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Abstract

A Modeling method of flight characteristics of an aircraft by using flight data was discussed in this study. As
an example, lift and drag aerodynamic force worked on a fixed-wing aircraft was studied. In order to get its
accurate and reliable model, a statistical approach with Markov chain Monte Carlo sampling technique based
on Bayesian inference, which estimates not only target parameters but also their distribution, was utilized.
Additionally, a newly postulated model taking both static and dynamic components into account was applied.
It could deal with approximately ten times more and untidy flight data compared to the author’s previous study.
The estimated results were successfully approximated the data acquired with actual flights. In addition, by
showing the deterioration of the estimation without the consideration of the dynamic components due to the
mismatch between the data and model, the effectiveness of the proposed method was demonstrated.
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1. Introduction

To estimate flight characteristics of an aircraft by using observed flight data is performed for various
purposes. Firstly, it is performed as one of the important tasks in the development phase of an
aircraft. Aircraft stability and controllability are estimated and validated with flight test data, which is
required by regulation for airworthiness. In addition, from the point of view to develop a competitive
aircraft, to estimate its characteristics as accurately as possible is essential, because it enables to
make its performance to be guaranteed more attractive.

The estimation results are also useful for aircraft operation. An operator of an aircraft can maintain
the performance of an aircraft effectively by using the estimation results. For example, monitoring the
drag will optimize the interval period of cleaning an aircraft. Moreover, this estimation will contribute
enhancement of the traffic capacity of airspace. The capacity enhancement is typically planned by
using simulations, which require an accurate mathematical model of flight characteristics. In addition
to typical models represented by the Base of Aircraft Data (BADA) [1], which are built based on
proprietary knowledge of an airframer, to obtain a more accurate model by using the estimation
technique with flight data has been actively studied recently [2].

As mentioned above, there is various utilization of the estimation of the flight characteristics, and their
common requirements are accuracy and reliability of the estimated results. Thus, the author has been
focused on a Bayesian approach to this estimation problem, because the approach has preferable
two features: It provides not only point estimation results but also a distribution of the results, which
can be used as metrics for how reliable the results are. In addition, the estimation results can be
controllable based on prior knowledge. Compared to parameter estimation methods typically applied
to the flight characteristics estimation represented by least square and Kalman filtering described in
text books [3, 4], these advantages are still maintained. The typical methods can provide covariances
of estimated results, however, the covariances are just parts of distribution information of the results.
Additionally, it is relatively difficult to regulate the estimation results of these methods based on prior
knowledge, because indirect ways such as the application of weights or extended state values are
required.
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By utilizing those features of the Bayesian approach, the author previously studied the estimation of
static components of lift and drag aerodynamic coefficients of an airplane [5]. The previous study
was intended to obtain the estimated results in enough reliability to compare with results of wind
tunnel tests or computational fluid dynamics (CFD) analyses. The results obtained with flight data
of a Cessna 680 Citation Sovereign, shortly C680, owned by JAXA were reasonable. The previous
study was concluded that the estimation with Markov chain Monte Carlo (MCMC) well summarized in
Chapter.11 of Bishop [6], which is a random sampling technique to get parameter distribution based
on Bayesian inference, was basically effective for the static flight characteristic modeling.

The goal of this study is identical to the previous study, and the author has been motivated to improve
the reliability of the estimation by using more flight data. However, a straightforward application of
the previous method to the large dataset was insufficient. Consequently, dynamic components are
additionally taken into consideration in this study. The dynamic components are estimated with the
static ones simultaneously. There is another way to treat the dynamic component separately, which
may succeed practically by using parts of flight having much clue for the estimation of the dynamic
component represented by maneuvering. However, actual flight always experiences more or less
effect derived from both components. Therefore, the simultaneous estimation is oriented in this study.
In the following, the details of the estimated targets and methods are explained. In section 2, the
lift and drag components to be estimated are clarified with equations. Flight data used as the inputs
for the estimation are also described. In addition, Stan [7], a MCMC sampling software, and its
application to this study are elaborated. Then, the estimation results are explained in section 3. Three
cases of estimation results are compared: the large dataset with and without the consideration of the
dynamics components, and the same small dataset as the previous study without the consideration.
The failure of the estimation by using the large dataset without the consideration of the dynamics
components is especially discussed according to the lift estimation results. Finally, this study is
concluded in section 4.

2. Estimation preparation

This section summarizes the preliminary steps in the estimation. First, lift and drag aerodynamic
parameters of a fixed-wing aircraft are factorized into elements, where the parameters to be estimated
and inputs are clarified. Then, the flight data of C680 used as the inputs are explained. Finally, the
application of Stan, the utilized MCMC sampler, is described.

2.1 Lift and drag models
The lift and drag models are postulated based on the knowledge described in Jategaonkar [3],
Raymer [8], and Filippone [9]. The lift coefficient C; is factorized in a linearized form as

CL~Cro+Craa+Crs5,6.+ Craq , (1)
v
static dynamic
components component

where «, 6., and ¢ are angle of attack, elevator deflection angle, and pitch angular speed, respec-
tively. The symbol C; s with subscripts on the right side are the parameters to be estimated, and as
well-known, Cry and Cy,, are the zero lift coefficient and lift slope, respectively. The other symbols
including C, on the left side are the inputs for the estimation. The significant point of this model is
the inclusion of the last term on the right side. It is the dynamic component of the lift while the other
terms are the static components, which have been taken into the account in the previous study. It is
noted that the pitch angular speed ¢ are used for its inputs instead of the time derivative of the angle
of attack & although its coefficient is represented as C;4. This is because ¢ is directly measured with
an inertial measurement unit (IMU), and is assumed to be more accurate than «. On the other hand,
& is only acquired by taking time difference of a.

Although there are other aerodynamic devices to be considered, they are intentionally dropped from
the model as same as the previous study. It is known that if there is a strong correlation between two
inputs the estimation may deteriorate. According to this knowledge, a term of the stabilizer, whose
deflection angle ds, has strong linearity to the angle of attach a shown in section 2.2, is dropped. In
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addition, other aerodynamic devices represented by flaps, spoilers, and gears are not included in the
model for simplicity. In order to eliminate their contribution, the flight data obtained in the non-clean
configurations are intentionally excluded from the inputs, which will be also indicated in section 2.2.
The drag coefficient Cp is modeled as

Cp =~ Cpo +20 (max (M — Moy,0))* + CpiC% 2)
-~ / \V—/
static both
components Components

where being similar to Eq. (1), the symbol Cps with subscripts in the right side are the estimation
targets. The first and second terms on the right side represent the parasite drags while the third term
corresponds to the induced drag. The wave drag, which is one of the parasite drags and resulted from
the formation of shocks, is specially treated with the second term, which is configured to be effective
when the Mach number M exceeds a base Mach number M, to be estimated. This representation is
the same as an equation described in Filippone [9] as

Cowave =20 (M —M.)*, M >M,, 3)

where M. is the critical Mach number. The last term is linear to square of the lift coefficient C;2, and
represents the induced drag, which includes both static and dynamic components. The reason why
the effects of other aerodynamic devices are not taken into account is the same as that of the lift
modeling. Cp, Cr, and M are the inputs given by the flight data.

In section 3.2, there is a comparison of the models with and without the consideration of the dynamic
components. The model with the consideration corresponds to Eqgs. (1) and (2). On the other hand,
the without model uses the same Eq. (2), but

CL~Cro+Cra 0 +Cys, O (4)
instead of Eq. (1).

2.2 Input flight data

The flight data used for this study is the same as the previous study except for the number of samples
to be used for the estimation inputs. The data acquisition and preprocessing methods are explained.
The original flight data is obtained by the C680 named as “Hisho” shown in Fig. 1, which is modified by
Japan Aerospace Exploration Agency (JAXA) to be used for various flight experiments [10]. A C680
is a fixed-wing aircraft with twin turbojet engines. Thanks to the modification, the acquired data is
composed of as many types of data as available. For instance, the motion information represented by
acceleration and angular speed, deflection angles of aerodynamic devices, and engine data through
interface complied to full authority digital engine controller (FADEC) are available. The angle of attack
and airspeed are accurately measured with sensors mounted in front of its nose boom. lIts thrust and
weight in flight estimated with dedicated software in certain accuracy are included in the data.

Figure 1 — Research aircraft “Hisho”, which means fly higher in Japanese

Figure 2 shows the preprocessing of the flight data of the previous and current studies. The flight data
is preprocessed to filter out the non-clean configuration parts, in which the flaps, spoilers, or gears
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of the aircraft are activated. Additionally, the data obtained at an altitude below 15,000 ft, where
the aircraft may not be almost in the clean configuration due to taking off or landing operations, is
excluded. Furthermore, turning flights are dropped from the data because the estimated targets
are limited to the longitudinal characteristics this time; the threshold roll angles are +2°. In the
previous study, the further selection was performed in order to extract data in trimmed conditions
where acceleration or rotation is negligibly small. Such selection is not applied in this study, and
9040 samples of approximately ten times of 732 samples of the previous study are used for the
estimation, which are called the large and small datasets, respectively.

Clean configuration
(No flap, gear, spoiler)

& Trim condition
Flight data Altitude > 15,000 ft > (Negligible
& acceleration,rotation)
Roll angle < +2 deg

Y Y

L dataset Small dataset
arge adatase (Same as
9040 samples previous study) 732 samples

Figure 2 — Flight data preprocessing

Figure 3 shows the trajectory recorded in the flight data. The red lines, which correspond to 18.7
hours long of 10 flights, are used as the inputs. The total flights shown in the thin grey lines without
the preprocessing are 43.8 hours long. The used flight data sufficiently covers the envelope of the
aircraft illustrated by the dot lines, whose ceiling altitude and maximum Mach number are 47,000 ft
and 0.80.
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Figure 3 — Trajectory recorded in flight data

The coefficients of lift C;, and drag Cp described in Eqgs. (1)-(2) are the inputs for the estimation, which
calculated with the flight data as

[8)] = q]S Rot(@.p) (ma~T)] . (5)
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where ¢, S, m, d, and T are dynamic pressure, wing area, weight, outputs of an accelerometer
strapped down to the body, and thrust, respectively. Rot («, ) is a rotation matrix composed of angle
of attack a and side slip angle 8. [, , represents taking upward and forward elements from a three
dimensional vector.

Figures 4 summarizes the input flight data used for the lift and drag estimations corresponding to
Egs. (1) and (2). Each figure consists of three parts: the diagonal, lower and upper triangle elements
correspond to the histogram of each input, scatter, and correlation plots of each pair of two inputs,
respectively. The correlation plots are annotated with scaled Spearman’s rank correlation coefficients,
whose -100 and 100 represent fully positive and negative correlations. As shown in Fig. 4a, the angle
of attack a and stabilizer deflection dq4, are strongly correlated by -97 of the coefficient, that is the
reason the stabilizer term was dropped from Egs. (1) and (2). It is noted that although Reynold’s
number Re is not included in the postulated model, it is displayed in Fig. 4b just for reference.

2.3 Utilization of Stan

Although the general explanation of Bayesian estimation and MCMC sampling is omitted due to the
page limitation, detailed information about the application of Stan, the MCMC sampled utilized in this
study, is provided. Stan generates samples of parameters to be estimated based on observation,
that is, input flight data. The samples are internally adjusted with a postulated statistical model used
for the likelihood calculations. The model should be provided by a user in a specific format in addition
to the flight data.

Listing 1 shows the script to transfer the model to Stan. Basically, it is configured according to Egs. (1)
and (2) as shown in its “model” section. C; and Cp are assumed to be normally distributed with their
standard deviations of o(C.) and 6(Cp), respectively. The “data” section defines the structure of the
input flight data. The section named “parameters” lists the main parameters to be estimated. It should
be stressed that special constrains are provided to Cp; and M. Cp; is the coefficient of the induced
drag: 1

Cpi = ﬂ , (6)

where e is the Oswald efficiency known to be one at maximum. 2R is the aspect ratio of the main
wing by 7.731 for C680. M, is the base Mach number to represent the effect of the wave drag, which
is typically significant in transonic. Thus, M, is bonded to be greater than 0.55 with margin. o(Cy)
and o(Cp) are also bounded to be greater than zero because of standard deviations. The following
“transformed parameters” helps “parameter” section to define the auxiliary parameters. It is noted
that the above mention corresponds to the model with the dynamic components. For the model
without the dynamic components, the 30th line in Listing 1 is commented out.

For each estimation with Stan, 2000 iterations are performed to draw the parameter samples from
four independent generators (chains). The first 1000 iterations are used as “burnin”, that is, the
startup phase to wait for the parameter distribution being converged, and are not included in the post
analyses. In addition, every two of three iteration results are excluded from the final samples in order
to mitigate autocorrelation. To summarize the numbers, 1336 samples (= (2000 — 1000) x 4/3) of
each estimated parameter are generated par one estimation trial. The convergence of the distribution
of the generated samples is evaluated with the R index in addition to a visual check of the histories of
the iterations as shown in the next section.

3. Estimation results

In the following, the best estimation results obtained with the large dataset and inclusion of the dy-
namic components are shown. Then, its effectiveness is discussed via the comparison of the lift
estimation results obtained with the three combinations of the datasets and models. Additionally, the
estimation of the wave drag is discussed.

3.1 Best estimation results

The best estimation was performed by using the large dataset with the dynamic component consid-
eration. lts results are shown in Table 1, which summarizes the statistical values of the estimated
parameters. Figure 5 shows their histograms. It is noted that although the baseline coefficients of the
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Figure 4 — Pair plots of input flight data. The symbols are same as those in Eq. (1) and (2). For each
set, the diagonal elements show histograms. The elements in the lower and upper triangle areas are
scatter and correlation plots of each two variables, respectively.
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Listing 1: Model for Stan

1 data {
2 int<lower=1> N;// Number of samples
3 vector[N] alpha_deg; // o
4  vector[N] de_deg; // 6,
5 vector[N] g_dps;// ¢
6 vector[N]cL;// C.
7 vector[N] mach; // M
8 } vector[N] cD; // Cp
9
10 parameters {
11 real cLO; // Cyp
12 realcla;// Crq
13 real cLde;// Cp,
14 real cLadot; // Cp,
15  real<lower=0> sigma_cL;// ¢(Cyr)
16 real cDO; // Cpg
17 real<lower=1.0/(pi()+7.731)> inv_epar; // Cp;
18 real<lower=0.55, upper=0.9> machO; // M,
19 real<lower=0> sigma_cD; // o(Cp)
20 }
21 transformed parameters {
22 vector[N] mach_delta_tmp;
23 for(iin 1:N){

24 mach_delta_tmpli] = (mach[i] >= mach0) ? pow(machli] — macho, 4) : 0;
25}

26 }

27 model {

28 cL ~ normal(

29 cLO + (cLa « alpha_deg) + (cLde x de_deq)

30 + (cLadot x g_dps),

31 sigma_cL); // Eq. (1)

32 cD ~ normal(

33 ¢DO + (inv_epar * (cL .x cL)) + (20 * mach_delta_tmp),
34 } sigma_cD); // Eq. (2)
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lift Co and drag Cpo were estimated, their relative differences from their mean values are displayed
as ACry and ACpy, respectively.

The first step to evaluate the estimation results acquired with the MCMC sampler is to check the
convergence of the distribution of the generated samples. This convergence is partially proved for
the goodness of the model postulation and the successfulness of the estimation. The evaluation of the
convergence is quickly performed by the R indices in Table 1. According to Chapter 11 of Gelman [11],
R < 1.1 means that the distribution of the corresponding parameter has been sufficiently converged.
As shown in the table, all R satisfied this condition. In addition, the convergence was visually checked
with the trace plots of the samples in Fig. 6. The plots show that the samples are not biased between
the chains and are randomly moved, thus, the convergence successfully occurred.

Table 1 — Summary of estimated parameters

Item Mean g;%?;?gg 2.5% “{'gg'/a)” 97.5% R

ACro | (0.000) 7.187x 1074 —1.383x 107>  1.260x 107>  1.438x 107> 9.986x 107!
Cro'| 83594x1072 1.166x107* 8.571x1072 8.594x102 8.616x1072| 9.981x10~"
Crs | —1.663x1073 5.070x 1074 —2.665x 1073 —1.644x 107> —6.465x 107 9.986x 10~!

Crs 2| 3.768x1072 6.932x107% 3.635x1072 3.770x1072  3.911x 1072 9.989x 10!
o(Cy) 1.798 x 1072 1.292x107*| 1.774x1072  1.798x 1072  1.822x1072| 1.001

ACpo | (0.000) 4.620x 10| —8.708 x 10> —1.200x107%  8.954x 10~>| 1.001
My 6.624x 1071 1.346x1073| 6.599x 10!  6.623x10°!  6.650x 10~!| 1.006
Cpi 5.934x 1072 2.303x107% 5.889x1072 5934x102 5.981x1072| 1.001

o(Cp) | 2.873x1073 2.107x1077| 2.831x1073 2.872x1073 2.916x1073| 1.001
T[1/deg]  2[1/(deg/s)]
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0 - 1 1 1 1 T- O - 1 1 1 1 0 - 1 1 1 I-
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Figure 5 — Histograms of estimated parameters
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Figure 6 — Trace plots of estimated parameters

The main evaluations were performed with the plots of the lift slope and drag polar shown in Figs. 7
and 8. The observed samples, that is, the input flight data, are represented by the small circles.
The shallow and dense blue areas are the 95% and 50% prediction intervals, respectively. These
intervals were calculated with the generated random samples of the estimated parameters. Although
only the variation of the angle of attack was taken into account, most of the observed samples, which
were affected by the other factors, are located in or near the blue areas. This additionally proves that
the estimated model approximated the actual flight data.

3.2 Necessity to consider the dynamic components

By comparing the three combinations of the datasets and the models, the fact that the best results
were obtained with the large dataset and the model inclusion of the dynamic components will be
clarified. As the metric of the goodness of the estimation results, the standard deviations of the
estimated parameters were selected. Table 2 shows the estimation results of the three combinations:
the small dataset without the model inclusion of the dynamic components, and the large dataset
with and without the model inclusion. The standard deviations of the large dataset with the Cp4
consideration are lower than those of the other two combinations. Among the parameters, ACry was
significantly improved with the model inclusion as shown in Fig. 9. Therefore, it is concluded that the
best estimation was the large dataset with the model inclusion of the C; 4 components.

This fact means that it is natural but important to use an appropriate postulation for a model according
to an input dataset. In addition, we have to pay much attention even if a mismatch between dataset
and model is small. Figure 10, which is the scatter plot of the small and large datasets, shows the
mismatch of the lift estimation. The horizontal and vertical axes correspond to the angular speeds ¢
and the difference between the observations and the model outputs without the dynamic components,
respectively. The model outputs are calculated with the estimated sample means, which are indicated
with an over line like Cy in the figure. Most of the points of the small and large datasets are located in
the small area around the origin, that means they are in the good agreement with the model without
the dynamic components. However, the other small number points of the large dataset are not.
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Table 2 — Estimation results of three different combinations of datasets and models

ltem Small dataset (w/o Crq) Large dataset w/o Crq Large dataset with Cp4
Mean Standard Mean Standard Mean Standard
deviation deviation deviation
ACro | (0.000) 8.160 x 10~4]  (0.000) 7.964 x 10~4[  (0.000) 7.187 x10~%

Cro V| 8576x1072 1.194x107% 8.495x1072 1.325x1074 8.594x 1072 1.166x10~*
Crs, | =5.170x1073 5.516x107%| —1.145x 1072 5.480x107*| —1.663x 1073 5.070x 10~*

Cra 2 — — — — 3.768 x 1072 6.932x 10~
o(Cr) | 1.762x1072 1.422x1074 2.075x 1072 1.530x1074 1.798x 1072 1.292x1074

T[1/deg]  "[1/(deg/s)]

600 -
4004 Dataset and model
%‘ Small w/o C, &
c
Large w/o C
% g L&

Large with C_ g

200 - /

0_

\\\—-q

-0003 -0.002 -0.001 0000 0001 0002  0.003

Figure 9 — Distribution of AC; estimations
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Therefore, such small difference consequently required the additional consideration of the dynamic
components for the large dataset. It is also proven with the regression lines Cp g estimated with the
best combination. The lines are shown in blue color in the figure, and they well approximated the
points located far from the origin.

0.2-
o
3,
[2e]
o
; 00 dataset
o]
(5' ® large
"‘3 ® small
1 —02-
',
@)

)
-0.4-
e
” 0 3
g [deg/s]

Figure 10 — Angular speed ¢ and its C;, contribution

3.3 Wave drag estimation

In addition to the discussion of the dynamic component of the lift modeling, the estimation of the wave
drag has a discussion. Figure 11 shows the scatter plot, which shows the relationship between Mach
number M and the estimated wave drag components. As same as Fig. 9, the vertical position of
the observed samples are calculated by using the sample means of the estimated parameters. The
estimated wave drag model is displayed with the blue lines. In addition, the estimated drag divergent
Mach numbers Mpp, in which a drag rise by 20 drag counts, i.e., 0.0020 Cp, occurs, are indicated
with the vertical red lines. The estimated Mpp is qualitatively reasonable because it is located near
the starting Mach number 0.8 of the typical transonic region.

However, whether the estimation is successful or not has still been questionable, because this may
result from the postulated equation. In other words, if we use another approximated function, for
example, a polynomial having a different exponential order, we may get another result. Therefore, to
compare with other results of wind tunnel tests and CFD analyses will be planned in the future study.

4. Conclusion

This study demonstrated the modeling of the lift and drag aerodynamic force worked on the fixed-wing
aircraft. It was performed with the MCMC sampling technique in the Bayesian inference framework.
The comprehensive information about the modeling, that is, the postulated model, input flight data,
and Stan of the MCMC sampler, were provided. The proposal to consider both the static and dynamic
components was effective, which was confirmed by the comparison of the combination of the datasets
and models. To say other general words, the fact that a small difference between a dataset and a
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Figure 11 — Wave drag estimation

postulated model affects estimation results was acquired. Therefore, iterative update the postulation
of the model based on the experimental, analytical, and empirical knowledge is the future work of this
study.
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