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Abstract 

This paper considers estimating wind using only the data of an inertial measurement unit without any 
information from an air-data sensor by estimating stability derivatives of a lateral-directional motion model of 
an aircraft. Assuming that the wind is constant, we derive the relation between wind and stability derivatives, 
which allows us to calculate wind. An advantage of this method is that estimated wind is relatively insensitive 
to the estimation error of the derivatives. We illustrate the effectiveness of the proposed method by 
simulation using NASA’s Generic Transport Model. 
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1. Introduction 
Obtaining wind information in the flight environment is vital to achieve a flight mission 

successfully and improve operational efficiency since wind can be a disturbance for flight control of 
aircraft and guidance and navigation. Wind information is also necessary for flight data analysis, 
such as parameter estimation of an aircraft’s dynamic model. Although a weather report provides 
wind speed and direction in an area, they vary with time, location, and altitude, making it difficult to 
know precisely the wind in the actual flight environment. 

Studies on wind estimation, such as [1] to [8], are grouped into three categories. The first 
category estimates wind or relative airspeed using aerodynamic models and static relations among 
variables expressing aircraft motion. For example, Reference [1] shows the results of estimating 
the vertical wind (downdraft) from the flight path angle computed with actual climb rate and 
airspeed. Reference [2] estimates the angle of attack and sideslip angle using aerodynamic forces 
obtained from accelerometer output and aerodynamic parameters such as a lift coefficient to 
calculate airspeed and then wind from the difference between the airspeed and the ground speed. 
The second category estimates the wind based on or using a dynamic model of an aircraft. 
Reference [3] shows an estimation method of steady wind by applying a nonlinear observer to a 
six-degree-of-freedom nonlinear motion model. Reference [4] estimates airspeed along with wind 
using a cascaded extended Kalman filter with only IMU (Inertial Measurement Unit) and GPS 
(Global Positioning System) measurement data but requiring an aircraft’s dynamic model. The third 
category estimates wind using a Kalman filter designed for a simple kinematic model. In Reference 
[5], the wind is estimated simply as the difference between ground speed and airspeed. Reference 
[6] defines a linear system where the states are components of a wind vector, the inputs are 
airspeed, and the outputs are ground speed, estimating wind with a Kalman filter designed for this 
system. Reference [7] also estimates steady wind by applying a Kalman filter to a linear model with 
the state variables of wind and an airspeed sensor calibration factor. Reference [8] presents a 
method to estimate wind and bias of airspeed from ground speed measurements, attitude, and 
airspeed. The methods of the first and second categories require aerodynamic parameters such as 
lift and drag coefficients, on which preciseness of estimation depends. The methods of the third 
category use neither aerodynamic models nor equations of motion, which excludes modeling 
errors due to incorrect physical parameters. However, the methods require measurements of 
airspeed. Although air data systems provide an airspeed vector, they are expensive. In order to 
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obtain an airspeed vector using an inexpensive Pitot-static probe, an aerodynamic or aircraft 
dynamics model is necessary [8].  

This paper considers estimating steady wind by estimating stability derivatives of an aircraft’s 
linear model without using measurements of air data sensors and known aerodynamic parameters 
but using IMU measurements alone. The underlying idea is that wind is an additive disturbance to 
the ground speed in a dynamic model of an aircraft, making wind speed part of stability derivatives 
in a linear model so that it is possible to calculate wind speed from stability derivatives. The wind is 
added to ground speed to obtain airspeed and dominantly affects aerodynamic forces and 
moments. In a linear model, this means that we can consider wind as an additive disturbance to 
the ground speed. Wind in the inertial frame can be expressed in the body-fixed frame with Euler 
angles by coordinate transformation. Hence, when linearizing the equations of motion, the 
derivatives for Euler angles become linear with respect to the wind. Thus, wind can be obtained by 
estimating stability derivatives and solving linear equations. A latent problem with this method is 
that errors in estimated derivatives can enlarge wind estimation error. However, we will show 
numerically and analytically that estimated wind is not so sensitive to errors in estimated 
derivatives. This paper deals with the lateral-directional motion since longitudinal motion provides 
an estimated wind in the flight direction but does not the north and east wind components in the 
inertial frame [4]. In addition, the estimation error of vertical wind obtained from the longitudinal 
motion tends to be large, although we do not describe it in detail in this paper. The effectiveness of 
the proposed method is demonstrated by simulation using NASA’s Generic Transport Model 
(GTM) [9, 10]. 

This paper is organized as follows. Section 2 gives a general description of the problem to 
present how additive disturbances to states appear in parameters of a linear system under the 
assumption that the disturbance is a function of states. In Section 3 and 4, we apply this 
formulation to a lateral-directional motion model of an aircraft, showing how to obtain steady wind 
from estimated stability derivatives. Section 5 shows simulation and numerical analysis results. 
Finally, Section 6 gives conclusions. 

2. Linearized systems with additive disturbances to state variables 
Consider the nonlinear system described by the following equation: 

( ( ), )x f x d x δ= +  (1)  

where x∊Rn is the state vector, d∊Rn the disturbance vector being a known function of x with 
unknown parameters, and δ∊Rm is the input vector. For a trim input δ*, let x0

* be the equilibrium 
state in the absence of disturbance. Let x* be the trim state when adding a disturbance d and the 
disturbance at x* be d* = d(x*). 

Applying Taylor series expansion to the right-hand side of (1) around the equilibrium point (x*, 
δ*), we have  

* **(( , ) ( ( )) ( , ))x f x A xd x d x B o xδ δ δ= + ∆ + ∆ + ∆ ∆+ + ∆  (2)  
where Δx = x - x*, Δδ = δ - δ*, 

( ) *
*

*
*

( ( ), ) ( ( ), ),
( ) T T

x xx x

f x d x f x d xA B
x d x

δ δδ δ

δ δ
δ =

= =
=

∂ + ∂ +
= =

∂∂ +
 (3)  

*

*

( )( ) T
x x

d xd x x
x

δ δ
=
=

∂
∆ = ∆

∂
 

(4)  

and o(Δx, Δδ) denotes the higher-order terms. Substituting (3) and (4) into (2) and neglecting the 
higher-order terms than the first order, (2) becomes 

*

*

*( ) :n d AdT
x x

d xx A I x B A x B x
x

δ δ

δ δ
=
=

 
∂ = + ∆ + ∆ = + ∆ + ∂ 

 



 

(5)  
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where In is an n-by-n identify matrix and xAd
* is defined as 

*

*

* * *( )
Ad n dT

x x

d xx A I x A x
x

δ δ
=
=

 
∂ = − + = − ∂ 

   

(6)  

Equation (5) is the estimation model used to estimate A, B, and x*. Note, however, that x* cannot 
be estimated directly. Instead, Ad, B, and xAd

* can be estimated, and then x* is calculated as x* = 
−Ad

−1xAd
*. 

3. Lateral-directional motion model affected by wind 

This section first represents wind defined in inertial coordinates ∑I = (XI, YI, ZI), in the body-fixed 
frame ∑B = (XB, YB, ZB), and then applies the representation of (5) to a lateral-directional model with 
the wind disturbance. 

Let the wind in ∑I be VwI = [uwI vwI wwI]T, and let us express VwI in ∑B as 

wB BI IV T V=  (7)  
where TBI is the coordinate transformation matrix from ∑I to ∑B given by 

( )
cos cos cos sin sin

sin sin cos cos sin sin sin sin cos cos sin cos
cos sin cos sin sin cos sin sin sin cos cos cos

, ,BIT
Θ Ψ Θ Ψ − Θ

Φ Θ Ψ − Φ Ψ Φ Θ Ψ + Φ Ψ Φ Θ
Φ Θ Ψ +

 
 Φ Θ Ψ =

Φ Ψ Φ Θ
 
 Ψ − Ψ Φ Φ Θ  

(8)  

where Φ, Θ, and Ψ are the roll, pitch, and yaw angle (rad), respectively. 
Generally, the forces act on the aircraft in flight are composed of aerodynamic force, 

gravitational force, inertial force, and thrust. Note that the airspeed affects the aerodynamic force 
and thrust and that the ground speed does not affect the gravitational force. As for the inertial 
force, although the ground speed affects the acceleration due to the rotation of the moving frame in 
nonlinear equations of motion, this is not the case in the linear equation of motion. It follows that by 
replacing the velocity on the right-hand side V = [u v w]T (ft/s) in ∑B with the airspeed VaB =: [uaB vaB 
waB]T = V-VwB = [u-uwB v-vwB w-wwB]T, we obtain the equation of motion in the presence of wind. More 
specifically, we can express the dynamic model under the influence of steady wind as (1), except 
for the inertial term, which we should note does not include the ground speed as a variable in a 
linear model used in this study. We do not take into account here the effect of wind on thrust. The 
state variables are x = [VT p q r Φ Θ Ψ]T, the input δ = [δe δt δa δr]T, and the disturbance d = [VwB

T 0 0 0 
0 0 0]T, where p, q, and r are the roll, pitch, and yaw angular velocities (rad/s), respectively; Φ, Θ, 
and Ψ are the roll, pitch, and yaw angles (rad), respectively; δe, δa, and δr are the deflection angles 
(deg) of the elevator, aileron, and rudder, respectively; and δt is the thrust (N). Its linear motion 
model is given by (5). In the following, we consider lateral-directional motion. 

The lateral-directional motion is described by 

( )lat lat lat lat lat latx A x d B δ= − +  (9)  

where xlat = [v p r Φ]T, δlat = [δa δr]T, dlat = [vwB 0 0 0]T and the derivative matrices are given by 
* * *

' '' ' '

' ' ' ' '

*

cos
0

,
0

0 1 tan 0 0 0

a r

a r

a r

v p r

v p r
lat lat

v p r

Y YY W Y U Y g
L LL L L

A B
N N N N N

δ δ

δ δ

δ δ  + − + Θ   
  = =   
  
 Θ      

(10)  

and from (7) and (8) vwB in dlat is given by 

( ) ( )* * *sin cos sin sin sin cos coswB wI wI wIv u v w= Φ Θ Ψ − Ψ + Φ Θ Ψ + Ψ + Φ Θ
 (11)  

where Θ* is a trim pitch angle and the approximations, sinΦ ≅  Φ and cosΦ ≅  1, are used. 
Substituting (11) into (9) yields 
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( )* * *

' '' ' ' ' *

' ' ' ' * ' '

*

'

'

cos
cos
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0 1 tan 0 0 0

0

a r

a r

a r

v p r v wI

av p r v wI

rv p r v wI

v

v
wI

v

Y Yv vY W Y U Y g Y w
L Lp pL L L L w

r rN N N N w N N

Y
L

u
N

δ δ

δ δ

δ δ

δ
δ

  + − + − Θ         − Θ       = +       − Θ         Φ ΦΘ       
 
 
 −
 
 
 









( ) ( ){ }* *

*

*

sin cos sin sin sin cos

sin cos sin
:

sin sin cos

wI

a
dlat lat lat

r

v

v
p

A B D
r

δ
δ

Θ Φ Ψ − Ψ + Θ Φ Ψ + Ψ

 
   − Θ Φ Ψ + Ψ  = + +     − Θ Φ Ψ − Ψ    Φ   

(12)  

where 

[ ]
' ' ' ' '

' ' ' ' ':

0 0 0 0 0

v v wI v wI vu vv

v v wI v wI vu vv
lat wI wI

v v wI v wI vu vv

Y Y u Y v Y Y
L L u L v L L

D u v
N N u N v N N

     
     
     = = =
     
     
       

(13)  

Ψ is given by 
*cos secrΨ = Φ Θ  (14)  

Note that (12) is nonlinear with respect to the yaw angle, which is not a state variable in this linear 
system and that the trim states for the lateral-directional motion are zero except for v. 

Given a trim yaw angle Ψ*, we can rewrite (12) into a linear state equation. Suppose that the 
aircraft is flying at a trim yaw angle Ψ* such that the roll angle Φ* = 0 and vaB

* = 0, that is, wing level 
and no sideslip for the airspeed vector. We then have 

* * * *

' '' ' ' ' ' *

' ' ' ' ' *' '

*

cos

0 1 tan 0 00 0

a r

a r

a r

v p r v w v wB

av p r v w v wB

rv p r v w v wB

Y Yv vY W Y U Y g Y V Y v
L Lp pL L L L V L v

r rN N N N V N vN N
δ δ

δ δ

δ δ

δ
δ

Φ

Φ

Φ

    + − + Θ +                    = + −                   Φ ΦΘ          









 

(15)  

where VwΦ = (uwIcosΨ*+vwIsinΨ*)sinΘ*+wwIcosΘ* and vwB
* = −uwIsinΨ*+vwIcosΨ*. Note that vwB

* = v* in 
the trim flight, which means vaB

* = v*-vwB = 0, i.e., the airspeed vector lies in the XBZB-plane. 
In order to show the validity of the dynamic model (12), we compare the stability derivatives of 

(15) with those given by GTM, which provides linear models for a trim flight without sideslip for 
airspeed in the presence of wind. First, when there is no wind, GTM gives the stability derivative 
matrix in (12) as 

0

-0.6638 7.9085 -171.09 32.141
-0.8173 -8.3752 1.8935 0
0.2848 -0.5282 -1.8217 0

0 1 0.04541 0

latA

 
 
 =
 
 
   

for the trim angle of attack (AoA), 2.6 deg. The trim ground speed is V* = [171.94  -0.02  7.65]T 
(ft/s). In the presence of the wind VwI = [-10 20 5]T (ft/s), the stability derivative matrix becomes 
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1

-0.6596 14.436 -191.94 36.463
-0.8118 -8.3221 1.8731 5.3414
0.2831 -0.5265 -1.8103 -1.8817

0 1  0.0739 0.0002

dlatA

 
 
 =
 
 
   

for the same AoA, 2.6 deg. The trim state vector is xlat
* = [0.67  0.0  0.0  0.0]T and the trim yaw 

angle Ψ* = 114.78 deg in ∑I defined as the NED (North-East-Down) coordinates. The stability 
derivative matrix in (15) computed using the nominal derivatives for no wind, and U*= 193.86 ft/s, 
W*= 14.28 ft/s, and  Θ*=4.21 deg for the new trim condition in the wind becomes 

2

-0.6638 14.335 -191.93 35.375
-0.8173 -8.3752 1.8935 4.0753
0.2848 -0.5283 -1.8217 -1.4204

0 1 0.0737 0

dlatA

 
 
 =
 
 
   

Adlat1 given by GTM is close to Adlat2 computed from (14) except for (2, 4) elements, which justifies 
the linear model (14) and allows computing the wind from the derivatives. 

4. Wind estimation and its sensitivity to estimation error of derivatives 
We assume that all the variables in (12), including the yaw angle and control inputs, are 

measurable. Applying a parameter estimation algorithm such as the least-squares method to (12), 
we can obtain the estimates of Adlat, Blat, and Dlat. From these estimates, the wind components are 
calculated as 

[ ] [ ]
*

14
*

1

cos
cos

wI wI vu vv
v

wI
v

u v Y Y
Y

A gw
Y

=

− + Θ
=

Θ  

(16)  

[ ] ' '
'

24
' *

1

cos

wI wI vu vv
v

wI
v

u v L L
L

Aw
L

 =  

−
=

Θ  

(17)  

[ ] ' '
'

34
' *

1

cos

wI wI vu vv
v

wI
v

u v N N
N

Aw
N

 =  

−
=

Θ  

(18)  

Alternatively, from the relation of (16) to (18), the wind can be calculated as 

[ ] [ ]

#

' ' ' ' ' ' '
' '

' ' '

# *
14 *

' 3414 24
24* * ' * '

'
34

1 1 1

cos
cos1

cos cos cos

v vu vv

wI wI v vu vv vu vv vu vv vu vv
v v v

v vu vv

v

wI v
v v v

v

Y Y Y
u v L L L Y Y L L N N

Y L N
N N N

Y A g
AA g Aw L A

Y L N
N A

   
       = = = =      
      

 − + Θ 
−− + Θ −  = − = = =  Θ Θ Θ   −   

*cosΘ
 

(19)  

where # denotes a pseudo-inverse, i.e., X# = (XTX)-1XT. 
Using estimated parameters θ0 to compute other parameters θ1 can enlarge estimation error in 

θ0, resulting in a more significant estimation error in θ1. However, this is not the case as long as the 
wind estimation by (16) to (19) is concerned, as shown below. 

Let the first three columns of Adlat be A1, A2, and A3, respectively, and define [ ]1 1 1 1 1A A A Aθ =



ESTIMATION OF WIND BY ESTIMATING DERIVATIVES OF A LATERAL-DIRECTIONAL MOTION MODEL 

6 

 

 

∈R4×4 and [ ]2 2 3 latA A Bθ = ∈R4×4. Further define a diagonal matrix T4 with the diagonal elements: 1, 

uwI, vwI, and wwIcosΘ*, and define * *
1 sin cos sin sin sin cos

T
vξ  = − Θ Φ Ψ + Ψ − Θ Φ Ψ − Ψ −Φ  ∈R4 

and [ ]2
T

a rp rξ δ δ= ∈R4. We can then write (12) as 

[ ] 4 1
1 2

4 2

0
: :

0 w

T
y T

I
ξ

θ θ θ ξ θ ξ
ξ

   
= = =   

     
(20)  

where *( cos )
T

y v g p r = − Θ Φ Θ 


   ∈R4. Given N observations, Y = [y1 y2 ... yN] ∈R4×N and Ξ = [ξ1 

ξ2 ... ξN] ∈R8×N and using the LSM, we have the estimate: 

( ) 1T T
w Yθ

−
= Ξ ΞΞ

 
(21)  

Similarly, if the wind is known and constant, we obtain the estimate: 

( ) ( )( ) ( )
1 1 1T T T TY T T T Y Tθ
− − −= Ξ Ξ Ξ = Ξ ΞΞ

 
(22)  

Equations (21) and (22) yield the following relation: 
1

wTθ θ −=  (23)  

The equations for the first 4 columns of (23) are A1 = θw1, A1 = θw2/uwI, A1 = θw3/vwI, and A1 = 
θw4/(wwIcosΘ*), where θwi∈R4 is the i-th column of θw. From these equations, we have θw1 = θw2/uwI = 
θw3/vwI = θw4/(wwIcosΘ*), which in turn yields (17) and (18). Note that θw1 given by (21) is the same as 
that by (22), which means that we use θw1 estimated for true wind, even if it has estimation error, to 
calculate wind. Thus, the wind calculated from the estimated parameters θw corresponds to the true 
wind. Although it is difficult to estimate true wind due to noise and nonlinearity, this property makes 
the estimates less sensitive to estimation error in θw. As for the calculation of wwI, we used Θ*, but 
the Θ is time-varying in motion. Therefore, assuming Θ is constant to estimate A14, A24, and A34 can 
cause a significant estimation error in the derivatives. We suppose that the estimation error and the 
assumption of constant Θ in calculating wwI may result in a significant estimation error in wwI. 

5. Simulation results 
We used GTM in the same flight condition and wind as in Section 4 for simulation, adding the 

noise with the standard deviation of [0.5 0.01 0.01 0.02 0.02]T to the measurements of the 
variables [v p r Φ Ψ]T (see [4] and [5]). The sampling period of data is 0.01s. No turbulence is 
assumed. Figure 1 shows the input’s time history of the rudder and aileron angles. GTM generates 
the time response of the state variables for the input, as shown in Fig. 2. From the measurements 
of the variables and inputs, we can estimate the derivative matrices Adlat, Blat, and Dlat in (12) by the 
batch-type LSM and an extended Kalman filter (EKF) [11]. In the estimation by the LSM, a second-
order Butterworth filter, 1/(s2+1.41s+1), is applied in the form of a digital filter. 

  
Fig. 1 Time history of inputs (aileron and rudder)    Fig. 2 Time history of measured outputs 

Tables 1 and 2 show the mean of estimates of the derivatives Yv, Lv’, and Nv’ and wind 
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computed using (16), (17), (18), and (19) and the mean and standard deviation of the estimation 
error in percent, over 100 trials. The elapsed time for this computation is about 4 seconds. 
Although we stated that the wind estimate is insensitive to the estimation error of the derivatives, 
Tables 1 and 2 indicate that the minor estimation error of the derivatives is, the smaller the 
estimation error of wind, especially the downward component of the wind. For example, the mean 
of estimation errors for uwI, vwI and, wwI is 0.3%, 0.2% and, 21.8% using (18), respectively. As 
comparing the estimation error of wwI with that of uwI and vwI, the estimation error is minor for wind 
in the horizontal plane (uwI and vwI). Notably, the estimation error for uwI and vwI by (18) is smaller 
than the estimation error in Nv’, which is as large as nearly 35%. Note that the means of estimation 
error in percent for Xv, Xvu, and Xvv, where X = Y, L’, or N’, are not small, they are similar. This result 
implies that the estimation error in Xv propagates to Xvu and Xvv, as stated below (23), which makes 
the estimation error of Xv less significantly deteriorate the accuracy of the wind estimation. 
However, we should also note that the larger the estimation error in the derivatives, the more error 
in wind results. 

 
Table 1 Estimated parameters and estimation errors by LSM 

Derivatives True 
Estimated 

(mean) 
Error (%) 
(mean) 

Error (%) 
(Stnd. dev.) 

Yv -0.6596 -0.2386 -63.8 34.6 
Yvu 6.5956 2.3638 -64.2 34.8 
Yvv -13.191 -4.7013 -64.4 34.7 
Lv

’ -0.8118 -0.4144 -49.0 1.7 
Lvu

’ 8.1181 4.0575 -50.0 1.9 
Lvv

’ -16.236 -8.1529 -49.8 1.8 
Nv

’ 0.2831 0.1851 -34.6 2.7 
Nvu

’ -2.8313 -1.8453 -34.8 2.8 
Nvv

’ 5.6625 3.6938 -34.8 2.7 
Adlat14 36.463 30.8640 -15.4 4.6 
Adlat24 5.3414 0.8359 -84.4 2.6 
Adlat34 -1.8817 -0.7227 -61.6 3.7 

 
Table 2 Estimated wind and estimation errors by LSM 

Equation wind True 
Estimated 

(mean) 
Error (%) 
(mean) 

Error (%) 
(Stnd. dev.) 

(16) 
[Y] 

uwI
 -10 -9.6784 -3.2 96.2 

vwI 20 18.8300 -5.9 76.7 
wwI 5 -22.0210 -540.4 2319.3 

(17) 
[L’] 

uwI -10 -9.7917 -2.1 1.1 
vwI 20 19.6750 -1.6 0.8 
wwI 5 2.0161 -59.7 5.8 

(18) 
[N’] 

uwI -10 -9.9684 -0.3 1.1 
vwI 20 19.9540 -0.2 0.9 
wwI 5 3.9087 -21.8 5.3 

(19) 
[#] 

uwI -10 -9.8589 -1.4 2.6 
vwI 20 19.7570 -1.2 2.1 
wwI 5 1.5249 -69.5 28.5 
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Fig. 3 Time history of the measured 

and estimated state variables 
Fig. 4 Time histories of the estimated 

derivatives of Yv, Lv’, and Nv’, and 
the wind of uwI, vwI, and wwI by (19) 

Table 3 Estimated parameters and wind and estimation errors by EKF 

Derivatives  True 
Estimated 

(mean) 
Error (%) 
(mean) 

Error (%) 
(Stnd. dev.) 

Yv -0.6596 -5.9620 803.9 111.2 
Yvu 6.5956 57.6030 773.4 110.8 
Yvv -13.191 -116.3100 781.8 110.8 
Lv

’ -0.8118 -0.3487 -57.0 4.3 
Lvu

’ 8.1181 3.4329 -57.7 3.9 
Lvv

’ -16.236 -6.8777 -57.6 4.0 
Nv

’ 0.2831 0.2613 -7.7 19.7 
Nvu

’ -2.8313 -2.4600 -13.1 18.6 
Nvv

’ 5.6625 4.9873 -11.9 18.9 
Adlat14 36.463 61.1800 67.8 14.6 
Adlat24 5.3414 0.6411 -88.0 5.3 
Adlat34 -1.8817 -0.7074 -62.4 22.6 

 
Table 4 Estimated wind and estimation errors by EKF 

Equation wind True 
Estimated 

(mean) 
Error (%) 
(mean) 

Error (%) 
(Stnd. dev.) 

(16) 
[Y] 

uwI
 -10 -9.6583 -3.4 1.4 

vwI 20 19.5040 -2.5 1.1 
wwI 5 4.8642 -2.7 7.2 

(17) 
[L’] 

uwI -10 -9.8557 -1.4 1.9 
vwI 20 19.7390 -1.3 1.4 
wwI 5 1.7797 -64.4 13.7 

(18) 
[N’] 

uwI -10 -9.4172 -5.8 2.5 
vwI 20 19.0870 -4.6 1.8 
wwI 5 2.4764 -50.5 25.5 

(19) 
[#] 

uwI -10 -9.6584 -3.4 1.4 
vwI 20 19.5040 -2.5 1.1 
wwI 5 4.8237 -3.5 7.2 
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For comparison, the EKF was designed and applied to estimate the parameters using the 
MATLAB software provided by [11]. Equations (11) and (12) give the dynamic model for the time-
update of the state variables, combined with the state equations for the parameters to be 
estimated. The selected covariance matrix of the measurements is R = diag([20 0.5 0.5 0.1 0.1]), 
where ‘diag(x)’ denotes a diagonal matrix with the diagonal elements x, and the covariance of the 
process noise is Px = diag([1.0 0.1 0.1 0.1 0.1]) for the state variables and Pθ = diag(106) ∈R32×32 for 
the parameters. Tables 3 and 4 show the estimates of the derivatives and wind and the mean and 
standard deviation of the estimation error in percent over 100 trials. The elapsed time for this 
computation is 1889 seconds (31 minutes). Figure 3 shows the time histories of the measured and 
estimated state variables in a trial. Figure 4 shows the time histories of the derivatives of Yv, Lv’, 
and Nv’, and the wind of uwI, vwI, and wwI estimated by (19). We chose a value at the terminal time of 
estimation as an estimate for each derivative. 

As Table 3 shows, the estimation errors of the derivatives are not necessarily minor, especially 
for Yv, Yvu, and Yvv. Despite this, the mean estimation errors of uwI and vwI are as small as 1.4% and 
1.3% using (17), respectively. This result indicates that the estimation error of the derivatives does 
not significantly affect the accuracy of the estimation of the wind in the horizontal plane (uwI and 
vwI). On the other hand, the estimation error of wwI is 2.7%, which is more significant than those for 
uwI and vwI but smaller than the LSM. Thus, wind estimates are less sensitive to the estimation 
error of the derivatives in EKF as well, except for wwI by (18). This insensitivity is due to the 
invariance of state estimation to linear state transformation such as (23); if the linear state 
transformation holds between actual states, then the same transformation holds for their estimated 
states, which is valid for the derivatives since EKF treats them as state variables. A massive error 
in the estimate of wwI by (18) may be due to a significant estimation error in Adlat34. A problem with 
an EKF is that the computation time is considerably larger than that by LSM, but with a good 
computation capability, the real-time estimation will be possible by EKF, as shown in Fig. 4. 

6. Conclusions 
This paper has shown that steady wind is an additive disturbance to the states of an aircraft’s 

dynamic model, making the wind appear as part of stability derivatives in the linearized model, 
which allows us to estimate wind by estimating stability derivatives of a lateral-directional motion 
model of an aircraft. We applied the proposed method to flight data generated by NASA’s Generic 
Transport Model. The simulation results show that the estimation error of horizontal wind is less 
than 6% by the least-squared method (LSM) and 6% by an extended Kalman filter (EKF). In either 
method, the estimation error of wind is much smaller than the derivatives used to calculate the 
wind. We gave the reason for this concerning the estimation by the LSM and an EKF. On the other 
hand, both LSM and EKF result in a more significant estimation error in the vertical wind. We 
should investigate estimation performance for various winds and improve the precision for vertical 
wind. We should also consider biases of measurements and (slow) variations of wind as future 
work. 
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