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Abstract 

Weighted gradient-enhanced kriging has been demonstrated to be superior to conventional gradient-enhanced 
kriging when applied to high-dimensional aerodynamic modeling and optimization problems, through the core 
idea of summing up a series of submodels with much smaller coloration matrices by appropriate weight 
coefficients. It avoids the prohibit computational cost associated with directly decomposing the large correlation 
matrix of a gradient-enhanced kriging, and provides a probable way to ameliorate the “curse of dimensionality”. 
However, with the increase of model training data, the number of required submodels grows rapidly, resulting 
in another dilemma that the total computation cost of decomposing all the small matrices could become 
prohibitive. In the paper, an improved formulation of weighted gradient-enhanced kriging is proposed and 
provides a method to adaptively determine the best suitable number of gradients to be interpolated for each 
submodel, saving the computation budget for matrix decomposition as much as possible and reaching a win-
win situation for both model accuracy and modeling efficiency. Numerical examples are employed to compare 
the proposed method with other gradient-enhanced modeling approaches. Results demonstrate the advantage 
of the proposed method in both prediction accuracy and efficiency. It is also applied to the aerodynamic 
modeling of an RAE2822 airfoil in transonic regime, to further illustrate its capability to support engineering 
design problems driven by expensive numerical simulations. 

Keywords: surrogate model, weighted gradient-enhanced kriging, high-dimensional problem, aerodynamic 
modeling 

 

1. Introduction 
During the past three decades, surrogate-based optimization (SBO)[1]-[4], which makes use of cheap-
to-evaluate surrogate models to approximate the output of high-fidelity and expensive numerical 
simulations, such as computational fluid dynamics (CFD) or finite element analysis (FEA), has 
attracted much attention in different areas of aerospace engineering[5]-[11] for it is capable of finding a 
global optimum efficiently[12][13]. As a key role in the optimization mechanism of SBO, surrogate model 
is referred to as an approximation model of time-consuming analysis code constructed by few 
sampled data subject to limited computation budget and provides a learning function for the sub-
optimization process[14] to obtain new samples towards a global optimum[15]. Currently, the 
representative surrogate models are polynomial response surface model (PRSM)[16], radial basis 
function (RBFs)[17], Kriging[18][19], artificial neural network (ANN)[20][21], support vector regression 
(SVR)[22], multivariate interpolation and regression (MIR)[23], polynomial chaos expansion (PCE)[24], 
etc. Among them, kriging model, also known as Gaussian process regressions[25], has gained 
popularity in the field of aerodynamic modeling and design optimization[26]-[28]，structural modeling[29], 
and multidisciplinary design optimization (MDO)[4][7][30] because of its high fitting capability for 
nonlinear and multimodal functions, along with a unique feature of providing mean-squared-error 
estimation[14]. However, as most engineering problems are pursuing higher-fidelity and more global 
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optimal design nowadays, the number of design variables is increasing rapidly, and more strong 
constraints need to be taken into consideration simultaneously, which poses a great challenge to the 
prohibitive computational cost of building sufficiently accurate surrogate models for these high-
dimensional problems[4]. To tackle or at least ameliorate this so-called “curse of dimensionality” [31][32], 
the continuous effort has been devoted into surrogate-based modeling and optimization algorithm 
during the past two decades, such as integrating surrogates with high dimensional model 
representation (HDMR)[33][34] or exploring auxiliary information to enhance the surrogates[35].  
In a high-dimensional problem, the surrogate model built through initial samples could not be accurate 
enough to approximate the complex landscape of the objective function so that the newly added 
sample sequence converges slowly, which results in calling more expensive numerical simulations 
to enhance the prediction accuracy and find the real optimal solution in the whole design space as 
well. To solve this problem, surrogate models with cheap auxiliary information to improve model 
accuracy have been developed recently and two kinds of methods have been concerned. One is the 
variable-fidelity model (VFM)[36]-[39] that uses lower-fidelity, cheaper analysis model to assist the 
prediction of a high-fidelity, expensive analysis model, and the other is the gradient-enhanced 
surrogate model[40][41] with the cheap gradients computed by an adjoint method[42]. Here we are mainly 
concerned with the ordinary kriging model enhanced by cheap gradient information, and the issue 
related to the usage of lower-fidelity data is beyond the scope of this paper. 
The inspiration for interpolating cheap gradients in the construction of a kriging to dramatically 
enhance the model accuracy was firstly proposed by Morris[43] in 1993. It was then introduced to 
aerodynamic configuration optimization of a low-boom supersonic business jet by Chung and 
Alonso[40] in 2002, with the cheap gradients obtained by adjoint method and used to augment the 
training data. Since the big potential of using an adjoint approach to compute the gradient efficiently, 
where the cost is almost independent of the number of input variables, surrogate enhanced with 
gradients has largely inspirited the research and development in the field of engineering design 
optimization. A systemic overview of the gradient-enhanced surrogate model can be found in Ref.[44].  
According to the ways of incorporating gradients into the construction of a kriging, gradient-enhanced 
kriging (GEK) can be classified into two categories: indirect-GEK[45]-[47] and direct-GEK[41]. The 
methodology of indirect-GEK is that the gradients are reverted to additional function values close to 
the sampling sites via first-order Taylor’s expansion[48]. The training data set is then augmented by 
these extra function values and the model fitting process could be easy to implement, sharing the 
same mathematical formulation of a conventional kriging. The main drawback of this approach is that 
its approximate accuracy heavily depends on the step size of the Taylor’s expansion, which might 
introduce numerical errors with large step size or make model correlation matrix ill-conditioned when 
the step size is too small. Besides, along with the advancement of the optimization process, the newly 
added samples will cluster around the current optimal, leading to a rapid growth in the condition 
number of the correlation matrix as well. On the contrary, the gradients in a direct-GEK are recognized 
as part of model training data to avoid this dilemma, with an assumption that the predictor is defined 
by augmenting the weighted sum of the functional values with the weighted sum of the gradients[49]. 
Taking all the extra correlations between the function values and the gradients as well as the 
correlations between the gradients themselves into consideration, the correlation matrix of a direct-
GEK could easily become enormous but make the fitted model more accurate and robust. 
Laurenceau[50] compared the accuracy of a kriging, indirect-GEK and direct-GEK model for 
aerodynamic data prediction, and found that the two GEK models were more accurate than the kriging 
model with the same training data set. Zimmermann[51] demonstrated that the condition number of 
correlation matrix of an indirect-GEK is larger than that of a direct-GEK in most cases through 
theoretical analysis. In addition, some numerical examples by Laurent[44] showed that an indirect-
GEK shares similar model accuracy to a direct-GEK in low-dimensional problems, but gets worse in 
high-dimensional problems. Here we are only concerned with the improvement in direct gradient-
enhanced ordinary kriging, and the term GEK in the remaining parts of the article refers to this 
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approach. Some improved GEK model using universal trend function to enhance the accuracy is also 
beyond the scope of this paper. 
Although GEK has been successfully applied to many low- or medium-dimensional problems during 
the past few years, it is still suffering from the prohibitive computational cost when applied to higher-
dimensional optimization problems. As mentioned before, the introduce of additional cheap gradients 
helps enhance the model accuracy of a kriging significantly while training such a GEK model could 
be extremely costly in high-dimensional problems as the correlation matrix is largely expanded when 
the gradients are incorporated, sizing from n n×  to ( ) ( )n nm n nm+ × + , where n is the number of 
sampling sites, and m is the number of dimensions (or design variables). The curse of dimensionality 
is still a “bottle-neck” that limits the further development and applications of a GEK, which motivates 
many researchers to work on cutting down the modeling cost. Bouhlel[47] applied the partial least 
squares (PLS) method on each sampling site and selected the most relevant approximating points to 
include in the correlation matrix given by the PLS information, to control the size of the correlation 
matrix and reduce the number of hyperparameters. Chen[35] evaluated the influence of each input 
variable on the final prediction results, and utilized an empirical evaluation rule, where a trade-off 
between the model accuracy and modeling efficiency can be achieved, to partially introduce the 
gradients. Then, a partial gradient-enhanced kriging (PGEK) was established to alleviate the curse 
of dimensionality. Han[49] proposed a weighted gradient-enhanced kriging (WGEK) model, which can 
dramatically improve the model fitting efficiency for high dimensional problems. Its core idea was to 
build a series of submodels with much smaller correlation matrices and then sum them up with 
appropriate weight coefficients. Each submodel was built through all the observed function values at 
all sampling sites and the gradients at one site only and thus the number of submodels was equal to 
that of total sampling sites. However, WGEK is still suffering from the prohibitive computational cost 
especially when there exist numerous samples. For each existing sample point, it is necessary to 
build a submodel and the increasing of the number of submodels leads to a decline in the total 
modeling fitting efficiency. Apart from this, the divided group of sampling sites buckles the correlations 
between the gradients. That is to say, the second-order cross-partial derivative terms are removed 
from the correlation matrix, which sacrifices the model accuracy as a price for increasing modeling 
efficiency.  
The main objective of this paper is to improve the current WGEK, and develop a novel formulation of 
a gradient-enhanced kriging model called adaptive weighted gradient-enhanced kriging (AWGEK), 
which can improve both the model accuracy and fitting efficiency of a gradient-enhanced surrogate. 
The proposed AWGEK provides a mechanism to adaptively determine the group of sampling sites 
according to the dimension of the problem and the current number of sampling sites, interpolating 
the gradients at more than one site in each submodel. It overcomes the main drawback of a WGEK 
that there would exist numerous submodels corresponding to each sample in high-dimensional 
modeling problems, and adjusts grouping strategy of gradients via an evaluation rule, which 
adaptively minimizes the total cost of correlation matrix decomposition. 
This paper continues in section 2 for the description of the proposed AWGEK model and analytical 
test cases are to be used to validate the correctness in Section 3. In Section 4, the proposed method 
is demonstrated by the aerodynamic modeling of an RAE2822 airfoil in transonic regime, with 36 
design variables. At last, general conclusions will be drawn and the future work will be discussed. 

2. Formulation of Adaptive Weighted Gradient-Enhanced Kriging Model 
2.1 Concept of Weighted Gradient-Enhanced Kriging 
As mentioned in the introduction, GEK can significantly improve the efficiency of an optimization with 
the assistance of auxiliary gradient information to enhance the model accuracy. Nevertheless, for 
high dimensional problems, if existing numerous sample points in the model training data set, the 
scale of correlation matrix ( ) ( )n nm n nm+ × +  would readily become huge, causing difficulties with 
matrix decomposition and inversion. From the perspective of saving the large cost of the correlation 
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matrix decomposition, Han[49] proposed a novel weighted gradient-enhanced kriging to build a series 
of submodels with smaller correlation matrices and then to sum them up with appropriate weight 
coefficients. Each submodel is built through all the observed function values while interpolating the 
gradients at one sampling site only, which means there will be n submodels in total. Therefore, the 
training data set S,( , )i iS y  for the i-th submodel changes to: 
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Following the detailed derivation in Ref.[49], we can obtain the predictor ˆ ( )iy x  of the i-th submodel in 
form of: 
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To be more specific, the correlation matrix iR  and correlation vector ir  for the i-th submodel are 
given by 

 

(1) (1) (1) ( )

( ) (1) ( ) ( )

(1) ( ) (1) ( )

( ) ( )
1

( ) ( ) ( ) ( )

( ) ( )
1

2

2

( , ) ( , )
   = ,

( , ) ( , )

( , ) ( , )

= ,           
( , ) ( , )

=

n

n n

n n n

i

i

i i

i
m

n m

n

i

i n i

i i
m

R R

R R

R R
x x

R R
x x

×

×

 
  ∈ 
  
 ∂ ∂
 ∂ ∂ 
 ∂ ∈
 
∂ ∂ 
 ∂ ∂ 
∂

∂



   





   



x x x x
R

x x x x

x x x x

R
x x x x

R

( ) ( ) 2 ( ) ( )

2 ( ) ( ) ( )
1 1

2 ( ) ( ) 2 ( ) ( )

( ) ( ) 2 ( )
1

( , ) ( , )

,
( , ) ( , )

i i i i

i i i
m

m m

i i i i

i i i
m m

R R
x x x

R R
x x x

×

 ∂
 ∂ ∂ ∂ 
  ∈
 
∂ ∂ 
 ∂ ∂ ∂ 



   



x x x x

x x x x

T(1) ( )

T( ) ( )

( ) ( )
1

 ( , ), , ( , )

( , ) ( , )= , , ,ii

n n

i i
m

i
m

R R

R R
x x

 = ∈ 

 ∂ ∂
∂ ∈ ∂ ∂ 

 

 

，r x x x x

x x x xr
 (4) 

respectively. In addition, the MSE of the i-th submodel is given by 
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Once n sub-GEK models are constructed by following these steps, an extra weight coefficient kriging 
(WCK) is then employed to offer propriate weight coefficients for summing all the submodels up, in 
which the prediction at any untried x  is defined by 
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through the data set ( )S,subˆ,S y  given by 
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Note that ˆ ( )iy x  represents the prediction of the i-th submodel and is always changing with the 
location of the untried x . After determining these submodels and weight coefficients, the resulting 
WGEK predictor is of the form[49]: 
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Due to the fact that each submodel only interpolate gradients at one site, the correlation matrix size 
is as small as ( ) ( )n m n m+ × + . The floating-point operations per second (FLOPs) of decomposing such 
a matrix by Cholesky method is around the third power of matrix size 3(( ) )O n m+ . As the number of 
submodels is equal to that of evaluated sample points, the total FLOPs of decomposing all the 
matrices for training a WGEK is 3( ( ) )O n n m+ . In contrast, the required FLOPs of decomposing a GEK 
correlation matrix is around 3 3( (1 ) )O n m+ . As a result, training a WGEK is about 2 3 3(1 ) ( )n m n m+ +  
times faster than training a GEK. However, the basic theoretical assumption of WGEK model not only 
cuts off the interactions between gradient information in each submodel as second-order cross 
derivatives are eliminated from the correlation matrix, leading to a decrease on model accuracy, but 
also limits the further improvement of its modeling efficiency especially when existing numerous 
sample points, which means the total cost of training these submodels could become unbearable in 
high-dimensional problems. This motivates the research of this paper. 

2.2 Adaptive Grouping Mechanism of Gradients for Submodels 
The core idea of AWGEK, like that of WGEK, is to build a series of sub-GEK models and sum them 
up with appropriate weight coefficients as well. The only difference is that the number of gradients 
introduced to each submodel is determined by an adaptive grouping mechanism, no longer restricted 
to considering gradients at one sampling site only in each submodel. Therefore, the size of correlation 
matrix could slightly increase since gradients of more than one site might be contained in a submodel, 
but the total number of need-to-build submodels decreases. Note that the more gradients are 
interpolated in each submodel, the fewer submodels we need in training an AWGEK, but we must 
always keep in mind that the correlation matrix size of a submodel shouldn’t be too large. There 
hence exists a most suitable strategy to divide the gradients at all sampling sites into several groups 
accounting for each submodel, which makes the total cost of training all submodels the lowest. 
Assuming a more general formulation of weighted gradient-enhanced kriging model, the number of 
gradients at evaluated sampling sites included in the i-th sub-model are defined as ia , and k 
submodels are required in total to cover gradients of all the sample points. That is to say, it has to 
satisfy the following equality constraint: 

 
1

,
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i

a n
=
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where ia , k are both integers, and n denotes the number of sample points utilized for training an 
AWGEK. Then, the correlation matrix size of the i-th submodel will be ( ) ( )i in a m n a m+ × +  and the 
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FLOPs of decomposing this matrix by Cholesky method is around 3(( ) )iO n a m+ . As a result, the total 
FLOPs of decomposing all k matrices is given by 
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where T
1[ ,..., ]ka a=a . Here, we aim to find a pair of a  and k, which minimizes the total computational 

cost ( , )F k a  subject to the constraint. To solve this optimization problem varying with discrete integer 
variables, a two-step strategy is adopted, where the best grouping vector a  is first obtained under 
the assumed known k and we search for the optimal k afterwards.  
Step I. Determine the best grouping vector a  with an assumed known k. Before deriving the 
best grouping plan with an arbitrary value of k ( 2k ≥  and k is an integer), we might firstly consider a 
specific situation with k = 2 and a smaller subset of n for convenience. Note that the minimization 
problem could become: 
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where subsetn n⊆ .  

Solving the above objective function with an equality constraint by Lagrange Multiplier method, ia  
can be found by solving the following linear equations 
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where ( )1 2subset subsetL F a a nµ= + + −  and µ  is the Lagrange multiplier used to change the constrained 
minimization of subsetF  into an unconstrained one. Theoretically, we could easily obtain the optimum 

1 2 2subseta a n= =  if subsetn is an even number. Consider the situation that subsetn  is odd, and then we 
suppose instead  
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where ε  is a natural number. Substituting eq.(14) in eq.(12) leads to the following formulation of 

subsetF : 
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where constF  is the constant terms independent of ε . Note that ε  is a natural number and is supposed 
to be as small as possible in order to reach the extreme value point of subsetF . Hence, when ε  is set 
to zero with an odd subsetn , subsetF is the smallest with respect to the integer grouping vector 

[ ]( 1) 2, ( 1) 2subset subsetn n= − +a . In other words, whether subsetn  is odd or even, the closer the two values 

1 2,a a  are, the smaller the total computational cost subsetF  is. Since the chosen group 1 2,a a  and subsetn  
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are all arbitrary, the deduction could be easily generalized to the situation when 2k > . Therefore, it 
comes to the conclusion that the closer each component in the grouping vector a  under any assumed 
known k is, the smaller the computational cost F is. 
Step II. Perform a loop for searching the optimal k. As we have obtained the best self-adaptive 
grouping strategy with the gradients distributed averagely in each sub-GEK model once the value of 
k is given, a cheap loop is adopted here to search for the optimal k. We compare the computational 
cost ( )F k  with varying k value from 1 to n and determine the final value with the smallest total FLOPs. 
Note that AWGEK is a more generalized description of gradient-enhanced kriging model, for it 
equates to GEK when k = 1 and becomes WGEK when k = n. 

2.3 Novel Formulation of Proposed AWGEK 
To build an AWGEK, once the grouping strategy of gradients ought to be interpolated in each 
submodel is determined, the following construction steps are almost the same as that of building a 
WGEK. For an m-dimensional problem, suppose that n spatial sites are sampled and evaluated by 
running expensive analysis solvers to get the responses as well as their gradients with respect to all 
the design variables. As n and m is known and fixed in the whole process of training a surrogate 
model, the number of required submodels are automatically calculated through the proposed method 
in the previous section. and we still denote it as k. As a result, the prediction of an AWGEK at any 
untried x  is defined by: 
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For the i-th submodel, the gradients at ia  sampling sites are contained in its training date sets 
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Note that we merely choose ia  sampling sites in sequence from the whole training data set. That is 
the say, the first 1a  sampling sites are chosen for the first submodel and the next 2a  sampling sites 
(with the index of 1 1 1 21, 2,...,a a a a+ + +  ) are chosen for the second submodel. However, the impact of 
selecting different sampling sites for each submodel is ignored here, which could be the future work 
to improve this method. Following the similar derivation in section 2.1, we can also obtain the same 
predictor ˆ ( )iy x  of the i-th submodel in form of 

 ( )
,

T -1
0 , 0ˆ ( ) ,

GEK i

i i i iiy β β= + −


S

V

x r yR F  (18) 

where  

 

( ) 1T -1 T 1
0 ,

( ) (
T 2

)

T(1, ,1 ,0, ,0

,

 ) ,

,

.

i

i

i i

i

n

i

a m

n a m

a

n

i i i i i

nm a m

a

i

i n

i

i
i

m

i
i

β
+ ⋅

⋅

⋅ ⋅

⋅

− −

+ × +

+

= ∈

 ∂
= ∈ 

∂ ∂  
 

= ∈ 
∂ 

=

  

 





SF R F

F

R R
R

R R
r

r
r

F R y

 (19) 
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Since each submodel contains the gradients at more than one sampling site, the correlation matrix 

iR  and correlation vector ir  for the i-th submodel are changed to 

 

1 1 1

1 1 1

(1) (1) (1) ( )

( ) (1) ( ) ( )

( 1) ( 1) ( )
(1) (1) (1)

( 1) ( 1) ( )

1 1

( , ) ( , )
  =   ,

( , ) ( , )

( , ) ( , ) ( , )

=  

i i i

j i j i j
j j j

i i i

j i j i j
j j j

n

n n

n n n

a a a

i

a a

a a a a a

m

R R

R R

R R R R

xx x

= = =

= = =

×

− + − +

− + − +

 
 

∈ 
 
 

∑ ∑ ∑
∂ ∂ ∂ ∂

∑ ∑ ∑
∂∂ ∂

∂



   



  

x x x x
R

x x x x

x x x x x x

R

1

1

1 1 1 1

1 1 1 1

( )
(1)

( )

( 1) ( 1) ( ) ( )
( ) ( ) ( ) ( )

( 1) ( 1) ( ) ( )

1 1

( , )

( , ) ( , ) ( , ) ( , )

i

j
j

i

j
j

i i i i

j i j i j j
j j j j

i i i i

j i j i j j
j j j j

a

a

m

a a a a a a
n n n n

a a a a a a

m m

x

R R R R

x xx x

=

=

= = = =

= = = =

− + − +

− + − +

 ∑
 
 
 ∑

∂


 ∑ ∑ ∑ ∑∂ ∂ ∂ ∂
 ∑ ∑ ∑ ∑
 ∂ ∂∂ ∂ 

      

  

x x

x x x x x x x x

1 1 1 1 1 1

1 1 11

( 1) ( 1) ( 1) ( 1) ( 1) ( )
2 2 2

( 1) ( 1) ( 1)( 1)
2

1 1 1 1

2

,

( , ) ( , ) ( , )

=

i

i i i i i i

j i j i j i j i j i j
j j j j j j

i i ii

j i j i j ij i
j j jj

n a m

a a a a a a a a a a a

a a a a a aa

i

a

m

R R R

x x x x x

= = = = = =

= = ==

× ⋅

− + − + − + − + − +

− + − + − +− +



 ∈






∑ ∑ ∑ ∑ ∑ ∑
∂ ∂ ∂

∑ ∑ ∑∑
∂ ∂ ∂ ∂ ∂

∂



 

x x x x x x

R

1 1

1 1 1

1 1 1 1

1 11

( 1) ( )
2

( ) ( 1) ( )

1

( 1) ( 1) ( 1) ( 1)
2 2

( 1) (( 1)
2

1

( , )

( , ) ( , )

i i

j i j
j j

i i i

j j i j
j j j

i i i i

j i j i j i j i
j j j j

i ii

j i j ij i
j jj

a a a

a a a a

m

a a a a a a a a

a a a aa a

mm

R

x x

R R

xx x

= =

= = =

= = = =

= ==

− +

− +

− + − + − + − +

− + − +− +

∑ ∑
∂

∑ ∑ ∑
∂ ∂

∑ ∑ ∑ ∑
∂ ∂

∑ ∑∑
∂∂ ∂



      



x x

x x x x 1 1 1 1

1 1 11

1 1

1 1

( 1) ( ) ( 1) ( )
2 2

1) ( ) ( 1) ( )( 1)

1

( ) ( 1) (
2 2

( ) ( 1)

1 1

( , ) ( , )

( , ) (

i i i i

j i j j i j
j j j j

i i ii

j j i jj i
j j jj

i i

j j i j
j j

i i

j j i
j j

a a a a a a

a a a aa a

m mm

a a a a

a a a

R R

x xx x

R R

x x

= = = =

= = ==

= =

= =

− + − +

− +− +

− +

− +

∑ ∑ ∑ ∑
∂ ∂

∑ ∑ ∑∑
∂ ∂∂ ∂

∑ ∑
∂ ∂

∑ ∑
∂ ∂

 

      



x x x x

x x x 1 1 1 1 1 1

1 1 11 1

1 1

1

) ( 1) ( ) ( ) ( ) ( )
2 2

( 1) ( ) ( )( ) ( )
2

1 1 1

( ) ( 1)
2

(( )

1

, ) ( , ) ( , )

( , )

i i i i i i

j i j j j j
j j j j j j

i i ii i

j i j jj j
j j jj j

i i

j j i
j j

i

jj
jj

a a a a a a

a a a aa a

m m

a a a

aa

m

R R

x x x x x

R

x x

= = = = = =

= = == =

= =

=

− +

− +

− +

∑ ∑ ∑ ∑ ∑ ∑
∂ ∂

∑ ∑ ∑∑ ∑
∂ ∂ ∂ ∂ ∂

∑ ∑
∂

∑
∂ ∂

 

      

x x x x x

x x 1 1 1 1 1 1

1 1 1 1 11

( ) ( 1) ( ) ( ) ( ) ( )
2 2 2

1) ( ) ( 1) ( ) ( )( )
2

1

( , ) ( , ) ( , )

i i i i i i

j j i j j j j
j j j j j j

i i i i ii

i j j i j jj
j j j jj

a a a a a a a

a a a a a aa

m m mm

R R R

x x xx x

= = = = = =

= = = = ==

− +

− + − +

 
 
 
 
 
 
 
 
 













 ∑ ∑ ∑ ∑ ∑ ∑
 ∂ ∂ ∂


∑ ∑ ∑ ∑ ∑∑
∂ ∂ ∂∂ ∂ 

  

x x x x x x

,i ia m a m⋅ × ⋅





∈

















(20) 

and 

 1 1 1 1

1 1 1 1

T(1) ( )

T
( 1) ( 1) ( ) ( )

( 1) ( 1) ( ) ( )

1 1

 ( , ), , ( , )

( , ) ( , ) ( , ) ( , )= , , , , , , ,

i i i i

j i j i j j
j j j j

i
i i i i

j i j i j j
j j j j

n n

a a a a

a
i

a a

a m

a a a a a

m m

R R

R R R R

x xx x

= = = =

= = = =

− + − +

⋅

− + − +

 = ∈ 

 ∑ ∑ ∑ ∑ ∂ ∂ ∂ ∂
∂ ∈ 

 ∑ ∑ ∑ ∑
 ∂ ∂∂ ∂ 

r x x x x

x x x x x x x xr

 

   

，

 (21) 

respectively. Also, the MSE of the i-th submodel is given by 

 [ ] ( ) ( ) ( )22 T -1 T2 -1 T -1 .  1, 2 .ˆ ( ) 1 , ..0 1 .,i i i i i i ii i i i i i kMSE y s σ   = =
 

= − + −x x r R r F R r F R F  (22) 

Once a total of k submodels are built following the above steps, a couple of propriate weight 
coefficients are required for summing all the submodels up. From the definition of the submodel in 
the previous section, we could obviously observe that the i-th submodel not only needs to pass 
through all n samples precisely, but also requires to be tangent to the real-world function values at 

1 1
( 1) ( )

T[ , , ]

i i

j i j
j j

i

a a a

a

= =

− +∑ ∑




x x  sampling sites. In other words, the weight coefficients of these k submodels must 

satisfied the following interpolation conditions: 
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( ) ( ) ( )

( )( ) ( )( ) ( )( )1 1 1

1 1

1 2

(1) (1) (1)
1 2

1 2

1 1

1 2

,    ... 1,     

1, 0,..., 0

                              

1, 0,..., 0

                              

0,

i i

j i j i
j j

k

k

a a a
k

a a a a

w w w

w w w

w w w

w w= =

   
− + − +    

  

∀ + + + =

= = =

= = =

 ∑ ∑  = 
 
 





x

x x x

x x x

x x 1 1

1 1 1

1 1

1 2

0,..., 1,..., 0

                              

0, 0,...,

i i

j i j i
j j

i i

j j j
j j j

a a a a

i k

a a a

i

w w

w w w

= =

= = =

   
− + − +        

    

   
      
   

     ∑ ∑     = = =     
     
     

   ∑ ∑   = =   
   
   



x x

x x x

( )( ) ( )( ) ( )( )

( ) ( ) ( )

1

1 1 1
1 2

( ) ( ) ( )
1 2

1,..., 0

                              

0, 0,..., 1

                              

0, 0,..., 1

i i

j
j

k k k

a

k

n a n a n a
k

n n n
k

w

w w w

w w w

=

   
      
   

− + − + − +














   ∑ ∑   = =   
   
   

= = =

= = =





x

x x x

x x x


















 (23) 

and tangency conditions: 

 

(1) (1) (1)

1

( ) ( ) ( )1 1 1

(1)
1 1 2 2

( )
1 1 2 2

ˆˆ ˆ ( )( ) ( ), 0.0,..., 0.0

                              

ˆˆ ˆ ( )( ) ( ), 0.0,..., 0.0

                 
a a a

k k

d d d d

a
k k

d d d d

w yw y y w y
x x x x

w yw y y w y
x x x x

= = =

= = =

∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂

∂∂ ∂ ∂
= = =

∂ ∂ ∂ ∂



x x x x x x

x x x x x x

1

( 1) ( 1) ( 1) ( 1)
1 1 1 1

( 1)

1 1 2 2

             

ˆ ˆˆ ˆ ( ) ( )( ) ( )0.0, 0.0,..., ,..., 0.0

                              

i

j i
j

i i i i
a a a a a a a aj i j i j i j i

j j j j

a a

i i k k

d d d d d

w y w yw y w y y
x x x x x

=

− + − + − + − +∑ ∑ ∑ ∑
= = = =

− +

= = = =

∑
∂ ∂∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ ∂





x x x x x x x x

1

( ) ( ) ( ) ( )
1 1 1 1

( 1)

( )

1 1 2 2

1 1 2 2

ˆ ˆˆ ˆ ( ) ( )( ) ( )0.0, 0.0,..., ,..., 0.0

                              

ˆ ˆ( ) ( )0.0,

i

j
j

i i i i
a a a aj j j j

j j j j

n ak

a

i i k k

d d d d d

d d

w y w yw y w y y
x x x x x

w y w y
x x

=

∑ ∑ ∑ ∑
= = = =

− +

= = = =

=

∑
∂ ∂∂ ∂ ∂

= = = =
∂ ∂ ∂ ∂ ∂

∂ ∂
=

∂ ∂



x x x x x x x x

x x x ( 1) ( 1)

( ) ( ) ( )

( 1)

( )
1 1 2 2

ˆ( )0.0,...,

                              

ˆˆ ˆ ( )( ) ( )0.0, 0.0,...,                         1,2,..., .

k

n a n ak k

n n n

n a
k k

d d

n
k k

d d d d

w y y
x x

w yw y w y y d m
x x x x

− + − +

− +

= =

= = =







∂ ∂
= =

∂ ∂

∂∂ ∂ ∂
= = = =

∂ ∂ ∂ ∂



x x x

x x x x x x






























 (24) 

Similarly, although there might be various type of ways for choosing qualified weight coefficient, we 
still follow the steps of build a special weight coefficient kriging to obtain iw . Recall eq.(6) and eq.(7), 
a WCK for any untried x  is built through the data set ( )S,subˆ,S y . Note that each submodel interpolates 
all n samples, which means the predictor of i-th submodel ˆiy  is equal to the observed value Sy  at 
the sampling sites. That is to say, the WCK model is built through the data set ( )S,S y  in fact and 
provides the weight coefficients both suitable for summing up all the function values or the predictors 
of submodels when building a WGEK. As the difference between the submodel of a WGEK and an 
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AWGEK is the number of sampling sites where local derivatives are considered, we could simply add 
the weight coefficients of these chosen sampling sites in one submodel up to ensure this submodel 
satisfies its own tangency condition. For clarity, [ ]T1 2, ,..., nw w w=w  denotes the weight coefficients of 
a WCK model here, and can be found by solving the following linear equations: 

 T ,
10 µ

     
=     

    

R F w r
F

 (25) 

where μ is the Lagrange multiplier, and [ ]T1,...,1 n= ∈F  for an ordinary kriging. Once the optimal w  
is obtained, the weight coefficients for summing up the submodels of an AWGEK is given by 

 
1

( )1
,  1, 2,...,  .

i

i

j i
j

a

i
a a pp

w w i k
=

− +=

= =
∑

∑  (26) 

After determining the submodels and weight coefficients, the resulting AWGEK predictor is of the 
form 
 T

, 00
1 ,ˆ( ) ( ) (ˆ )suby β β−=   + −Sr x x FRx y  (27) 

where 

 
[ ]

( )
1,

0

T
2

1 T 1
,

T 1

ˆ ˆ ˆ( ) ( ), ( ),..., ( ) ,

( ).

ˆ

ˆ

ksub

sub

y y y

β
−− −

=

=

S

S

x x x

F

y

R F R

x

F xy
 (28) 

Similar to the WGEK, with the assumption that the prediction of the submodels can be generally 
considered to be normal distributed 2ˆ ˆ~ , , 1, 2,...,i i iY y s i k  =  , the MSE of an AWGEK can be derived 

according to the theory of combining a group of normal distributions with different mean values and 
variances[49]： 

 ( ) ( ) ,ˆ
k

i
i

iyMS ss wE
=

 



 

=   


= ∑x x2
2

1
 (29) 

where is  can be obtained by eq.(22). 

2.4 Correlation Functions and Hyperparameter Tuning 
When using an AWGEK, it is necessary to set the correlation function and tune the hyperparameters 
to enhance the model accuracy and robustness. As is mentioned before, the correlation function 
determines the correlation and covariance between the responses of sample points[52], and here we 
focus on a family of correlation functions that are of the form 

 ( ) ( )
1

, , , ,
m

i i i
i

R scf x xθ
=

′ ′= −∏θ x x  (30) 

where ‘‘scf” denotes the spatial correlation function that only depends on the Euclidean distance 
between two sites ( x  and ′x ) and the hyperparameters θ . Thus far, several types of correlation 
functions can be used by AWGEK, such as ‘‘Gaussian function”, ‘‘cubic spline function”, “Matérn 
function”, etc. Note that, for the success of an AWGEK, the correlation function must be at least 
second order differentiable; otherwise, the use of gradients will not enhance the prediction[49]. As a 
matter of experience, the cubic spline function behaves well in the optimization problems and is 
employed in this paper: 

 ( ) ( )
2 3

3

1 15 30   for  0 0.2

, 1.25 1       for  0.2 1,    

0                        for   1

i i i

k i i i i i

i

scf scf x x

ξ ξ ξ

θ ξ ξ

ξ

 − + ≤ ≤
′≡ − − < <


≥

 (31) 
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where ,   1,2,...,i i i ix x i mξ θ ′= − = . The detailed derivation of the first-order and second-order partial 
derivative of cubic spline function can be referred to Ref.[49].  
After the correlation function is defined, we will focus on the method of tuning the hyperparameters 
of AWGEK. Due to the reason that all the submodels pass through the n existing sample points and 
correspond to the same random process, we can reasonably assume that all the submodels share 
the same 2

0, ,σ βθ . For the i-th submodel, { }1,2,...,i k∈ , the likelihood function is 

 
( )

( ) ( )T 1
, 0 , 02

0 22

(1 1( , , ) exp ,
2(2 ) i

i i i i i
i n a m

i

L
β β

β σ
σπσ

−

+ ⋅

 − − = − 
 
 

S Sy F R y F
θ

R
 (32) 

Taking the logarithm, one can get 

 
( ) ( )T 1

, 0 , 02
2

1 1ln ln( ) ln ln(2 ).
2 2 2 2

i i i i ii i
i i

n a m n a m
L

β β
σ π

σ

−− −+ ⋅ + ⋅
= − − − −

S Sy F R y F
R  (33) 

Then a uniform aggregation is used to get the joint logarithm likelihood function as 

 ( )1 2

2
0

ln ln ln

. . .         ,

1.      

 

  

 ,

  =  kM L L L

w r t

ax JL
k

β σ

+ + +

θ
 (34) 

Taking the partial derivatives of JL with respect to 0β  and 2σ , and forcing them to zero, we obtain 
the following equations: 

 

( )

( )
( ) ( )

T 1
, 0
2

10

1
, 0 , 0

2 2 2 2
1 1

1 0,     1, ,

1 1 0
22 ( )

.

k
i i i

i
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Then, the analytical optimum of 0β  and 2σ  can be given by 
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As there is no closed form solution for θ , it must be found by maximizing the following concentrated 
joint logarithm likelihood function using numerical optimization 

 2

0 1 1
= arg  max ( ) ln( ) ln .

k n

i i
i i

n a m σ
> = =

 
− + ⋅ − 
 
∑ ∑

θ
θ R  (37) 

In this article, an improved version of Hooke &Jeeves pattern search method (by using multi-starts 
search and a trust-region method) is used to solve the preceding optimization problem. Moreover, 
we normalize the input variables x  to the range [0.0, 1.0] and limit the searching interval of optimal 
θ  to the range [0.005, 0.618] for the cubic spline function, according to our intensive numerical 
experiments, to make the model more robust. 

2.5 Discussion about the Benefit of Proposed Method 
Compared with GEK and WGEK, which introduces gradients at all sampling sites, and gradients at 
only one sampling site in each submodel respectively, AWGEK is more like in an intermediate state. 
It determines the number of required submodels adaptively according to the dimension of the problem 
and the number of current sample points. Each submodel introduces gradients at more than one 
sampling site when there exist numerous sample points ( )n m . Otherwise, the AWGEK will 
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degenerate into the original WGEK if the number of sample points n  is close to the dimension m . 
Assuming that the computation cost of optimizing hyperparameters could be ignored, the efficiency 
of building a GEK, WGEK or AWGEK model is then compared by the FLOPs of decomposing the 
correlation matrices, which occupies a sizeable proportion in the cost of training a surrogate model. 
Recall that the FLOPs of decomposing all the correlation matrices of a GEK and WGEK model by 
Cholesky method is around 3 3( (1 ) )O n m+  and 3( ( ) )O n n m+  respectively. In contrast, when training 
an AWGEK, we need to decompose k much smaller correlation matrices, whose size is as small as 
( ) ( )i in a m n a m+ × +  for the i-th submodel, and the total FLOPs is around 3

1
( ( ) )k

ii
O n a m

=
+∑ . The 

comparison of FLOPs with different numbers of dimensions and sampling sites for building an 
AWGEK and WGEK model is plotted in Figure 1 and Table 1. It can be seen that the cost of training 
both a WGEK or an AWGEK raises quickly with the increase of numbers of dimensions and sampling 
points. However, the growth rate of the training cost for AWGEK is slower than that of WGEK under 
the same dimension especially when there exist numerous sample points. This is benefit to an 
expensive high-dimensional aerodynamic modeling or optimization problem, for the dimension of the 
problem is fixed during the optimization process and the number of samples could become quite 
large in the terminal stage.  
In addition, the accuracy of WGEK is somehow decreased compared to a GEK, as a price paid for 
the large efficiency improvement[49]. While for an AWGEK, the correlation matrix reserves second-
order cross partial derivative between several sample points inside each submodel, as is formulated 
in eq.(20). As a result, the model accuracy could be slightly enhanced compared to a WGEK. This 
will be verified by some numerical examples in the following section. 

 
Figure 1  Comparison of FLOPs of decomposing the correlation matrices  

of WGEK and proposed AWGEK model 

Table 1  Speed-up ratios of proposed AWGEK against WGEK for typical numbers  
of dimensions and samples 

Number of 
dimensions (m) 

Number of 
sample points (n) 

Theoretical speed-up ratio 

3 3

1
( ) ( )

k

i
i

n n m n a m
=

+ +∑  
 

5 10 1.000 
5 20 1.153 

10 50 1.262 
20 120 1.408 
50 350 1.537 
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50 600 2.257 
50 1000 3.423 

100 3000 4.898 

3. Numerical Examples Validation 
3.1 One-Dimensional Analytical Test Case 
A one-dimensional analytical function from Ref.[49] is taken as the first test case to illustrate the 
procedure of building an AWGEK and to verify its correctness: 
 [ ]( ) sin( ) cos(3 ) 0.2 1.0,     0.2,6.0xf x e x x x x−= + + + + ∈  (38) 

Five sampling sites, marked with pink squares { }0.60,1.78,2.90,4.40,5.60x = , are chosen along with 
gradients computed analytically. The procedure of building an AWGEK is sketched in Figure 2. The 
first submodel is built using the functional values at all the sampling sites and three gradients at the 
first three sampling sites, while the second submodel is built using the functional values at all the 
sampling sites and two gradients at the last two sampling sites. Note that the grouping of the gradients 
at five sampling sites, which introduces three and two gradients in each model respectively, is totally 
adaptive according to the grouping mechanism in section 2.2 for the purpose of reaching the smallest 
total FLOPs. Certainly, to choose which three sampling sites from all five samples could also be a 
problem and here we just choose from the data set by sequence. This might affect the final accuracy 
of AWGEK but is beyond the scope of this article. One can see that each submodel passes through 
all the sample points and features the observed gradients at its own grouped sampling sites. Once 
the two submodels are built, five weight coefficient curves are defined by the WCK model, as is 
sketched in Figure 2(c). Afterwards, we add the first three weight coefficients to obtain the appropriate 
weight coefficient for summing up the first submodel and add the last two weight coefficients to obtain 
the appropriate weight coefficient for summing up the second submodel respectively, as is plotted in 
Figure 2(d). Both interpolation and tangency conditions could be satisfied through this weighting 
method. The final predicted curve by AWGEK is sketched in Figure 2(e) and it precisely features the 
observed functional values and gradients at all the sample sites, which verifies the correctness of the 
proposed method. The predicted curve along with root mean square error (RMSE) by WGEK are also 
plotted in Figure 2(e), which shows that the AWGEK model is comparable to the WGEK model, and 
even more accurate in the valleys of the true function. 

   
(a) First submodel (five function values + 

three gradients at first three sampling 
sites) 

(b) Second submodel (five function 
values + two gradients at last two 

sampling sites) 
(c) Weight coefficients obtained by WCK 
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(d) Weight coefficients for summing up two submodels 

(interpolation and tangency conditions satisfied) 
(e) Resulting AWGEK model and comparison with WGEK 

model ( 0.174AWGEK WGEKθ θ= = ) 
Figure 2  Illustration of building an AWGEK for a one-dimensional test function 

3.2 Two-Dimensional Analytical Test Case 
Then, a two-dimensional six-hump camelback function is employed to validate our proposed method. 
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∈ − ∈ −

x
 (39) 

20 sampling sites are selected by Latin Hypercubic Sampling (LHS) method for AWGEK model 
modeling, and the final prediction results are plotted in Figure 3. As shown in Figure 3(c), the 
response surface predicted by AWGEK indicates the regions where two global and five local optimal 
solutions locate. Although its prediction accuracy is slightly lower than that of the GEK in Figure 3(b), 
it is improved compared with that of the WGEK model in Figure 3(d), which could only find the regions 
where two global and four local optimal solutions are. Figure 3 also shows the comparison of 
predicted RMSEs of the three gradients-enhanced models. We can see that the RMSEs of the 
AWGEK is larger than that of the GEK, but slightly smaller than that of the WGEK model, which 
indicates that the model accuracy of AWGEK is between that of the GEK and WGEK model. 

 

   
(b) Response surface 

predicted by GEK 
(c) Response surface 
predicted by AWGEK 

(d) Response surface 
predicted by WGEK 

   
(a) True function (e) RMSE predicted by 

GEK 
(f) RMSE predicted by 

AWGEK 
(g) RMSE predicted by 

WGEK 
Figure 3  Comparison of response surfaces and RMSEs by GEK, WGEK and AWGEK models for a two-

dimensional six-hump camelback test function 

3.3 High-Dimensional Analytical Test Case 
3.3.1 Varied-Dimensional Sum-Square Test Case 
In this subsection, the following sum-square function is adopted to evaluate the accuracy loss of the 
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proposed AWGEK model against GEK and WGEK for higher-dimensional problems with respect to 
the variation of sampling sites: 

 ( ) [ ]2

1
,      5,5 ,      1,...,     

m

i
i

f ix x i m
=

= ∈ − =∑x  (40) 

where m is the number of dimensions and m = 5,10,20 in this subsection. A correlation coefficient r2 is 
introduced to assess the accuracy of the kriging, GEK, WGEK and AWGEK models: 
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and the surrogate model is perfectly accurate when r2=1.0, whereas r2=0.0 indicates a bad 
approximation. All the model fitting experiments of numerical examples in this section are performed 
with a PC-based workstation (Intel Xeon CPU E5-1620, 8-cores, 3.5 GHz). 
For 5, 10, and 20-dimensional sum-square functions, the surrogate models are built using increasing 
numbers of sample sites, and the growth of the correlation coefficients are plotted in Figure 4. It is 
shown that the conventional GEK is the most accurate model among all these examined models and 
the AWGEK is slightly more accurate than the WGEK model. This is not a surprise because the 
correlation matrix of the GEK model is the most complete, containing all the information about spatial 
correlations of different sampling sites and their gradients, while the AWGEK model removes the 
spatial correlations between the gradients of different submodels at sampling sites, which results in 
a decrease in the model accuracy. However, within each submodel of the AWGEK, the spatial 
correlations between the gradients at the sampling points is retained, for it guarantees at least some 
cross-terms of second derivatives in the submodels. Hence, the AWGEK is still accurate than the 
WGEK model. Note that all the gradient-enhanced models are much more accurate than the original 
kriging. Table 2 shows the comparison of training cost between the WGEK and AWGEK for modeling 
varied-dimensional sum-square test functions. It can be seen that, along with the increase of numbers 
of dimensions and sampling points, the cost of training a WGEK raises quickly while the cost of 
training an AWGEK raises slowly and is much lower especially when existing numerous sample 
points. 

   
Figure 4  Evaluation of kriging, GEK, WGEK and AWGEK models for varied-dimensional Sum-Square test 

functions (left: 5-dimensional; middle: 10-dimensional; right: 20-dimensional) 

Table 2  Comparison of WGEK and AWGEK for varied-dimensional Sum-Square test case 
Number of 

dimensions (m) 
Number of 

sample points (n) 
Number of calculating MLE Model fitting time/sec. 

WGEK AWGEK WGEK AWGEK Speed-up ratio 

20 60 3970 2993 199.960 183.765 1.088 
20 100 5896 3437 783.999 471.944 1.661 
30 150 11590 10899 8033.731 6576.972 1.221 
50 200 14561 13455 37763.99 13439.19 2.810 
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3.3.2 Other Benchmark Numerical Test Cases 
Two more benchmark numerical test cases, Dixon-Price function and Rosenbrock function[54], are 
employed in this subsection to further demonstrate the efficiency of our AWGEK modeling method.  
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Apart from the correlation coefficient r2 mentioned above, two other accuracy metrics, relative root-
mean-square error (RRMSE) and relative maximum absolute error (RMAE), are calculated. 

 

( )

( ) ( )

( )
( ) ( )

2

1

2

1

2

1

ˆ

  ,
1

ˆ max
 .

1

N

i

N

i

N

i

f f N
RRMSE

f f N

f f
RMAE

f f N

=

=

=

−
=

− −

−
=

− −

∑

∑

∑

 (43) 

Here, 1000 validation samples are selected by LHS, hence N = 1000 in eq.(43). Note that r2 and 
RRMSE can reflect the global accuracy of the surrogates, while RMAE is a criterion that can indicate 
the local predicting performance of the surrogates[54]. The closer the value of r2 is to 1, and the smaller 
values of RRMSE and RMAE, the more accurate the model is. To analyze the robustness of our 
method, the experiments are repeated 10 times with initial samples randomly chosen by LHS for 
each test case. Then the mean and standard deviation values of modeling time and three accuracy 
metrics are calculated. 
Table 3 gives the comparison of model accuracy and modeling efficiency of WGEK and AWGEK for 
two benchmark numerical test cases. It can be seen that our proposed AWGEK model is more 
accurate than WGEK for all three metrics are better and the modeling efficiency is greatly improved. 

Table 3  Comparison of WGEK and AWGEK for benchmark numerical test cases (repeat 10 times) 
Function Surrogate Statistic r2 RRMSE RMAE Model fitting time/sec. 

Dixon-Price 
(30D) with 300 
Initial Samples 

AWGEK 
mean 0.910843 0.565614 1.596069 5874.00 

std 0.004707 0.020572 0.199816 1499.48 

WGEK 
mean 0.909770 0.899179 2.218587 7065.32 

std 0.003960 0.018855 0.125519 845.720 

Rosenbrock 
(50D) with 600 
Initial Samples 

AWGEK 
mean 0.924246 0.385997 1.187887 83400.918 

std 0.005578 0.016690 0.073927 14955.211 

WGEK 
mean 0.904526 0.631272 1.571794 110705.048 

std 0.004169 0.026058 0.027518 15916.108 

4. Application to High-Dimensional Aerodynamic Modeling Problem 
4.1 Problem Statement 
In this part, the proposed method is validated through an engineering application. Here, we focus on 
an aerodynamic modeling problem of the RAE2822 airfoil in transonic regime with 36 design variables 
parameterized by free form deformation (FFD) method, which is sketched in Figure 5. Our objective 
is to train different gradient-based kriging models using transonic database (at a freestream Mach 
number of 0.734 and angle of attack of 2.738 degree, and Reynolds number of 6.5×106) to predict 
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the aerodynamic force and moment coefficients: Cl , Cd, and Cm. 

 

 
Figure 5  Shape design variables determined by the y 

displacements of 36 FFD control points  
Figure 6  The design space and baseline airfoil for 

RAE2822 airfoil aerodynamic modeling case  
4.2 Database Preparation  
Figure 6 shows the design space for the RAE2822 airfoil aerodynamic modeling case and 400 
sampling sites are selected by LHS method. The deformed airfoil aerodynamic force coefficients and 
their respective gradients are then computed using ADflow[55][56], which solves the RANS equations 
with a Spalart-Allmaras turbulence model. The CFD grids for all airfoils are automatically generated 
by the open-source package pyHyp with the grid distribution of 256(chordwisedirection) 
×128(normaldirection) sketched in Figure 7. The flow solution residuals are converged by 12 orders 
of magnitude below the initial residual. Figure 7 also shows that computed gradients by the adjoint 
solver are in reasonably agreement with that by the finite difference method, for both baseline airfoil 
and randomly deformed airfoil respectively. 

    
a) baseline airfoil b) comparison of gradients obtained by adjoint and that by finite difference for 

baseline airfoil 

    
c) randomly deformed 

airfoil 
d) comparison of gradients obtained by adjoint and that by finite difference for a 

randomly deformed airfoil 
Figure 7  The grids used for CFD simulation and the validation of adjoint solver by comparison of computed 

gradients and that obtained by finite difference for baseline airfoil and a randomly deformed airfoil respectively 
The final number of sample points in training database is set to 549, getting rid of 51 samples with 
unconverged CFD solutions due to the extremely deformed and abnormal airfoil surfaces. The 
prediction accuracy of the gradient-enhanced models is evaluated with the correlation coefficient r2 

(mentioned in section 3.3.1), RRMSE and RMAE (mentioned in section 3.3.2) at 800 testing samples 
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selected by Uniform Design (UD). All the model fitting experiments are performed with a PC-based 
workstation (Intel Xeon CPU E5-1620, 8-cores, 3.5 GHz). 
4.3 Result Discussion 
The comparison of our AWGEK with WGEK model in both model accuracy and fitting efficiency is 
given in Table 4. It is observed that, for lift coefficient and drag coefficient, the r2 of the AWGEK are 
both larger than that of the WGEK and the RRMSE and RMAE also show that the AWGEK is slightly 
accurate than the WGEK model. However, for pitch-moment coefficient, the AWGEK does not 
perform well for all measurement indictors are slightly worse than that of the WGEK, which can be 
also seen in Figure 8. Figure 9 also shows the comparison of absolute error calculated for 
aerodynamic force coefficients with the mean error given by the red triangles. It can be seen that, the 
mean absolute error for each coefficient is close to each other, and the predicted results of the 
AWGEK is slightly better than that of the WGEK for Cl, Cd but worse for Cm. Note that for all three 
aerodynamic coefficients modeling and prediction, the model fitting time of the AWGEK model is 
much lower than that of the WGEK model, which demonstrates the fitting efficiency of our proposed 
AWGEK model in high-dimensional problem. 
Table 4  Accuracy and efficiency measures for AWGEK and WGEK model in 36-dimensional RAE2822 airfoil 

aerodynamic modeling case 
 Model r2 RRMSE RMAE Model fitting time/sec. 

Cl 
AWGEK 0.741622 0.507962 2.086780 12166.646 
WGEK 0.735437 0.514006 2.128090 25455.432 

Cd 
AWGEK 0.992852 0.084487 0.298006 20914.836 
WGEK 0.992169 0.088431 0.352148 34164.693 

Cm 
AWGEK 0.831988 0.409613 1.670950 14178.830 
WGEK 0.837309 0.403075 1.460690 16974.751 

 

   
a) lift coefficient b) drag coefficient c) pitch-moment coefficient  

Figure 8  Linear regressions of true relative to predicted aerodynamic coefficients 
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Figure 9  The comparison of absolute error calculated by AWGEK and WGEK respectively for Cl, Cd 

and Cm with the mean error given by the red triangles 

5. Conclusion 
In this paper, an improved formulation of weighted gradient enhanced kriging, called adaptive 
weighted gradient enhanced kriging (AWGEK), is proposed to further improve both the model 
accuracy and fitting efficiency of a gradient-enhanced surrogate especially when existing numerous 
training samples in a high-dimensional problem. It provides an adaptive grouping mechanism 
according to the dimension of the problem and the current number of training samples to interpolate 
gradients at more than one sampling stie in each submodel. Taking the total cost of correlation matrix 
decomposition into account, the main drawback of a WGEK that there would exist numerous need-
to-build submodels corresponding to each sample can be avoided in the model fitting process.  
Several numerical examples are employed to validate the correctness and effectiveness of AWGEK 
and the results show that the prediction accuracy of an AWGEK is better than that of a WGEK model, 
and it has obvious advantage in model fitting efficiency when existing numerous samples in training 
database. At last, the proposed AWGEK is applied to the aerodynamic modeling of an RAE2822 
airfoil parameterized with 36 deign variables in transonic regime. It is observed that, the prediction of 
the AWGEK model for the lift and drag coefficients is more accurate than that of the WGEK while it 
is slightly worse for the pitch-moment coefficient. However, the cost for model training of the AWGEK 
model is much lower than that of the WGEK model, which shows that the proposed AWGEK has 
great potential for applications to higher-dimensional engineering design problems. In the future, we 
will apply the AWGEK model to design optimization problem, and focus on the performance study.  
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