.0006 
 

D.  Time-domain prediction examples of dynamic stall 

The framework based on data fusion not only has a good prediction ability for dynamic stall 

problems of simple harmonic motion. Because the design of the model is not constrained by the form 

and state of motion, the data fusion framework can also predict aerodynamic forces in any periodic and 

aperiodic motion. Next, the two sets of aerodynamic prediction results under non-harmonic motion are 

shown. Although there is no comparison of experimental results for the dynamic stall problem of non-

periodic motion, it can be estimated that compared with the results of the unsteady dynamic stall 

obtained by numerical algorithms, The prediction results have higher confidence and are closer to the 

actual experimental data. From the comparison of lift and moment coefficients, it can be seen that 

although the model fusion results are similar to a certain extent, there is still a clear correction in 

amplitude and trend from the CFD results. 

 
(a) Non-harmonic square wave signal prediction results 
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(b) Simple harmonic divergence signal prediction result 

Fig. 15 Comparison of prediction results of unsteady aerodynamic data 

3. Conclusion 
 

This paper proposes a data fusion and fusion modeling method for dynamic stall problems, and 

uses the data fusion method to establish an aerodynamic prediction model for airfoil dynamic stall. With 

the support of a small amount of experimental data, the model can be combined with the low-precision 

aerodynamic data calculated by the numerical simulation of the unsteady RANS model to correlate the 

numerical results with the aerodynamic data of the dynamic stall test. By designing the integrated 

neural network model of the nested unsteady solver, the nonlinear and unsteady modeling process of 

aerodynamic data is realized. Aiming at the problem of poor accuracy of numerical simulation data and 

the difficulty of directly modeling the experimental data volume, the data fusion method is used to 

consider the combination and transformation relationship between the data. The integrated fuzzy 

neural network is used to implement the dynamic stall aerodynamic data. Precise capture and high 

accuracy. The model can play a key role in predicting aerodynamics in the range of angle of attack and 

reduced frequency that are difficult to perform by experimental means. Finally, by strengthening the 

training set, the convergence of the model is verified, and the accuracy of the model is improved. The 

advantages of data fusion modeling methods for nested unsteady solvers can be summarized as three 

points: 

1. An unsteady aerodynamic integrated data fusion modeling approach is proposed, which can 

effectively utilize neural network features and a low-precision solver to implement model generalization 

and extrapolation. 

2. This method can use the simulation data and a small number of experimental results to improve 
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the prediction of experimental results and save costs. 

3. Compared with a single data source recursive model, it can avoid the problem of error 

accumulation in the recursive model and improve the generalization ability of the model itself. 

Further work may consider using data fusion methods for high-fidelity virtual flight design and 

simulation of aeroelastic problems based on experimental data. 
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