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Abstract 

The traditional aerodynamic design of compressors depends on the experiences of the designer and many 
optimization calculations. As a result, the performance of the compressor depends on the design level of the 
designer. A new design method based on reinforcement learning is proposed for the 1-Dimensional 
aerodynamic design of axial compressors. Deep Deterministic Policy Gradient (DDPG) algorithm is used to 
extract design experience from the 1-D experiences design program HARIKA. After training, the efficiency was 
increased by 2.0% relative to the initial value, and the design margin was 23%, which met the design 
requirements. Under the same design time, the efficiency of new method optimization results was 0.2% lower 
than the traditional method’s results following by better pressure ratio performance at the design point, which 
proved the effectiveness of the new design method. Furthermore, the approach gained the redesign ability of 
after training. Compared to the Differential Evolution (DE) optimization results (16000 steps), the efficiency of 
DDPG redesign results was 0.3% lower and the number of steps is 20, which verified the quick redesign ability 
of the new design method. 

Keywords: reinforcement learning, axial compressor mean-line aerodynamic design, optimization method 

1. Introduction 
The main difficulties of the aerodynamic design of the compressor are reflected in two aspects: one 
is to pursue the high performance of the design conditions; the other is to consider the wide range 
of working conditions. Typically, the process of compressor aerodynamic design usually consists of 
one-dimensional design, blade modeling, and three-dimensional analysis, as well as other full three-
dimensional aerodynamic design systems and optimization methods. To reach the design 
requirements, designers need to manually modify the parameters many times, and the modification 
of parameters needs to combine with expert experience. This method relies on expert experience 
and will take plenty of time. With the development of computer science, it is possible to use artificial 
intelligence technology to guide the aerodynamic design process of axial compressors. 
In terms of using machine learning for aerodynamic design, it is mainly divided into three directions: 
First, it uses ANN to replace the iterative calculation part of traditional design [1]. In 2000, Michel [2] 
used ANN to replace the CFD calculation part in the design optimization process, which greatly 
reduced the optimization design time. Ghorbanian [3] used experimental data to train neural 
networks and studied the application of different types of ANNs such as general regression neural 
networks, multilayer perceptron networks, and radial basis function networks in the prediction of 
compressor characteristics. In the training of the layer perceptron network, the accuracy of predicting 
the characteristics of the compressor can reach 92%, which can improve the accuracy and speed of 
the calculation during the design process. In 2016, Jonathan [4] used a deep convolutional neural 
network to directly solve the full-field pressure distribution in the calculation of the three-dimensional 
flow field, which greatly improved the convergence speed of the Euler equation and reduced the 
iteration time. The second is to use artificial neural networks to improve traditional optimization 
algorithms. In 2014, Timoleon [5] used an artificial neural network to guide the multi-objective particle 
swarm optimization problem. After the optimization algorithm gives the target solution, the artificial 
neural network first determines the feasibility of the target solution and then submits it to the CFD 
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program. This method can save more computing resources. The third direction is to use 
reinforcement learning to train the computer from scratch to perform the aerodynamic design of the 
axial compressor independently. Reinforcement learning algorithm was proposed by Sutton [6]. Due 
to the limitation of computing power, researchers did not pay much attention until the emergence of 
"Alpha Go". In the application of compressor aerodynamic design, Goel [7] used a reinforcement 
learning method based on a genetic algorithm to improve the aerodynamic design of turbine blades 
and successfully designed turbine blades using a classifier model, which saved 33% iteration time 
compared to the traditional methods. In 2013, Mumit [8] used the Q-learning algorithm to design the 
thermoacoustic heat engine. Compared with the traditional design method, the energy conversion 
efficiency was increased by 3.29%. The design problems of thermoacoustic heat engines are similar 
to the 1-D aerodynamic design of axial flow compressors, and they all have a large number of design 
parameters. Reinforcement learning methods can better solve the problem of too many optimized 
design parameters. 
In this paper, we proposed a new design method based on Reinforcement learning, which uses 
reinforcement learning to train the machine how to design the compressor independently. In this 
process, human intervention is minimized to achieve the Design requirements. Reinforcement 
learning is a branch of machine learning, which is mainly composed of agents, environments, states, 
actions, and rewards. After the agent performs an action in one state, it enters the next state, and 
the environment gives a reward according to the new state based on a certain strategy. Subsequently, 
the agent will repeat the circle many times, train the neural network, and acquire design experience. 
This paper focuses on the mean-line aerodynamic design of axial compressors and uses the one-
dimensional axial compressor characteristic calculation program (HARIKA) to explore the feasibility 
of the reinforcement learning algorithm in guiding the aerodynamic design of axial compressors. 

2. Statement of the problem 
The essence of this process is a kind of thermal calculation instead of flow analysis. In this process, 
many contradictory choices must be continuously judged and decided based on experience. A mass 
of data required for the calculation itself also comes from experiments. After this process, the 
diameter, speed, number of stages, and load distribution of the compressor can be determined. 
Although the calculations are simple, they are important as the most basic part of aerodynamic 
design. After the one-dimensional design is determined, subsequent design analysis can only be 
performed in its specified frame. We use HARIKA to help evaluate the compressor performance. 
HARIKA is a widely used one-dimensional compressor aerodynamic design program, with many 
empirical formulas built in. It can quickly give design results based on input conditions, which meet 
the requirements of the reinforcement learning for the evaluation program. Aiming at the one-
dimensional aerodynamic design of the compressor, we choose efficiency as the design goal, and 
to ensure the stability of the compressor, we choose the margin as the constraints. Through a 
noticeably short time of calculation, HARIKA will give the values of efficiency and minimum margin. 
Following is a general description of the design model: 
Pressure ratio: 16.0 
Mass Flow: 20.5kg/s 
Atmospheric pressure: 101325Pa 
Total temperature: 288.15K 
Rotation speed: 15350rpm 
Surge margin: ≥15% 
Stage number: 13 stages 
To simplify the design process, the form of the flow channel was set as equal middle diameter.  The 
optimization goal of the model is to maximize the efficiency at the design point. And the surge margin 
is not lower than 15%. 
The definitions and ranges of the design variables are shown in Table 1. The length variables are in 
meters and the angle variables are in degrees. There are 11 parameters, including rotating speed, 
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hub ratio, axial speed distribution and reaction force, etc. These are all the parameters HARIKA 
needs for design calculation. In this paper, we will train an agent to learn how to design the 
compressor. After being given the design requirements, the agent can determine all the rest design 
variables automatically. 

Table 1 The definition and ranges of design variables 

Design Variable Definition Ranges 

DK Hub/tip ratio 0.43-0.65 

CA1(m/s) Inlet air velocity 130-190 

CA2(m/s) Middle air velocity 120-190 

CA3(m/s) Outlet air velocity 110-150 

ALF Inlet airflow angle 53-85 

TAO Reaction 0.40-0.60 

HZ1 Tip load factor 0.15-0.35 

HZZ Root load factor 0.15-0.35 

HR1 Tip pitch ratio 1.0-1.6 

HRZ Root pitch ratio 0.6-1.4 

HORDA Minimum chord length 0.030-0.070 

3. Method 
3.1 The Choose of Specific Algorithm 
Through training, experience is extracted from HARIKA through deep reinforcement learning (RL). 
The aerodynamic optimization process is a Markov Decision Process (MDP) which meets RL’s 
essential requirement. Unlike other algorithms, reinforcement learning requires constant interaction 
with the environment, the HARIKA program, to train neural networks. As for optimization problem, 
the algorithm requires multi-dimensional and continuous inputs to meet the adjustment of multiple 
design variables. Further, we choose DDPG to test the specific algorithm of reinforcement learning. 
The Q-learning algorithm relies on table data storage, which is not applicable for continuous states; 
The Deep Q-learning network (DQN) uses a neural network to approximate the behavior value 
function so that it can be input as multi-dimensional, continuous state that meets the requirements 
of this design. However, the problem of DQN is that it can only provide discrete parameter changes, 
which may miss the point of the global optimal result. The DDPG, Deep Deterministic Policy Gradient, 
is a value-based deterministic strategic algorithm, and its action and state space are multi-
dimensional continuous. Sufficient state information can be learned while making precise parameter 
adjustments to meet the design requirements. 

3.2 Deep Deterministic Policy Gradient 
To extract design experience from HARIKA and simulate the human design process, we need to 
train the agent's action strategy, that is, the next action that the agent takes after obtaining the current 
state to obtain a higher reward. The strategy is defined as follows: 

𝑎 = 𝜇!(𝑠) (1) 
𝜇! represents the strategy 𝜇  in the case of the current network parameter 𝜃. 
To avoid falling into a local optimum, we set a decay coefficient for the reward, the formula is as 
follows: 
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𝐺𝑡 =! 𝛾𝑛𝑟𝑡+𝑛+1

𝑁

𝑛=0

 (2) 

DDPG uses deterministic strategy 𝜇 to select actions  𝑎) = 𝜇(𝑠)|𝜃*)where 𝜃* is a parameter of the 
strategy network that generates deterministic actions. DDPG is divided into two parts, actor network 
and critical network. The algorithm uses the policy network 𝜇 to act as an actor, and the value 
network to fit the (s, a) function to act as a critical role. In order to solve the optimal strategy, value 
function and action state value function are introduced to evaluate the pros and cons of a certain 
state and action. The value function is defined as follows: 

𝐽.𝜃*/ = 𝐸!! 12 𝛾+𝑟),+,-|𝑠) = 𝑠
.

+/0

3 = 𝐸!![𝑟),- + 𝛾𝑉(𝑠),-)|𝑠) = 𝑠] (3) 

The action-states value function is defined as: 

𝑄𝜇(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑄𝜇(𝑠𝑡+1, 𝜇(𝑠𝑡+1))] (4) 
Silver proved that the gradient of the objective function using the 𝜇 strategy is equivalent to the 
expected gradient of the Q function using the 𝜇 strategy: 

𝜕𝐽&𝜃𝜇'
𝜕𝜃𝜇

= 𝐸𝑠 (
𝜕𝑄(𝑠, 𝑎|𝜃𝜇)

𝜕𝜃𝜇
) (5) 

Cause the strategy is deterministic, the gradient of the Actor network is: 

𝜕𝐽&𝜃𝜇'
𝜕𝜃𝜇

= 𝐸𝑠 (
𝜕𝑄(𝑠, 𝑎|𝜃𝜇)

𝜕𝑎
𝜕𝜋(𝑠, 𝜃𝜇)
𝜕𝜃𝜇

) (6) 

∇𝜃𝐽𝛽&𝜇𝜃' = ∫𝑆𝜌
𝛽(𝑠)∇𝜃𝜇𝜃(𝑠)𝑄

𝜇(𝑠, 𝑎)|𝑎=𝜇𝜃𝑑𝑠 = 𝐸𝑠~𝜌𝛽 *∇𝜃𝜇𝜃(𝑠)𝑄
𝜇(𝑠, 𝑎)|𝑎=𝜇𝜃+ (7) 

𝛽 is the random noise, The value gradient on the Critic network is: 

𝜕𝐿&𝜃𝑄'
𝜕𝜃𝑄

= 𝐸𝑠,𝑎,𝑟,𝑠′~𝐷 ((𝑇𝑎𝑟𝑔𝑒𝑡𝑄 − 𝑄(𝑠, 𝑎|𝜃
𝑄)
𝜕𝑄(𝑠, 𝑎|𝜃𝜇)

𝜕𝜃𝜇
) (8) 

𝑇𝑎𝑟𝑔𝑒𝑡𝑄 = 𝑟 + 𝛾𝑄′(𝑠′, 𝜋(𝑠′|𝜃*%)|𝜃=%) (9) 
The actor network is used to output actions, and the critical network is used to evaluate the value of 
actor output actions. So, the updated formula of DDPG is:  

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑄𝜔
− ,𝑠𝑡+1, 𝜇𝜃−(𝑠𝑡+1)- − 𝑄

𝜔(𝑠𝑡, 𝑎𝑡) (10) 

𝜔𝑡+1 = 𝜔𝑡 + 𝛼𝜔𝛿𝑡∇𝜔𝑄𝜔(𝑠𝑡, 𝑎𝑡) (11) 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝜃∇𝜃𝜇𝜃(𝑠𝑡)∇𝑎𝑄
𝜔(𝑠𝑡, 𝑎𝑡)|𝑎=𝜇𝜃(𝑠) (12) 

𝜃− = 𝜏𝜃 + (1 − 𝜏)𝜃− (13) 

𝜔− = 𝜏𝜔 + (1 − 𝜏)𝜔− (14) 

3.3 Optimization Settings 
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Fig. 1 shows the flowchart of the new design method We set 12 independent design variables [ZS, 
DK, CA1, CA2, CA3, ALF, RT, HZ1, HZZ, HR1, HRZ, HORDA] as the input of the DDPG algorithm 
and the corresponding variations as the output. The corresponding variations are the followings: 
[ΔZS, ΔDK, ΔCA1, ΔCA2, ΔCA3, ΔALF, ΔRT, ΔHZ1, ΔHZZ, 	Δ	HR1, Δ	HRZ, Δ	HORDA] to get 
enough non-design points, the characteristics of six relative rotational speeds are calculated by the 
HARIKA program. The design goal is to maximize the efficiency at design point while ensuring that 
all the non-design point margin is not lower than 15%. 

 
Figure 1-The flowchart of the new design method 

In this case, the states of DDPG are set as an 11-dimensional array, and the values are equal to the 
design variables. The actions array are set as the same size as the states, but the actions’ values 
are normalized before the next state since the boundaries of variables are different from each other. 
For rewards, according to the optimization goals and limits, the rewards for efficiency (𝜂) and margin 
(ky) are as follows: 

𝑟𝑒𝑤𝑎𝑟𝑑B = Q

−50																						𝜂 < 0
−50 + 60𝜂									0 ≤ 𝜂 ≤ 0.85
845𝜂 − 720								0.85 < 𝜂 ≤ 0.92
−50																							𝜂 > 0.92

			 (15) 

𝑟𝑒𝑤𝑎𝑟𝑑CD =

⎩
⎪
⎨

⎪
⎧
−50																							𝑘𝑦 < 0
200𝑘𝑦 − 50								0 ≤ 𝑘𝑦 ≤ 0.15
400𝑘𝑦 − 80								0.15 < 𝑘𝑦 ≤ 0.20
5																													0.20 < 𝑘𝑦 ≤ 0.30
0																													0.30 < 𝑘𝑦 ≤ 0.50
−30																							𝑘𝑦 > 	0.50

 (16) 

The total reward is the sum of the two rewards. By setting the reward, the multi-objective optimization 
can be achieved. 

Algorithm 1：Use DDPG to extract the optimization experience from HARIKA 
Randomly initialize actor network and critic network along with corresponding target network: 
For episode = 1 to Ep do 

Initialize and randomly reset the design variables. 
For step = 1 to N do 

Select and execute action to maximize value function: π(𝑠) = 	arg	max
E
𝑄	(𝑠, 𝑎). 

Observe reward 𝑟) , new configuration 𝑠),- and store transition (𝑠) , 𝑎) , 𝑟) , 𝑠),-) in replay buffer. 
Save maximum efficiency values that meet margin requirements. 
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Sample a minibatch of n transitions from replay buffer. 
Update critic network by minimizing the loss function according to equation 14. 
Update actor network using the sampled policy gradient according to equation 13. 
Update the target networks. 

End for 
End for 

4. Results 
TensorFlow and Adam algorithm is applied to build a neural network. The Adams algorithm is used 
as a convergence criterion. The learning rate is set to 0.001 and 0.001. The reward discount is set 
to 0.99. The replay buffer size and the minibatch were 1500 and 32, respectively. To verify the 
effectiveness of the optimization method, we use the ISIGHT to calculate the same optimization 
problem using a multi-island genetic algorithm and particle swarm optimization algorithm. 
Multi-island genetic algorithm and particle swarm algorithm set the total number of rounds to 20,000, 
which is the same as DDPG algorithm. The results of the three methods are shown in Table 2. Result 
of optimizations. 

Table 2-Results of optimization 

Run DK CA1 CA2 CA3 ALF TAO HZ1 HZZ HR1 HRZ HORDA 𝜂 ky 

Baseline 0.450 130 130 130 65 0.50 0.240 0.200 1.3 0.9 0.047 0.836 0.03 

DDPG 0.505 134 156 116 77 0.46 0.247 0.259 1.3 1.05 0.053 0.856 0.23 

MOGA 0.610 168 130 134 71 0.40 0.243 0.295 1.04 0.78 0.064 0.858 0.49 

MOPS 0.625 163 129 140 66 0.40 0.214 0.289 1.6 0.80 0.070 0.854 0.53 

EVOL 0.550 152 143 135 76 0.40 0.240 0.310 1.17 0.84 0.053 0.858 0.36 

DDPG and the other two optimization algorithms show significant design optimization effects 
compared to the baseline value. After the optimization design, the efficiency reached 85.6%, which 
was 2.0% higher than the initial value, and the surge margin increased by 20%, meeting the 
optimization limits. Compared with the traditional optimization algorithm, the optimal value is the 
same as the multi-island genetic algorithm, and it is slightly smaller than the particle swarm algorithm 
under the condition of satisfying the margin constraint. 
Fig. 2 and Fig. 3 show the flow efficiency characteristic line and flow pressure ratio characteristic line 
of the DDPG algorithm, genetic algorithm, and particle swarm algorithm. 



7 

 

 

  
Figure 2-Efficiency characteristic line Figure 3-Pressure ratio characteristic line 

At 100% speed at the design point, the efficiency value is equivalent, but the pressure ratio of the 
design result of DDPG is significantly higher than the other two algorithms. At the non-design point, 
the efficiency of DDPG is significantly lower than the other two methods. Because only the efficiency 
of the design point and the margin of the non-design point are considered when designing the 
algorithm. And the efficiency of the non-design point is not reflected in the reward, which may be 
added to the calculation in subsequent work. 
The reward history of DDPG training process is shown in Figure 4. The reward had a significant 
increase during the training process, which reflects a learning process of DDPG.  

 
Figure 4-The reward history of DDPG 

5. Discussions 
5.1 The extending application of the DDPG   
Chapter 4 provided the design results of the new design method based on DDPG and verified the 
effectiveness of the new approach. In the design process, the new method was mainly used as an 
optimization method. Reinforcement learning method is reproducibility. After training, the agent 
should gain the ability to give a new design result in a short time. The whole design process of axial 
compressor contains the 1-D mean-line design, 2-D throughflow design, blade modeling, and 3-D 
predicting process. The mean-line design provides the flow path and few virtual flow parameters 
which are the basis of the whole design process. Designer preliminary gives these parameters 
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depends on the experiences, following with a deterministic process usually based on the optimization 
method. As the design process is iterative, it is necessary to obtain different design results which 
met the design requirements quickly. In the traditional optimization process, the samples will be 
useless once the optimal solution is found. Different from the traditional method, the DDPG can gain 
the experience from the optimization process and give new design results in few steps after training, 
which provides different results for the designer. Thus, this chapter verified the redesign ability of the 
new design method through the mean-line design process of a practical 15-stage axial compressor.  

5.2 Design variables and requirements. 
Pressure ratio: 14.82 
Mass Flow: 356.3kg/s 
Atmospheric pressure: 101325Pa 
Total temperature: 288.15K 
Rotation speed: 3000rpm 
Stage number: 15 stages 
Target efficiency: 0.87 
To simplify the training process, the surge margin calculation will not be considered. Thus, the design 
variables reduced to 5 (DK, CA1, CA2, ALF, HZ1) and other variables are defined as certain values. 
The definitions and ranges or values of the design variables are shown in Table 3. 

Table 3-The definitions and ranges/values of the design variables 

Definition Design Variable Ranges/Values 

Hub/tip ratio DK 0.40-0.85 

Inlet air velocity CA1(m/s) 130-240 

Middle air velocity CA2(m/s) 120-240 

Outlet air velocity CA3(m/s) 130 

Inlet airflow angle ALF 40-75 

Reaction TAO 0.51 

Tip load factor HZ1 0.15-0.35 

Root load factor HZZ 0.20 

Tip pitch ratio HR1 2.3 

Root pitch ratio HRZ 1.4 

Minimum chord length HORDA 0.060 

The evaluation process consists of thermodynamics calculation and flow path generating to get the 
efficiency and flow path. Thus, the DDPG method settings are shown in the following. 

5.3 The results of the redesign process. 
The neural network algorithm was Adam. The learning rate is set to 0.001 and 0.002. The replay 
buffer size and the minibatch were 10000 and 32, respectively. The reward discount is set to 0.95. 
The reward for efficiency is shown in Eq 17. 

𝑟𝑒𝑤𝑎𝑟𝑑B = k
0																										𝜂 < 0.875
860𝜂 − 735					0.875 < 𝜂 ≤ 0.92
−50																				𝜂 > 0.92

			 (17) 

The basic algorithm is the same as Algorithm 1. The max episodes number is 400, and the max 
steps number is 400. The design goal of efficiency is set to 0.874. In each episode, once the design 
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goal is satisfied, the design variables will be randomly initialized and turn to the next episode. 

 
Figure 5-Reward history of the training process 

Fig. 5 shows the reward history of the training process. At the start, the reward is negative and cannot 
reach the design goal in each episode. At episode 100, the reward turns to positive and stable, which 
means the effectiveness of the learning process. In each process, the agent reached the design goal 
in few steps. Fig 6 shows the redesign history of the trained DDPG. To verify the design result, the 
Differential Evolution (DE) optimization method was introduced to solve the same problem. The 
maximum predicting number was 16000 (the same as the DDPG max step number). Fig. 7 shows 
the optimization history of DE, each generation contains 100 steps. 

  
Figure 6-Redesign history of the trained DDPG Figure 7-The optimization history of DE 

The results of the DDPG and DE are shown in Table 4. The max efficiency of DE optimization results 
is 87.8%, which is separately 0.4% and 0.2% higher than the two redesign results DDPG1 and 
DDPG2. The DDPG 1 and DDPG 2 separately reached the design goal in 20 steps and 2 steps, 
which saved considerable time compared to the DE method with slightly low efficiency. Furthermore, 
the design results of DDPG 1 and DDPG 2 were obviously different, which can give the designer 
different references. 

Table 4-The optimization results of DDPG and traditional methods 

Run Baseline DDPG 1(trained) DDPG 2(trained) DE 
DK 0.4315 0.635 0.6236 0.70 

CA1 (m/s) 218.3 165.7 188.6 184 
CA2 (m/s) 169 168.7 194.8 192 

ALF 63.45 60.2 43.0 69.05 
HZ1 0.317 0.264 0.238 0.232 
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KPD 85.6% 87.4% 87.6% 87.8% 
Number of Steps - 20 2 16000 

6. Conclusions 
Reinforcement learning can obtain experience in the continuous interaction with the environment to 
guide future actions. This paper discussed the feasibility of the reinforcement learning method for 
the aerodynamic design of axial compressors. The DDPG algorithm was used to optimize and 
accelerate the mean-line aerodynamic design process of axial compressors. After training, the 
adiabatic efficiency is improved by 2.0% with 23% surge margin, which verified the effectiveness of 
the design method. This approach obtained experiences from continuous interaction with the 
predicting program and gained redesign ability to provide different design references for the designer 
in few steps. The Differential Evolution (DE) optimization method was introduced to solve the same 
problem to verify the effectiveness of the redesign results. After training, the redesigned efficiency 
was 0.2% lower than the DE optimization results. The total number of steps of DE optimized and 
DDPG redesigned were separately 16000 and 20, which verified the quick redesign ability of the new 
design method. 
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