
1 
 

 
 

IMPROVED STOCHASTIC PERTURBATION ALGORITHM 
FOR GENERALIZED REPEATED EIGENVALUES 

PROBLEM BASED ON SURROGATE MODEL 

Hechen Qiu1,2, Weichao Fan1,2, Yaning Fang1,2 

1COMAC Shanghai Aircraft Manufacturing Co., Ltd., Composites Center, Shanghai 
200123 

2 COMAC Beijing Aircraft Technology Research Institute, Beijing Key Laboratory of 
Civil Aircraft Structures and Composite Material, Beijing, 102211 

 

Abstract 

In order to investigate the uncertainty and its propagation in the problems of generalized repeated 
eigenvalues, within the uncertainties of design variables taking into account, an improved method based 
on stochastic perturbation method and surrogate model approach is presented in this work. Initially 
repeated eigenvalue undergoing changes of design variables is expressed by the perturbation expansions, 
in which the first-order perturbation term of repeated eigenvalue could be calculated by solving a 
standard eigenvalue equation; then, to avoid solving the eigenvalue equation repeatedly in structural 
uncertainty analysis, a surrogate model which consists of polynomial chaos expansions (PCE) is 
established to approximate the first-order perturbation term of repeated eigenvalue; omitting the second 
and higher-order perturbation terms, perturbed repeated eigenvalue is expressed as the combination of 
original repeated eigenvalue and the surrogate model; lastly, the statistical quantities of perturbed 
repeated eigenvalue are calculated directly on the basis of the surrogate model. Via this proposed method, 
not only the uncertainty propagation analysis, but also the dynamic reanalysis, structural design 
optimization and importance measure for structures associated with repeated eigenvalues can be 
performed and accomplished expediently. The accuracy and efficiency of the proposed method have been 
validated thoroughly by three numerical examples. 

Keywords: stochastic perturbation algorithm, repeated eigenvalues, surrogate model, polynomial chaos 
expansions, uncertainty propagation analysis 

 

1. Introduction 

The research purpose of this paper is to establish a novel uncertainty analysis method for the 
structures associated with repeated eigenvalues. By means of this method, considering the 
uncertainties in design variables or structural parameters, the uncertainty propagation of 
repeated eigenvalues, such as mean value and variance, can be acquired efficiently and 
accurately. 

For complex engineering structures, such as stratospheric airship, commercial aircraft and 
large-scale rocket, due to the structural symmetry or sub-structural symmetry, the appearance 
of repeated eigenvalues or closely-spaced eigenvalues is widespread and practically inevitable 
[1-3]. If the impact of repeated eigenvalues is not taken into consideration when solving 
engineering problems, the mode shape of repeated eigenvalues will be more likely to be treated 
as distinct mode shape, which will result in the omission of modes and lay hidden perils in 
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structural safety and reliability [2]. Generally speaking, concerning the structures with repeated 
eigenvalues, owing to its universality in engineering practice, the relevant researches have 
attracted wide attention among the international scholars. 

A fast algorithm of reanalysis problem for repeated frequencies is proposed by Zhao and Xu [4] 
based on relaxation combined approximations (CA) method. The generalized eigenvectors can 
be expressed by the combination of the basis vectors and the coefficients, and complex 
operations are simplified by avoidance of solving large scale equations. Palej and Krowiak [5] 
have completed the modal analysis of multiple degree of freedom systems with repeated 
frequencies in analytical approach. Vessel and Ram [6] et al. give two methods for calculating 
the sensitivity of a repeated eigenvalue of viscously damped vibrating systems with respect to 
an uncertain parameter. Wang and Zhang [7] have researched the tolerance of two closely-
spaced but unequal natural frequencies when they are treated indiscriminately as double 
repeated frequencies. A mass-spring system is constructed by Chen and Jiao [8], by tuning the 
system physical parameters, any type of repeated natural frequency can be produced. Xia and 
Shi [9] et al. have presented a level set based shape and topology optimization method for 
maximizing the first repeated eigenvalue of structure vibration. Reimherr [10] has demonstrated 
that the commonly made assumption concerning unique eigenvalues is unnecessary. Fan and 
Xiang [11] et al. have presented a new method that redefines the stochastic problem into some 
sub-domains of random variables; the stochastic structural responses defined in the global 
domain can be explicitly reconstructed from the responses obtained in each sub-domain. This 
method is also able to deal with stochastic problems with repeated eigenvalues. 

The demand for high-performance structural system calls for more refined analysis and design 
optimization method. Hence, the uncertainty analysis and optimization methods, which are 
adept at handling the propagation of various uncertain factors precisely and remarkably 
enhancing the structural performance under uncertainty environment, have become research 
hotspot in past decades [3,12,14,20,23]. Besides, structural system that possesses repeated 
eigenvalues is termed as the degenerate system. For degenerate system, the original repeated 
eigenvalues will easily convert to a set of clustered eigenvalues after the variations of design 
variables [1, 2]. Furthermore, on one aspect, the structures associated with repeated eigenvalues 
are very sensitive to the effect of the uncertainties; on the other aspect, real engineering 
structures always deviate from the original design due to the uncertainties (such as errors in 
manufacturing, differences in raw materials and variations in usage condition), which makes 
the impacts of uncertainties widely existed and unavoidable. In fact, when this type of structure 
encounters the impact of uncertainties, the distribution of its eigenvalues will be remarkably 
changed. Subsequently, conflicts between the design working condition and the perturbed 
eigenvalues may take place, which threatens the structural safety and performance. Accordingly, 
researches about uncertainty analysis and design optimization for the structures associated with 
repeated eigenvalues have attracted more and more attention [3,11,16,20]. 

The mainstream uncertainty analysis and dynamic reanalysis methods for structures with 
repeated eigenvalues can be roughly classified into statistical methods and non-statistical 
methods. The statistical methods, such as Latin hypercube sampling and Monte Carlo 
Simulation (MCS) [17], depend on the probabilistic distributions of random variables and a 
massive sample size. But for the real engineering structures, those preconditions are too costly 
to obtain. Furthermore, extensive computation is inevitable if we want to guarantee the 
precision of outcomes and to achieve the optimal solution, which is usually unacceptable for 
practical engineering structures.  

Instead, serving as a sort of classic non-statistical method, perturbation method which permits 
quick sensitivity analysis and structural reanalysis is booming and is widely regarded as a vital 
tool for structural uncertainty analysis and optimization [1, 2]. High computational efficiency, 
less time consumption and easiness in execution are the conspicuous features of matrix 
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perturbation method [12-14].  

Although the perturbation method has those advantages, it is still defective on two aspects. First, 
as for the Taylor series based perturbation method [6,15,16], the calculative results can only be 
guaranteed under small uncertainties. Furthermore, in terms of the structures with repeated 
eigenvalues, the derivative of repeated eigenvalue with respect to design variable may have 
more than one value [11], which is very difficult to handle via the Taylor series based 
perturbation method. Second, as for the classic matrix perturbation method, due to the fact that 
the perturbation expansions of repeated eigenvalue can’t be written as the explicit function with 
respect to design variables, so the statistical quantities of perturbed repeated eigenvalue (e.g. 
mean value and variance) are almost unobtainable unless utilizing the statistical methods such 
as MCS, which not only hinders the applications of matrix perturbation method, but also 
impedes the dynamic reanalysis and variance-based importance measure.  

To overcome these aforementioned obstacles, an improved stochastic perturbation method is 
proposed in this paper. In accordance with this proposed method, a surrogate model which 
consists of polynomial chaos expansions (PCE) is established to approximate the first-order 
perturbation term of repeated eigenvalue. Then, omitting the second and higher-order 
perturbation terms, the perturbed repeated eigenvalue is expressed as the combination of 
original repeated eigenvalue and the surrogate model. By virtue of this surrogate model, the 
statistical quantities of perturbed repeated eigenvalue are acquired directly.  

In general, the contributions of this work are multifold: 1) by simply knowing the 
dimensionality and distribution of design variables, the surrogate model could be achieved after 
finite several calculations on collocation points, then the statistical characteristics of repeated 
eigenvalues under uncertainties could be computed efficiently and accurately; 2) the proposed 
method is available to cope with structures undergoing relatively large uncertainties, which is 
validated by the numerical examples; 3) via this new method, the uncertainty analysis, 
structural reanalysis and design optimization for structures with repeated eigenvalues can be 
performed and accomplished expediently. 

The remainder of this paper is organized as follows. In Section 2, the perturbation analysis for 
repeated eigenvalues is systematically discussed. In Section 3, we introduce a surrogate model 
based on PCE method to approximate the first-order perturbation term of repeated eigenvalue. 
In Section 4, the expressions of statistical quantities for perturbed repeated eigenvalue are 
obtained. In Section 5, three numerical examples are utilized to verify the efficiency and 
accuracy of the proposed method. Lastly, the conclusions are drawn. 

2. Perturbation Analysis for Repeated Eigenvalues  

Assuming that 0
i   are repeated eigenvalues with m  multiplicities, which belongs to a 

degenerate system. Accordingly, there should be m  eigenvectors ( )i i = 1,2, ,mw , which are 

pairwise orthogonal, subject to 

 0 0 0
i i iK w M w , (1) 

in which 0K , 0M  denote original stiffness matrix and original mass matrix of the system with 

repeated eigenvalues, respectively. Moreover, the linear combination of iw   is also the 
eigenvector of repeated eigenvalue 0

i , which can be expressed as 

  

1 2
0 1 2

T1 2
1 2, , , , , ,

i m
m

m
m

  

  

   

   
 



 

u w w w

w w w

W 

, (2) 

where   is an undetermined vector. 

The structural parameters of degenerate system will be changed under the external perturbation, 
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such as variations of serving environment and differences in raw materials, which finally results 
in the variations of mass matrix and stiffness matrix as follows: 

 0 1

0 1




 
  

K K K

M M M
, (3) 

in which    is a minimum parameter, and the original system, known as the system 
corresponding to 0   . 1M  , 1K   indicate the first-order perturbation term of 0M  , 0K  , 

respectively. 

Repeated eigenvalues no longer exist in the system after perturbation, which means there should 
be m  different eigenvalues 1 2, , , m     corresponding to m  different eigenvectors 

 1, 2, ,i i m u  . It is similar to the circumstance of distinct eigenvalue. We expand the 

eigenvalue i  and eigenvector iu  as  -series form 

 2
0 1 2

i i i i        , (4) 

 2
0 1 2 .i i i i    u u u u  (5) 

By virtue of the perturbation method, eqs.(3), (4), (5) are substituted into Ku Mu , then 
we expand it with 3( )O   terms omitted. After that, comparing the coefficients of the same 

power terms of   on each side of the equation, we have 

 0 1 1 0 0 0 1 0 1 0 1 0 0
i i i i i i i i     K u K u M u M u M u , (6) 

substituting eq.(2) into eq.(6), yielding 

 0 1 1 0 0 1 0 1 1 0
1 1 1

m m m
i j i i i j i j

j j j
j j j

     
  

     K u K w M u M w M w , (7) 

premultiplying eq.(7) with T[ ]kw  gives 

   T T T T T
0 1 1 0 0 1 0 1 1 0

1 1 1

[ ] [ ] [ ] [ ] [ ]
m m m

k i k j i k i i k j i k j
j j j

j j j

     
  

     w K u w K w w M u w M w w M w , (8) 

taking the following conditions into consideration 

 T T T
0 1 1 0 0 1 0[ ] [ ] [ ]k i i k i i k w K u u K w u M w , (9) 

 T T
0 0 1 0 1 0[ ] [ ]i k i i i k w M u u M w , (10) 

and the orthogonality 

 T
0[ ]k j

kjw M w , (11) 

eq.(8) is rewritten as 

    T T
1 0 1 1

1

[ ] [ ] 1,2, ,
m

k j i k j i
j j

j

k m   


   w K w w M w . (12) 

Assuming that 

 
T

1

T
1

[ ]

[ ]

k j
kj

k j
kj

a

b

 




w M w

w K w
, (13) 

then eq.(12) is equivalent to 

  0 1
1

, 1, 2, ,
m

i i
jk kj j k

j

b a k m   


    , (14) 

the matrix form of eq.(14) can be represented as  

  1
i m m   D I  , (15) 
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where the element of matrix D  is subject to 

 0 , ( , 1, 2, , )i
kj kj kjd b a k j m    . (16) 

Eq.(15) is a standard eigenvalue equation with m  order, by solving this eigenvalue problem 
we will acquire the first-order perturbation term  1 1,2, ,j j m   , which corresponds to the 

original repeated eigenvalue 0
i , and the undetermined coefficient j .  

 1 1,2, ,j j m    are arranged in ascending order, if eq.(15) has no repeated eigenvalues, then 

both 1
j   and j   are unique. For simplicity, we assume that eq.(15) has no repeated 

eigenvalues. 

Solving eq.(15) equals to solve the following equation 

 1det 0j m m    D I , (17) 

then  1 1, 2, ,j j m     is obtained, by substituting it back into eq.(15), coefficients

 1,2, ,j j m    are acquired.  

After that, according to eq.(2), we will get the eigenvector which correspond to the repeated 
eigenvalues 0

i  as follows 

  0 , 1, , 1j
ju j i i i m    W . (18) 

As for eq.(17), solving it directly, we will obtain  1 1, 2, ,j j m   . Nevertheless, by solving 

eq.(17), we cannot establish an explicit equation for  1 1, 2, ,j j m   with respect to structural 

parameters 1M  and 1K . That being so, in order to perform the structural uncertainty analysis 

or structural dynamic reanalysis, every time the system undergoes perturbation in design 
variables, a brand new set of  1 1,M K will be generated; on top of that, we have to recalculate 

the eq.(17) all over again in order to acquire the correspondingly new set of  1 1, 2, ,j j m   . 

Indisputably, the repetitive computational processes are unacceptable and prohibitive for 
overwhelming majority engineering projects. 

To sum up, owing to the limitation that an explicit expression for  1 1, 2, ,j j m   with respect 

to structural parameters  1 1,M K   or design variables is unattainable via the classic matrix 

perturbation method, the computational cost of structural reanalysis and uncertainty analysis 
will be far too much for engineering structure associated with repeated eigenvalues. Moreover, 
after the perturbations of design variables, the variation range and importance measure of 
repeated eigenvalues have absolutely no regularity to track except for time-consuming 
statistical methods. This not only causes side effect to the efficiency of dynamic reanalysis, but 
also hinders the structural design and optimization. 

In this paper, we are willing to provide a surrogate model instead of solving eq.(17) repetitively. 
Hence, the explicit expression of  1 1, 2, ,j j m    with respect to design variables could be 

approximated by the proposed surrogate model. Then the uncertainty analysis and dynamic 
reanalysis of repeated eigenvalues will be implemented via the surrogate model expediently. 

3. Surrogate Model for Stochastic Repeated Eigenvalues Analysis 

As Appendix part 1 states, by solving eq.(17), we will acquire the first-order perturbation term
 1 1,2, ,q q m    of repeated eigenvalues. However, on one hand, solving eq.(17) requires 

extensive computation, which is usually unaffordable in engineering practice. On the other hand, 
even though  1 1,2, ,q q m    are obtained from eq.(17), one cannot establishes an explicit 

expression between design variables and 1
q  , which means a general method for repeated 
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eigenvalues’ uncertainty analysis is still unavailable. 

In order to solve those problems, surrogate model is introduced. The random variables 
 1 2, , , n      in system are chosen as independent variables, Hermite polynomials are 

taken as complete orthogonal basis, therefore the original response function in eq.(17) is 
approximated by the surrogate model  Y  , which is presented particularly in Appendix part 

1. 

First of all, let the highest order of Hermite orthogonal polynomials be subject to 2p  . Hence, 

concerning the system that corresponds to eq.(17), the surrogate model is expressed as 

      
1

2
1 0, , ,

1 1 1

1 , 1, 2, ,
n n n n

q
q i,q i ii q i ij q i j

i i i j i

c c c c q m    


   

         , (19) 

where  1 2, , , n     denotes random variables which subject to Gaussian distribution, 

0, , , ,, , , ,q i q ii q ij qc c c c stand for the undetermined coefficients of Hermite polynomial expansion,

1,2, ,q m   stands for the multiplicity of repeated eigenvalues’ first-order perturbation. 

According to eqs.(19), the number of undetermined coefficients is subject to 
  2 1 2s n n   . 

Now we prepare for the collocation points. Considering that the highest order of polynomial 
chaos expansions in this paper subject to 2p  . So the roots of third order Hermite polynomial, 

i.e. 3 , 0x   are taken as collocation points. Assuming the random variables  1, 2, ,i i n  

subject to Gaussian distribution 2( , ), 1, 2, ,i iN i n    , then there are three values for every 

collocation point, which is shown as 3 , , 3i i i i i i        . As for the n -dimensional 

random variables, the combinatorial number of random variables, which is also the number of 
collocation points, equals to 3n . In addition, every set of collocation points is expressed as 

  1 2, , , , 1,2, ,3n
n         .  

Substituting the previous collocation point   into eq.(12), in the meanwhile, re-writing the 

matrices 1 1,M K  in eq.(12) as  

 
   

   

1 1 1 2 1 1 1 2 1 1
1

1 1 1 2 1 1 1 2 1 1
1

, , , , , , , , , , , , ,

, , , , , , , , , , , , ,

n

i i i n i i i n
i

n

i i i n i i i n
i

 

 

           

           

   


   


      

     





   

   

M M M M

K K K K

 (20) 

in addition, as for  , 1,2, ,3n
i i     , then we let 

 
    
    

1 2 1 1 1 2 1 1

1 2 1 1 1 2 1 1

, , , , , , , , , , , , , 0

, , , , , , , , , , , , , 0

i i i n i i i n

i i i n i i i n





           

           

   

   

  


 

   

   

M M

K K
. 

Enlightened by the high dimensional model representation (HDMR) and stochastic perturbation 
method, we have deduced the expressions of 1M  and 1K  in eq.(20). The detailed derivation 

process of 1 1,M K  in eq.(20) can be seen in Appendix part 2 [18, 19]. 

After the preceding procedure, solving eq.(12) as follows: 

    T T
1 0 1 1

1

[ ] [ ] 1, 2, ,
m

k q q k q q
q q

q

k m     


   w K w w M w , (21) 

re-arranging all the roots of eq.(21) in ascending order, one will obtain a set of solutions 

 
T1 2 3

1 1 1 1 1, , , ,q m
           . 
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Repeating the procedure above, substituting every collocation point into eq.(21) one by one, then 
the solution vector is acquired as 

 

11 1 1
3111 21 1
22 2 2
3111 21 1
33 3 3
3111 21 1

11 21 31 1

13111 21

111 21 31

N

N

N

q q q q
N

N

mm m m
N

 

  
  
  

 

  

 
 
 
 
 

     
 
 
 
 
  







   



   



    , (22) 

in which 3nN   , considering the solution with arbitrary order   , we have

1 11 21 31 1 , 1,2, ,N m             , from eq.(22), we can form the equations as follows: 

 

 
 

 

 
 

 

 
 

 

0 0 1 0 1 0 0 11

0 1 1 1 1 1 1 21

0 1 1 1 1

s

s

N N s N s N

c

c

c

 

 

 

   
   

   





 

     
     
          
     

         





    



  
  

  

, (23) 

It is worth mentioning that eq.(23) consists of 3n  equations, and contains s   undetermined 
coefficients. As for PCE method, normally we have 3n s , therefore via regression analysis 

based on the least square method, we will determine a set of coefficients 0 1 1sc c c  
   . 

For clarity, the constructing procedure of surrogate model based on PCE method is illustrated 
in Figure 1, 
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Figure 1 – Constructing procedure of surrogate model based on PCE method 

4. Statistical Quantities of Random Response Function in Surrogate Model 
As illustrated in Section 3 and Appendix part 1, the first-order perturbation term of the  th 

repeated eigenvalue can be demonstrated as 

    
1

2
1 0, , ,

1 1 1

1
n n n n

i, i ii i ij i j
i i i j i

c c c c
       



   

       , (24) 

where  1 2, , , n     denotes random variables that are subject to Gaussian distribution
2N( , ), 1, 2, ,i i i n     . Now all the coefficients 0, , , ,, , ,i ii ijc c c c     have been known via the 

process presented in Section 3 and Appendix part 1. 

According to eq.(4), omitting the terms higher than second order, one yields 

  
1

2
0 1 0 0, , ,

1 1 1

1
n n n n

i, i ii i ij i j
i i i j i

c c c c   
          



   

 
        

 
   , (25) 
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for clarity, both superscript   and subscript   are removed from eq.(25) in the derivation 
hereinafter, i.e., 

  
1

2
0 1 0 0

1 1 1

1
n n n n

i i ii i ij i j
i i i j i

c c c c        


   

 
        

 
   . (26) 

Using the expectation operator on eq.(26), we have 

 

     

 

1
2

0 1 0 0
1 1 1

1
2

0 0
1 1 1

0 0

E E E 1

E 1

n n n n

i i ii i ij i j
i i i j i

n n n n

i i ii i ij i j
i i i j i

c c c c

c c c c

c

        

     

 



   



   

  
         

   
 

      
 

 

  

   , (27) 

utilizing the variance operator on eq.(26), and taking the orthogonality of Hermite polynomial 
into account, one yields 

 

     

 

 

1
2

0 1 0 0
1 1 1

1
2 2

0
1 1 1

2 2 2 2 2

1 1

Var Var Var 1

Var 1

Var 1 Var

n n n n

i i ii i ij i j
i i i j i

n n n n

i i ii i ij i j
i i i j i

n n

i ii i ij i j
i i j i

c c c c

c c c c

c c c

        

    

     



   



   

  

  
         

   
  

      
   

      

  

  

 
1

1

n n

i





 
 
 


, (28) 

in conjunction with 

 

     
22

2 2 2 2 2

1 1 1

2 2 2

1

2
1 1

2 2

1 1 1

Var 1 E 1 E 1

Var E E

n n n

ii i ii i ii i
i i i

n

ii ii
i

n n n n n n

ij i j ij i j ij i j
i j i i j i i j i

c c c

c

c c c

    

 

       

  



 

     

                                
 

  
 

    
    
     

  



  
2

1

1
2 2 2

1

n n

ij ij
i j i

c 





 








               


    
 





  (29) 

taking eqs.(28) and (29) into consideration, we have 

 

     

 

1
2

0 1 0 0
1 1 1

1
2 2

0
1 1 1

2 2 2 2 2 2 2 2

1 1 1

Var Var Var 1

Var 1

n n n n

i i ii i ij i j
i i i j i

n n n n

i i ii i ij i j
i i i j i

n n n

i ii ii ij ij
i i i j i

c c c c

c c c c

c c c

        

    

    



   



   

   

  
         

   
  

      
   

    
 

  

  

  
1n 

 
 


. (30) 

5. Numerical Examples 

In this section, a 4-DOF mass-spring system is first utilized to verify the feasibility of this 
proposed method. Then, a dome structure with fifty two bars and an airship structure with 
repeated eigenvalues are used to demonstrate the capability of the proposed method in coping 
with large and complex engineering structures. 
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5.1  Four-DOF Mass-Spring System 
As demonstrated in Figure 2, the mass-spring system is in a closed-loop form, where 4 mass 
blocks are symmetrically organized on a circumference with a radius of R. A ring transgresses 
the central holes of mass blocks and limits the block’s track along the ring. Mass blocks are 
interconnected by springs and the friction in this example is ignored.  

 

Figure 2 – 4-DOF mass-spring system 
In this case, the original stiffness matrix 0K  and original mass matrix 0M  are expressed as 

 
0 0

7 2 4 0 0 0

2 16 2 2 0 10 0 0
,

2 19 0 0 10 0

2 7 0 0 0 4

k k k k m

k k k k m

k k k k m

k k k k m

     
         
     
   
     

K M  

according to eq.(1), the eigenvalue matrix 0  and eigenvector matrix 0U  are obtained as 

follows: 

 
0 0

1 0 0 0 0.25 0.111 0.391 0.1494

0 2 0 0 0.2 0.0902 0.1971 0.1141
,

0 0 2 0 0.1 0.1283 0.0032 0.2712

0 0 0 2 0.25 0.4197 0 0.1064

    
         
   
   

    

U . 

Therefore, the distinct eigenvalue is 01 1  , repeated eigenvalues are 02 03 04 2     , as for 

the eigenvectors, the distinct eigenvector is  T01 0.25, 0.2, 0.1, 0.25w      , the corresponding 

repeated eigenvectors are 

 

 
 
 

T

02

T

03

T

04

0.111, 0.0902, 0.1283, 0.4197

0.391, 0.1971, 0.0032, 0

0.1494, 0.1141, 0.2712, 0.1064

w

w

w

  
  


  

, 

assuming that k   is subject to Gaussian distribution  2N 1,0.1  , m  is subject to Gaussian 
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distribution  2N 1,0.2 . According to the proposed method, the collocation points of  ,k m are 

assigned in Figure 3. 

 

Figure 3 – Distribution of collocation points 
Utilizing the proposed method in this work, the first-order perturbation term of the original 
repeated eigenvalues, with ranking first and second (similar discussions could be applied on 

3
1 ), are represented in the form of polynomial chaos expansions as follows: 

   
   

1 3 5 2 5 2 5
1

2 3 5 2 5 2 5
1

1.0003 10 0.2310 0.4619 1.1112 10 1 4.4447 10 1 3.3335 10

1.0006 10 0.2313 0.4623 1.1115 10 1 4.4452 10 1 3.3377 10

k m k m km

k m k m km





   

   

            


           
. 

Firstly, as shown in Table , different sample size has been tested in order to determine the sample 
size utilized in Monte-Carlo Simulation (MCS). 

Table 1 – Determine the sample size of Monte-Carlo Simulation 
Repeated 

Eigenvalues Statistic 
Quantities 

Sample Size 

(Rank) 410  510  610  63 10  

1λ  
Mean 
Value 2.0907 2.0938 2.0927 2.0925 

Variance 0.2876 0.2934 0.2908 0.2907 

As illustrated in Table , with the increase of sample size, the fluctuations of  1Var    and 
 1E   calculated by MCS tend to be stable. Noting that when the sample size is larger than 
610 , statistic quantities of repeated eigenvalue computed by MCS almost converge to a certain 

value. Hence, for the sake of time expense and calculative accuracy, 
610   is chosen as the 

sample size of MCS for exact solutions. 

Secondly, according to eq.(30), the statistic quantities of repeated eigenvalues under 
perturbations are obtained in Table . As can be seen in Table , comparing to MCS, whose sample 

size is 
610  , calculative accuracy of the proposed method is acceptable for engineering 

application. 
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Table 2 – Comparison of variance of repeated eigenvalues 

calculated by two methods 
Repeated 

Eigenvalues Methods Variance Relative 
Error 

Mean 
Value 

Relative 
Error 

1λ  

Proposed 
Method 0.2880 

0.96% 

2.0128 

3.82% Monte-Carlo 
Sample Size 

610  
0.2908 2.0927 

2λ  

Proposed 
Method 0.2883 

0.995% 

2.0243 

3.27% Monte-Carlo 
Sample Size 

610  
0.2912 2.0928 

After the preceding discussion, we have investigated the results of proposed method concerning 
the random variables with fixed coefficient of variation (i.e. 0.1 for k, 0.2 for m). Hereinafter, 
in order to further study the feasibility and applicability of this new method, we take different 
coefficient of variation into account. Considering the coefficient of variation varies from 0.01 
to 0.2 for all the random variables, we intend to research the calculative capability of the 
proposed method under large uncertainty. Complementarily, in this part, coefficient of variation 
varies step by step simultaneously for all the random variables.  

As can be seen in Figure 4, the outcomes of the proposed method are in agreement with those 
of the MCS. When the coefficient of variation is small in value (less than 0.1), those two results 
match very well. As for the coefficient of variation varies from 0.1 to 0.2, the deviation in results 
between MCS and proposed method enlarge gradually. It is worth mentioning that even if the 
coefficient of variation is assigned as 0.2, which corresponds to large uncertainty in random 
variables, the relative error between proposed method and MCS is just 15.9%. With regard to 
the condition that the variation coefficient is zero, which indicates all the structural parameters 
are deterministic without uncertainty, the results of these two methods both turn to zero value. 

 

Figure 4 – Comparison of  1Var λ obtained by two methods versus different 

coefficient of variation 
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Without loss of generality, in the next discussion, each random variable is assumed varying 
from 0.01 to 0.2 independently. The 3D-distributions of  1Var  which are obtained by MCS 

and the proposed method respectively are demonstrated in Figure 5. As Figure 5 states, the 
upper-layer surface stands for  1Var   computed by MCS, while the lower-layer surface 

denotes  1Var  calculated by the proposed method.  

Three main conclusions could be achieved via Figure 5: Firstly,  1Var   calculated by the 

proposed method is consistent with that of MCS concerning the random variables varying 
independently; Secondly,  1Var  obtained by the proposed method are relatively smaller in 

value than that of MCS, which is similar to Figure 4; Thirdly, even if the variation coefficients 
are large (close to 0.2), the relative errors between the proposed method and exact solutions are 
still acceptable, which means this new method is applicable to the problems with large 
uncertainty.  

For simplicity and clarity, only the first repeated-eigenvalue 1   is discussed in this part, 

similar discussions can be performed on 2  and 3 . 

 

Figure 5 – 3D distribution of 1Var( )λ obtained by two methods 

with random variables varying independently 
Evidently, the proposed method in this paper has considerable advantages on computational 
efficiency, which is fully demonstrated in Table . Note that in Table , even for the sample size 

of
61.0 10 , the MCS consumes two orders of magnitude more time than the proposed method. 

As for the engineering structure, the advantage of computational efficiency for the proposed 
method will be unfolded more obviously. 

Table 3 – Calculative time consumption for two methods 

Methods 
Calculative Time Consumption (s) 

1λ  

Monte-Carlo 
Simulation 

(Sample 

61.0 10  16.912 

62.0 10  33.609 
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Size) 63.0 10  50.718 

64.0 10  66.696 

65.0 10  84.014 

66.0 10  100.321 

The Proposed Method 0.0962 

Both the proposed method and MCS in this case were operated on an Intel Core i7-
2600@3.40GHz computer. 

5.2  Dome Structure with 52bars 

As Figure 6 shows, the dome structure with 52 bars and 21 nodes is investigated for its variance 
of repeated eigenvalues under the perturbations of random variables. The nominal value of 
cross-section areas of the bars is assigned as 210 cm . The dome is symmetric with respect to Y-

axis and X-axis. Besides, the nominal values of Young’s modulus, material density and Poisson 
ratio are assigned as 210GPaE   , 37850 kg m   , 0.3    respectively. The representative 

nodes of the dome structure are listed in Table  for their coordinates. 

 

Figure 6 – Dome structure with repeated eigenvalues 

Table 4 – Coordinates of the representative nodes in dome structure 

Node 
Coordinates (m) 

X  Y  Z  
1 0.0 0.0 9.25 

2 5.0 0.0 8.22 

3 10.0 0.0 5.14 

4 15.0 0.0 0.0 

It is worth mentioning the second-order and third-order vibration modes share the same natural 
frequency of 24.043Hz. The corresponding mode shapes are shown in Figure 7.  
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         (a) second-order mode                        (b) third-order mode 

Figure 7 – The second/third order mode shapes share the same natural frequency 
In this numerical example, Young’s modulus E  , material density   are treated as random 

variables, which are subject to the Gaussian distributions 2N(210,10.5 )  , 2N(7850,392.5 )

respectively. By implementing the whole procedure that was proposed in this paper, the mean 
value and variance of the first repeated eigenvalues 2  are obtained in Table . 

Table 5 – Comparison of the outcomes calculated by two methods 

First Repeated 
Eigenvalues 

Methods Mean Value 
Relative 

Error 
Variance 

Relative 
Error 

2λ  

The Proposed 
Method 

22883 

0.27% 

2695507.24 

4.76% Monte-Carlo 
Sample Size

510  
22946 2830133.29 

Aiming at engineering problem such as this dome structure, computational accuracy of the 
proposed method is satisfactory. Furthermore, by simply collocating finite several points in the 
original system, the statistical quantities of repeated eigenvalues can be obtained by this 
proposed method. As for the MCS, on the contrary, in order to obtain the statistic quantities of 
the repeated eigenvalues, the full process of the FEM analysis has to be implemented for each 
and every sampling point, hence the total time cost is extremely tremendous. In Table , the 
calculative time consumption for MCS and the proposed method are compared, and the new 
method possesses an overwhelming advantage on computational efficiency. Both the proposed 
method and MCS were operated on an Intel Core i7-2600@3.40GHz computer in this case. In 
addition, with the increase of sample size, outcomes determined via the MCS tend to be stable. 

Particularly, once the sample size is larger than 
51 10  , the results evaluated by MCS are 

basically converged. 

Table 6 – Contrast of calculative time consumption for two methods 

Methods 
Calculative Time Consumption (s) 

2λ  

Monte-Carlo 51 10  4689 
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simulation 
(Sample Size) 

52 10  9837 
53 10  16041 

The Proposed Method 3.67 

5.3  High Altitude Airship Structure 

In order to validate the proposed method in dealing with the large and complex engineering 
structure, a practical high altitude airship structure is utilized as the numerical study object. 
This airship is 16.5m in length and has a slenderness ratio of 3.9, as shown in Figure 8 and 
Figure 9. 2D membrane element is used in numerical simulation, which is implemented on 
MSC.Patran. We use the isotropic material with the nominal values of Young’s modulus, 
material density and Poisson ratio are assigned as 1096 MPaE   , 3727 kg m   , 0.3   

respectively.  

 

Figure 8 – Geometric model of the high altitude airship structure 

 

Figure 9 – FEM model of the high altitude airship structure 

Table 7 – Repeated eigenvalues captured in the airship structure 

Order Eigenvalue Natural Frequency 

6th 
3844.8 9.8687Hz 

7th 

The prestressed mode analysis is implemented, in which the internal pressure of the airship is set as 
500Pa. As can be seen in Figure 10 and Table  for details, clustered eigenvalues of the airship 
structure are acquired, in which 6th and 7th order mode shapes share the natural frequency of 
9.8687Hz. 
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(a) 6th-order mode shape with natural frequency of 9.8687Hz 

 
(b) 7th-order mode shape with natural frequency of 9.8687Hz 

Figure 10 – Mode shapes of repeated eigenvalues of the airship structure 
Firstly, the Young’s modulus E  and material density   are handled as random variables, 

which are subject to Gaussian distributions 2N(1096,54.8 )  and 2N(727,36.35 )  respectively. 

Then, by implementing the proposed method, mean value and variance of the sixth-order 
eigenvalue 6  and seventh-order eigenvalue 7  are obtained in Table . 

Table 8 – Comparison of calculative outcomes by two methods in numerical case 3 

Repeated 
Eigenvalues 

Methods 
Mean 
Value 

Relative 
Error 

Variance 
Relative 

Error 
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6λ  

The Proposed 
Method 

3844.95 

0.041% 

56655.71 

3.79% Monte-Carlo 
Sample Size 

65 10  
3846.53 54507.77 

7λ  

The Proposed 
Method 

3854.35 

0.052% 

52585.09 

2.79% Monte-Carlo 
Sample Size 

65 10  
3856.35 51118.68 

According to Table , under the circumstance that all the coefficient of variation of random 
variables are assigned as 0.05, the statistic quantities of the original repeated eigenvalues (i.e.

7λ  and 6λ ) calculated by the proposed method are very close to the exact solutions, which has 

roughly disclosed the computational feasibility and accuracy of the proposed method. 

After the preceding discussion, we have investigated the outcomes that are computed 
concerning the random variables with fixed coefficient of variation (i.e. 0.05). In order to 
ulteriorly study the computational capacity of this proposed method, now we take different 
coefficient of variation into account. Hereinafter, for all the random variables, the coefficient 
of variation varies from 0 to 0.1 step by step simultaneously. 

By adopting both the proposed method and MCS, the variance of repeated eigenvalues (  6Var   

and  7Var  ) with respect to different coefficient of variation, are demonstrated and contrasted 

in Figure 11. As Figure 11 states, variance of repeated eigenvalues determined by the proposed 
method increases along with the increase of coefficient of variation. Outcomes of the MCS have 
the similar variation trends as that of the proposed method, and are relatively smaller in value 
than that of the proposed method (both for  6Var   and  7Var  ). As shown in Figure 11, 

when the coefficient of variation is small (less than 0.05), results of the proposed method are 
basically consistent with those of MCS; when the coefficient of variation approaches 0.1, 
deviation of the results between these two methods increases gradually. Particularly, as for the 
situation when coefficient of variation is zero in value, which means structural parameters ( E  
and   ) are all deterministic without uncertainties, results obtained by the previous two 

methods converge to zero.  
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Figure 11 – The tendencies of variance of repeated eigenvalues with respect to different 

coefficient of variation calculated by the proposed method and Monte-Carlo simulation 

For better clarification, we extract  6Var    and  7Var    acquired by the previous two 

methods to form the Figure 12 and Figure 13 respectively. Actually, the similar conclusions 
would be achieved as those for the Figure 11. 

 

Figure 12 –  6Var λ  calculated by two different methods 
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Figure 13 –  7Var λ  calculated by two different methods 

In terms of Figure 11, Figure 12 and Figure 13, considering the deviation in results between 
these two methods comprehensively, the main reasons are summed up as follows:  

Firstly, the first-order perturbation method is utilized during the deducing process, so the 
higher-order perturbation terms of the repeated eigenvalue are omitted, which cause some 
deviation in computational results; Secondly, surrogate model constructed by polynomial chaos 
expansions represents merely an approximation of the original system, in this paper we truncate 
the Hermite orthogonal polynomials to second-order terms, which also lead to some deviation 
from the exact solution. 

Note that even if the coefficient of variation is assigned as 0.1, relative error between the 
proposed method and MCS is just approximately 4% (for  6Var  ). But the calculative time 

consumption for the proposed method shrinks at least by two orders of magnitude comparing 
with MCS. Due to the fact that time consumption of MCS is absolutely unaffordable in practical 
engineering. If we are willing to enhance the efficiency of structural reanalysis and to acquire 
accurate statistical quantities of perturbed repeated eigenvalue, the proposed method is a very 
good tradeoff between calculative accuracy and efficiency. 

It should be clarified complementarily that the sample size of the MCS in this case is chosen as
53 10 . To determine the sample size for MCS, the same procedure is adopted as we have used 

in case 1. Moreover, both of the two methods utilized in this case are implemented on an Intel 
Xeon(R) CPU E5-2680 v3@2.5GHz(dual) computer with RAM 128GB. 

According to the preceding three numerical examples, the significance and effects of uncertain 
design variables on the statistical quantities of repeated eigenvalues have been completely 
realized and investigated. Besides, the new method has comprehensively demonstrated its 
computational capability in efficiency and accuracy. Especially when handling the structures 
undergoing large uncertainties, the outcomes of proposed method still meet the demand of 
engineering application. Furthermore, based on the second and third numerical cases, this 
proposed method has disclosed its application potential on two aspects. The first aspect is that 
the secondary development of commercial CAE/FEM software based on this proposed method 
is expedient to be achieved; the second aspect is this method has the ability to deal with large 
and complex engineering structures. 
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6. Conclusions 
This paper is oriented to studying the uncertainty and its propagation analysis for the structures 
with repeated eigenvalues. Combining the stochastic perturbation method with surrogate model 
approach, an improved stochastic perturbation algorithm is developed in this paper. In light of 
this present method, statistical quantities of the perturbed repeated eigenvalue, such as variance 
and mean value, can be acquired conveniently and accurately. Numerical results have indicated 
that the proposed method guarantees the calculative precision and enhances the computational 
efficiency during the uncertainty propagation analysis. Furthermore, through numerical 
examples, this new method also shows the ability in handling the structures with relatively large 
uncertainties, which used to be a bottleneck for conventional perturbation method. Accordingly, 
the proposed method also paves the way for dynamic reanalysis and design optimization for 
large and complex engineering structures with repeated eigenvalues. 
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Appendix 

1. Construction of Surrogate Model Based on PCE Method 

Essentially speaking, it is the uncertainty of structural parameters, such as statistical variability 
of material property and geometry condition, that leads to the perturbation of mass matrix 1M  

and perturbation of stiffness matrix 1K , i.e., 

        1 1 1 1 2 1 1 1 1 2, , , , , , ,n n        M M = M K K K  , (1) 

where 1 2, , , n    denote the random variables in system. It is worth mentioning that, for 

notational convenience and avoiding ambiguity in derivation, we will use superscript q  
standing for the multiplicity of repeated eigenvalues’ first-order perturbation. Assuming the 
original system as 

    1 1 1 1 2, , , ,q
nf f     M K . (2) 

Let the probability space of original system be smooth adequately, in addition  1 2, , , nf   

cannot be expressed explicitly. But it’s available to obtain the corresponding responses of 
original system by means of numerical approximation. 

The polynomial chaos expansion (PCE) method is introduced in this paper. In another word, 
the surrogate model of original system is established by PCE method hereinafter. 

Homogeneous Hermite polynomial expansion is employed in terms of Gaussian random 
process [21, 22], and the random response  Y   is expressed as 

            
1 1 2

1 1 1 2 1 2 1 2 3 1 2 3

1 1 2 1 2 3

0 1 2 3
1 1 1 1 1 1

, , ,
i i in n n

i i i i i i i i i i i i
i i i i i i

Y c c c c        
     

        , (3) 

in which  
1 1 2 1 2 30= , , , , , ,i i i i i ic c c c  c  is a vector of undetermined coefficients, 

 1 2, , , n    denotes the Gaussian random variables,  
1 2
, , ,

nn i i i    stands for the n th 

order multidimensional Hermite polynomial. 

Eq.(3) is legitimate to be truncated by finite terms, assuming the remaining number of terms is
s , then eq.(3) will be simplified as 

    
1

0

s

j j
j

Y 




 
c  , (4) 

where j


c  stands for the undetermined coefficients,    

1 2
, , ,

nj j i i i       denotes the j

th order generalized Wiener-Askey polynomial chaos. Simultaneously, there is a one-to-one 

correspondence between the functions  
1 2
, , ,

nn i i i      and  j   , and their coefficients

1 1 2 1 2 30 , , , , , ,i i i i i ic c c c    and j


c . 

For clarity, the n -dimensional Hermite polynomial is shown as 

    T T

1

1

1 2 1 2, , 1
n

n

n
n

n i i
i i

H e e 
 


 

 



    ,  

and one-dimensional Hermite polynomials are demonstrated as 

     
     

2 3
0 1 2 3

1 1

1, , 1, 3 ,

,i i i

H H H H

H H iH

      

    

     

 




. 

The polynomial chaos ( )j    forms a complete orthogonal basis in the 2L   space of the 
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Gaussian random variables, i.e., 

 2,i j i ij    ,  

where  is the Kronecker Delta operator and ,   denotes the ensemble average which is 

also the inner product in the Hilbert space of Gaussian random variables  . 

          f g f g W d       ,  

where the weighting function is 

 
 

T1 21

2
n

W e


   , 

in this way, a complete set of orthogonal basis which is square-integrable is established with 
respect to n  -dimensional Hermite polynomial. Moreover, the polynomials in eq.(3) are 
convergence in mean square. 

If the surrogate model is formed by second order Hermite polynomial chaos expansion, then 

the random response  Y   can be expressed as 

                 
1

2
2 0,2 ,2 ,2 ,2

1 1 1

1
n n n n

i i ii i ij i j
i i i j i

Y c c c c   


   

       , (5) 

where n  denotes the dimensionality of random variables, 0,2 ,2 ,2 ,2, , ,i ii ijc c c c  stand for the 

undetermined coefficients of Hermite polynomial expansion. By virtue of eq.(5), one can 
induce the number of undetermined coefficients in second order Hermite polynomial expansion 
for approximate random response  2Y    as    ! ! !s n p n p   , in which p  stands for the 

highest order in polynomial expansion. 

Note that in eq.(5), the key of constructing the surrogate model, which is formed by PCE 
method, is the calculation of undetermined coefficients 0,2 ,2 ,2 ,2, , , ,i ii ijc c c c  . Concerning the 

PCE surrogate model which consists of n -dimensional random variables, the corresponding 
response functions will be generated upon the specified collocation points groups, and each 

collocation points group corresponds to a set of sample  1 2, , , n      , which belongs to 

random variable  1 2, , , n    . 

As mentioned before, all the variables in this paper are subject to Gaussian distribution. Besides 
that, Hermite polynomials are chosen as the orthogonal basis. It is a routine that if the highest 
order of Hermite polynomial is p , then roots of the  1p  th order Hermite polynomial are 

adopted as collocation points. Specifically, the highest order of Hermite polynomial utilized in 

this paper is set as two. So the roots of      3
3 1 6 3H x x x    , which are 3 , 0x    , 

should be chosen as the collocation points for every random variable. 

After preparing all the collocation points, one substitutes the previous collocation points into 
the original system one-by-one. The corresponding response function will be generated 
sequently, and the following formula is established as 

 

 
 

 

 
 

 

 
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 
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  
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

   



   
   

   

, (6) 

where 0 1, , , N   denote the sampling points, N  stands for the number of sampling points, 

s is the number of undetermined coefficients. By means of regression analysis based on the 

ij
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least squares method, the undetermined coefficients of polynomial chaos expansion could be 
calculated from eq.(6). 

2. Construction of 1 1,M K in Section 3 

According to the stochastic perturbation method, which is truncated to first-order perturbation 

term in this paper, the system response    1 2, , , ng g x x x x  can be expressed as  

      1g g g x x x , (1) 

viz.      1 2 1 2 1 1 2, , , , , , , , ,n n ng x x x g g x x x      ,  

where  1 2, , , nx x xx =  denotes the random variables in structural system,  1 2, , , n  x =  

stands for the mean values of random variables,  1g x  is the first-order perturbation term of 

system response. 

On the other aspect, in the light of high dimensional model representation (HDMR), the first-
order approximation of system response also can be denoted as 

          1 2 1 1 1
1

, , , , , , , , , 1
n

n i i i n
i

g g x x x g x n g    


     x x , (2) 

Taking eqs.(1) and (2) into consideration, the first-order perturbation term  1g x is obtained 

as 

 
     

   

1 1 1 1
1

1 1 1
1

, , , , , ,
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n
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i

n

i i i n
i

g g x ng

g x g

   
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 


 


 

   





 

 

x x

x

, (3) 

on the basis of the preceding derivation, the first-order perturbation term of mass matrix and 
stiffness matrix can be expressed as follows, respectively 

 
   

   

1 1 1 2 1 1 1 2 1 1
1

1 1 1 2 1 1 1 2 1 1
1

, , , , , , , , , , , , ,

, , , , , , , , , , , , ,

n

i i i n i i i n
i

n

i i i n i i i n
i

 

 

           

           

   


   


      

     





   

   

M M M M

K K K K

. 

 

Copyright Statement 

The authors confirm that they, and/or their company or organization, hold copyright on all of 
the original material included in this paper. The authors also confirm that they have obtained 
permission, from the copyright holder of any third party material included in this paper, to 
publish it as part of their paper. The authors confirm that they give permission, or have obtained 
permission from the copyright holder of this paper, for the publication and distribution of this 
paper as part of the ICAS  proceedings or as individual off-prints from the proceedings. 


