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Abstract

A comprehensive framework to model and analyze the coupled nonlinear aeroelasticity and flight dynamics of
highly flexible aircraft is presented. The methodology is based on the dynamics of 3-D co-rotational beams. The
coupling of axial, bending and torsional effects is added to the stiffness and mass matrices of Euler-Bernoulli
beam to capture the most relevant characteristics of real wing structure. Finite-state aerodynamic model is
coupled with the structural model to simulate the unsteady aerodynamics. And the full-wavelength 1-cos time-
varying discrete gust model with spatial distribution is proposed and adopted. A scheme of mixed end-point
and mid-point time-marching algorithms is proposed and applied into the implicit predictor-corrector integration,
so as to improve the calculation efficiency and accuracy. The ground, body and airflow axes for flight dynamics
are re-defined by elemental ones of structural dynamics, followed by the redefinitions of local Euler angles
and airflow angles of each element. The framework can be used for quick analyses of flexible aircraft in
conceptual and preliminary design phases, including linear and nonlinear trim, aerodynamic load estimation,
stability assessment, time-domain simulations and flight performance evaluations. With the framework and
calculation program proposed in this paper, the process and internal mechanism of the disintegration mishap
of Helios Prototype is revealed.
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1. Introduction
High-altitude long-endurance (HALE) aircraft, especially the solar-powered aircraft, which are being
considered for aerial reconnaissance, long-time surveillance, environmental sensing, and communi-
cation relays, have been the topic of modern flying vehicles [1].
However, the long and slender wings of HALE aircraft inherently have relatively low structural stiff-
ness, which gives rise to large geometrically nonlinear deformations during normal flights. The aero-
dynamics, inertia distributions, even the thrust directions could be affected significantly, resulting in
the changes of trim conditions, flight stabilities and the overall aeroelastic characteristics of the whole
aircraft. Traditional static or dynamic models which based on rigid body or linear elasticity assump-
tions cannot accurately describe the nonlinear deformations and complex coupling of flight dynamics
and aerolesticity. The mishap of Helios Prototype is a typical result brought by the complex interac-
tions among multiple disciplines and the lack of adequate analysis tools [2].
Therefore, coupled models and analysis frameworks that can accurately assess the flight perfor-
mances of a highly deformed flexible aircraft, and can fully account for the coupling between flight
dynamics and both structural nonlinearity and unsteady aerodynamics, are of paramount importance
in the analysis and design of highly flexible aircraft [3, 4, 5, 6].
In order to investigate the nonlinear aeroelastic responses, trim solutions and flight stability of a
complete highly flexible aircraft, Patil [7, 8] and Hodges [9] developed an analysis package named
NATASHA (Nonlinear Aeroelastic Trim and Stability of HALE Aircraft). In their framework, the 2-D
Peters’ finite state unsteady aerodynamic model is used to calculate the aerodynamic loads, and
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geometrically exact fully intrinsic equations are used to model the highly flexible structure. Their
researches on a typical flexible flying-wing aircraft show that there are significant differences in flight
dynamic characteristics between the deformed and undeformed ones.
A nonlinear aeroelastic simulation toolbox named UM/NAST (The University of Michigan’s Nonlinear
Aeroelastic Simulation Toolbox) was developed by Cesnik [10] and perfected by Shearer [11, 12]
and Su [13], etc., aiming at the investigations of dynamic aeroelastic responses coupled with flight
dynamics of highly flexible aircraft. Their analyses are based on the strain-based nonlinear beams
and Peters’ 2-D aerodynamic model. Two simplified models that can take the effects of skin wrinkling
and aerodynamic stall into consideration are added in their framework.
A simulation framework called SHARP (Simulation of High-Aspect-Ratio Planes) was developed by
Palacios and his co-workers [14, 15, 16] to study the dynamic characteristics of highly flexible air-
craft with large deformations. The displacement-based nonlinear dynamic formulations coupled with
an unsteady vortex lattice aerodynamic model are employed to capture the large deformations and
nonlinear responses of the flexible aircraft. With the computation of nonlinear static trim parameters
and dynamic responses to maneuver and gust loads, this framework can be used to conduct stability
analyses, dynamic response simulations, flutter suppressions, and gust load alleviations.
In most researches, the geometrically exact intrinsic beam proposed by Hodges and strain-based
nonlinear beam proposed by Cesnik have been frequently used in the modeling of highly flexible
wings. However, the displacement-based models, which are more intuitive and can be easily trans-
ported to the existing finite element programs, have rarely been utilized. As for the coupling between
flight dynamics and aeroelasticity, many researches adopt the mean axes or its ramifications [17, 18],
which assume that the elastic deformations are small, and essentially still being the 6-DOF formu-
lation. Even in those approaches in which large deformations are considered, the Euler angles and
airflow angles are not defined locally, resulting in the costs of coordinate transformations of displace-
ments and velocities between global and local frames.
The main contribution of this paper, which perfects the foundational work of forerunners, is to propose
a new and more comprehensive framework to model and analyze the coupled nonlinear aeroelasticity
and flight dynamics of highly flexible aircraft, aimed at the requirements of time-domain simulations
and performance evaluations in the preliminary design phase of HALE aircraft.
The starting point of this framework is the dynamics of 3-D co-rotational nonlinear beam model, which
can capture the nonlinear deformations and rigid-body motions in a quick and computationally effec-
tive way. The coupling between axial, bending and torsional effects that often arise in wings is added
to the traditional Euler-Bernoulli beams in order to capture some of the most relevant characteristics
of real wing structure.
A mixed time-marching algorithm is proposed and applied into the implicit predictor-corrector inte-
gration scheme for the first time, in which the end-point algorithm is used in the predictor step for
efficiency and mid-point algorithm with numerical damping in corrector step for energy conserving
and computation accuracy and stability. By this means, the time step of nonlinear numerical integra-
tion can be extended to as long as 0.1 second and the Newton-Raphson correction will converge in
no more than 5 iterations with a tolerance of displacement of 1×10−6.
To couple the flight dynamics with nonlinear aeroelasticity in a more intuitive and straightforward way,
the ground, body and airflow axes for flight dynamics are re-defined analogously to the reference
frames for structural dynamics at the element level, followed by the redefinitions of local Euler angles
and airflow angles of each element. With all the variables defined in local reference systems, the
computational costs of coordinate transformations can be reduced, and the efficiency in solution
improved.
In the nonlinear trim of a complete flexible aircraft, the Newton-Raphson method is implemented with
the forming of Jacobian matrix. And a full-wavelength 1-cos time-varying discrete gust model with
spatial distribution is proposed and adopted.
With the proposed framework, numerical studies based on a representative benchmark are con-
ducted and carefully compared with published literature. Followed by the process and internal mech-
anism of the disintegration mishap of Helios Prototype been revealed by this calculation framework.
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2. Theoretical Modeling
2.1 Co-rotation Based Geometrically Nonlinear Structural Model
In the co-rotational formulation, the rigid-body motions are separated from the strain-producing de-
formations at the local element level. Beams are assumed to be linearly elastic, undergoing large
translations and rotations but small strains, and the internal element behavior of a beam is linear,
whereas nonlinearity is introduced via the co-rotational technique.
The kinematics and statics of 3-D co-rotational beams were presented in the previous work of the
authors [19, 20], where the local and global degrees of freedom, nodal and elemental reference
systems, tangential transformation matrix T, material stiffness matrix, geometric stiffness matrix Ktσ ,
and static tangent stiffness matrix Kt,stat are defined.

2.2 End-Point Algorithm
The discretized dynamic equilibrium equation at the end of n+1 time step is given by:

qi,n+1 +qmas,n+1 −qe,n+1 = 0 (1)

where qi,n+1, qmas,n+1 and qe,n+1 are, respectively, the nodal internal, inertial and external force vectors
at time n+1.
qmas can be expressed as:

qmas = U∗
efiner = U∗

e(MU∗
0p̈+

l
12

f̃) (2)

where
U∗

e = diag(U0,Ue,U0,Ue) U∗
0 = diag(UT

0 , I3×3,UT
0 , I3×3) (3)

f̃ =
l

12


03×1

3S(w1)Iρw1 +S(w1)Iρw2 +S(w2)Iρw1 +S(w2)Iρw2
03×1

S(w1)Iρw1 +S(w1)Iρw2 +S(w2)Iρw1 +3S(w2)Iρw2

 (4)

where l is the length of element; M is the consistent mass matrix; Iρ is the tensor of mass moment
of inertia; wi is the vector of angular velocity at node i in the body-attached elemental frame Ue; and
S(·), the 3× 3 skew-symmetric matrix. p̈ is the vector of nodal accelerations, whose translational
components are defined in global reference system Ug and rotational ones are given in the body-
attached frame Ue.
To solve such a system of algebraic non-linear equations with Newton-Raphson method, it is nec-
essary to compute the variations of vectors qi,n+1 and qmas,n+1 to take into account the contributions
of internal and inertial forces to the generalized tangent stiffness matrix (details on the derivation of
δqi,n+1, which leads to the static tangent stiffness matrix Kt,stat , are given in Refs. [21] and [22]).
The variation of qmas,n+1 can be expressed as:

δqmas,n+1 = Kt,masδp = (Kmas1 +Kmas2 +Kmas3)δp (5)

where δp is the variation of the global generalized displacement p. The full expressions of the
matrices Kmas1, Kmas2 and Kmas3 are given as:

Kmas1 =


04×12

finer,4[−A,03×3,A,03×3]+ finer,5[L(r2)]
T + finer,6[L(r3)]

T

04×12
finer,10[−A,03×3,A,03×3]+ finer,11[L(r2)]

T + finer,12[L(r3)]
T

 (6)

Kmas2 =
1

β∆t2 U∗
eMD (7)

Kmas3 =
γlU∗

e

12β∆t


0 0 0 0
0 3K1 +K2 0 K1 +K2
0 0 0 0
0 K1 +K2 0 K1 +3K2

D (8)
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where β , γ and ∆t are, respectively, the time integration parameters of Newmark method and time
step.

D = diag
(
UT

0 , UT
1,nH−1(∆ψ1), UT

0 , UT
2,nH−1(∆ψ2)

)
Ki = S(wi)Iρ −S(Iρwi), (i = 1,2) (9)

where Ui,n is the nodal reference frame of node i at time n. H−1(·) is the matrix that relates the non-
additive pseudo-vector changes to the additive ones ∆ψi. Matrices A, L(r2) and L(r3) depend on the
definition of the co-rotational element frame. They are all given in Refs. [21] and [22].

2.3 Mid-Point Algorithm
The dynamic equilibrium equation of the mid-point algorithm is given by:

gm = qe,m −qi,m −qmas,m = 0 (10)

where qe,m, qi,m and qmas,m are vectors of mid-point external, internal and inertial nodal forces.
The mid-point inertial force vector in present framework is defined as:

qmas,m =
1
∆t

(U∗
e,n+1MU∗

0ṗn+1 −U∗
e,nMU∗

0ṗn) (11)

where ṗn and ṗn+1 are, respectively, the vectors of nodal velocities at step n and n+1, whose trans-
lational components are defined in the global reference system Ug and the rotational ones in the
body-attached frame Ue.
The nodal external and internal forces acting during the time step are represented by their mid-point
values:

qe,m =
qe,n +qe,n+1

2
(12)

qi,m = (
Tn +Tn+1

2
)T qil,n +qil,n+1

2
(13)

where qil,n and qil,n+1 are the local nodal internal forces at time n and n+ 1, respectively, and the
matrices Tn and Tn+1 are the corresponding tangential transformation matrices.
The inertial contribution to the effective stiffness matrix is obtained from the variation of Eq.(11):

δqmas,m = Ktmas,mδp = (Kmas1,m +Kmas2,m)δp (14)

The full expressions of the matrices Kmas1,m and Kmas2,m are given as:

Kmas1,m =


0 0 0 0
0 −S(U1,n+1Mr(2w1 +w2)) 0 0
0 0 0 0
0 0 0 −S(U2,n+1Mr(w1 +2w2))

 (15)

Kmas2,m =
2
∆t

U∗
e,n+1MD (16)

where Mr =
l
6 Iρ .

The mid-point static tangential stiffness matrix Ktstat,m is given by:

δqi,m = Ktstat,mδp =
(Tn +Tn+1)

T

2
Kl

2
Tn+1δp+

1
2

Ktσ (
qil,n +qil,n+1

2
)δp (17)

which comes from the variation of Eq.(11). Kl is the local linear stiffness matrix, and the geometric
stiffness matrix Ktσ takes the identical form to that of the statics [20].
The effective tangential stiffness matrix of the mid-point algorithm is then expressed as the sum of
the static term Ktstat,m and the dynamic term Ktmas,m:

Kt,m = Ktstat,m +Ktmas,m (18)

4
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2.4 Mixed Time-Marching Integration Algorithm
The mixed time-marching algorithm is proposed and applied into the implicit predictor-corrector time
integration scheme for the first time, in which the end-point algorithm is used in the predictor step
for efficiency and mid-point algorithm with numerical damping in corrector step for energy conserving
and computation accuracy and stability.

2.4.1 Predictor Step with End-Point Algorithm
Assume all of the required information is available at step n, we can adopt the standard Newmark
interpolation to get the vectors of velocity and acceleration at time n+ 1, then the corresponding in-
ternal and inertial forces. Here we use the HHT-α time integration scheme, so the end-point dynamic
equilibrium equation (Eq.(1)) is now expressed as:

(1+α)(qi,n+1 −qe,n+1)−α(qi,n −qe,n)+qmas,n+1 = 0 (19)

The values at time n and n+1 are then substituted into Eq.(19), which finally leads to a set of equa-
tions of the form:

∆q̄ = K̄t,n∆p (20)

where
K̄t,n = (1+α)Kt,stat +Kmas1 +

1
β∆t2 Kmas2 +

γ
β∆t

Kmas3 (21)

is the equivalent dynamic tangent stiffness matrix, which includes contributions from both the internal
and inertial terms.

∆q̄ = (1+α)qe,n+1 −αqe,n −qi,n −qmas,n +Kmas2
1

β∆t
(ṗn +

∆t
2

p̈n)+Kmas3[
γ
β

ṗn −∆t(1− γ
2β

)p̈n] (22)

is the equivalent incremental loads, and ∆p is the predicted incremental displacement from time step
n to n+1.

2.4.2 Corrector Step with Mid-Point Algorithm
Having solved Eq.(20) for ∆p, the vectors of displacement, velocity and acceleration at step n+ 1
can be obtained by the Newmark interpolation relations; the corresponding internal and inertial force
vectors are to be obtained successively.
The values at the mid-point can be interpolated and then substituted into the mid-point dynamic
equilibrium equation (Eq.(10)), which will, in general, lead to a residual gm that is not zero. Therefore,
a standard process of Newton-Raphson (or modified Newton-Raphson or quasi-Newton) iteration is
to be applied, which gives:

gm = K̄t,mδp (23)

where
K̄t,m = Ktstat,m +

1
∆t

(Kmas1,m +Kmas2,m) (24)

is the equivalent dynamic tangent stiffness matrix of mid-point algorithm. Note it takes the different
form to that previously given for the predictor step.
By solving Eq.(23), the improvement δp to pn+1 can be obtained, so that:

pn+1,new = pn+1,old +δp (25)

The more detailed descriptions of 3-D formulations for a spatial beam and the numerical implementa-
tions of the rotational updates, as well as the overall solution strategy, can be found in the co-rotational
nonlinear finite element literature [23, 24, 22, 25, 26].
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Figure 1 – Beam reference coordinate system.

2.5 Element Stiffness and Mass Matrices
The coupling between axial, bending and torsional effects is added into the element stiffness and
mass matrices in the present framework by considering the flap-torsion (FT), lag-torsion (LT) and
axial-torsion (AT) cross-stiffness properties in the stiffness matrix, and dynamic coupling terms be-
tween torsion and bending in the mass matrix.
As illustrated in Figure 1,the element stiffness matrix in the basic coordinate system is given as:

ko = TT
k kelTk (26)

where

Tk =

[
tk 06×6

06×6 tk

]
tk =



1 0 0 0 zt −yt

0 1 0 −zc 0 0
0 0 1 yc 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (27)

The element stiffness matrix in local axes [27] can be expressed as:

kel =

[
A BT

B C

]
(28)

in which

A =



EA
l 0 0 AT

l 0 0
0 12EIz

l3
12EIyz

l3 0 −6EIyz
l2

6EIz
l2

0 12EIyz
l3

12EIy
l3 0 −6EIy

l2
6EIyz

l2
AT
l 0 0 GJ

l
FT

l −LT
l

0 −6EIyz
l2 −6EIy

l2
FT

l
4EIy

l −4EIyz
l

0 6EIz
l2

6EIyz
l2 −LT

l −4EIyz
l

4EIz
l



B =



−EA
l 0 0 −AT

l 0 0
0 −12EIz

l3
−12EIyz

l3 0 6EIyz
l2

−6EIz
l2

0 −12EIyz
l3

−12EIy
l3 0 6EIy

l2
−6EIyz

l2
−AT

l 0 0 −GJ
l

−FT
l

LT
l

0 −6EIyz
l2

−6EIy
l2

−FT
l

2EIy
l

−2EIyz
l

0 6EIz
l2

6EIyz
l2

LT
l

−2EIyz
l

2EIz
l



C =



EA
l 0 0 AT

l 0 0
0 12EIz

l3
12EIy

l3 0 6EIyz
l2 −6EIz

l2

0 12EIy
l3

12EIy
l3 0 6EIy

l2 −6EIyz
l2

AT
l 0 0 GJ

l
FT

l −LT
l

0 6EIyz
l2

6EIy
l2

FT
l

4EIy
l −4EIyz

l
0 −6EIz

l2 −6EIyz
l2 −LT

l −4EIyz
l

4EIz
l


Descriptions of the symbols in Eq.(28) are given in Table 1.
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Table 1 – Variables defining stiffness matrix.

Symbol Description
EA Axial stiffness
EIy Bending stiffness around y axis (flapwise)
EIz Bending stiffness around z axis (lagwise)
EIyz Flap-lag bending stiffness around y and z axes
GJ Torsional stiffness
AT Coupled axial-torsional stiffness
FT Coupled flap-torsional stiffness
LT Coupled lag-torsional stiffness
l Length of element

The element mass matrix in the basic coordinate system is:

mo = TT
mQT

mmelQmTm (29)

where

Tm =

[
tm 06×6

06×6 tm

]
tm =



1 0 0 0 zg −yg

0 1 0 −z′c 0 0
0 0 1 y′c 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (30)

Qm =

[
qm 06×6

06×6 qm

]
qm =



1 0 0 0 0 0
0 c(αm) s(αm) 0 0 0
0 −s(αm) c(αm) 0 0 0
0 0 0 1 0 0
0 0 0 0 c(αm) s(αm)
0 0 0 0 −s(αm) c(αm)

 (31)

where c(αm) = cos(αm), s(αm)sin(αm), and (y′c,z
′
c) is the coordinates of shear center (C) in the local

reference system for the mass matrix Gxy′z′ . The element mass matrix in local axes can be expressed
as:

mel =

[
A BT

B C

]
(32)

in which

A =



ρAl
3 0 0 0 0 0
0 13ρAl

35 0 7z′cρAl
20 0 11ρAl2

210

0 0 13ρAl
35 −7y′cρAl

20 −11ρAl2

210 0
0 7z′cρAl

20 −7y′cρAl
20

ρt l
3

y′cρAl2

20
z′cρAl2

20

0 0 −11ρAl2

210
y′cρAl2

20
ρAl3

105 0
0 11ρAl2

210 0 z′cρAl2

20 0 ρAl3

105



B =



ρAl
6 0 0 0 0 0
0 9ρAl

70 0 3z′cρAl
20 0 13ρAl2

420

0 0 9ρAl
70 −3y′cρAl

20 −13ρAl2

420 0
0 3z′cρAl

20 −3y′cρAl
20

ρt l
6

y′cρAl2

30
z′cρAl2

30

0 0 13ρAl2

420 − y′cρAl2

30 −ρAl3

140 0
0 −13ρAl2

420 0 − z′cρAl2

30 0 −ρAl3

140


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C =



ρAl
3 0 0 0 0 0
0 13ρAl

35 0 7z′cρAl
20 0 −11ρAl2

210

0 0 13ρAl
35

−7y′cρAl
20

11ρAl2

210 0
0 7z′cρAl

20
−7y′cρAl

20
ρt l
3

−y′cρAl2

20
−z′cρAl2

20

0 0 11ρAl2

210
−y′cρAl2

20
ρAl3

105 0
0 −11ρAl2

210 0 −z′cρAl2

20 0 ρAl3

105


Descriptions of the symbols in (32) are given in Table 2.

Table 2 – Variables defining mass matrix.

Symbol Description
ρA Sectional mass per unit length
ρ ′

y Bending inertia about principal axis y′ at G
ρ ′

z Bending inertia about principal axis z′ at G
(y′c,z

′
c) Position of C referred to Gxy′z′

ρt ρ ′
y +ρ ′

z +(y′2c + z′2c )ρA

2.6 Coupling of Aeroelasticity and Flight Dynamics
In the present framework, given the spatial locations and orientations of every element, the ground,
body and airflow axes for flight dynamics are re-defined analogously to the global and elemental
reference frames for structural dynamics at the local element level.

Figure 2 – Global (ground), elemental and body reference frames of the flexible wing.

As illustrated in Figure 2, the ground axes Ug for flight dynamics is defined to be identical to the global
reference frame for aeroelasticity. For each element, there is a body-attached element frame Ue,
which translates and rotates continuously with the varying generalized displacements of the element.
The element frame Ue in aeroelasticity is then taken as the body axes Ub for flight dynamics. Note
that, according to the most usual practice in flight dynamics, the x-axis of Ub is directed to “forward", y-
axis is directed to “rightward", and z-axis “downward", while in aeroelasticity, the x-axis of the element
frame is preferred to lie along the axial line of the beam, and y, z-axes along the principal axes of
inertia. So, the body axes Ub of a wing element is defined as:

Ub = [Uey,Uex,−Uez] (33)

8
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where Uex, Uey and Uez are the base vectors of Ue.
With ground axes Ug and elemental body axes Ub defined, the Euler angles (roll, pitch, yaw angles)
of each element can be defined in the usual way. The translational velocity and acceleration of the
element in body axes can be expressed as:

Vb = UT
b Vg; ab = UT

b ag (34)

where Vg and ag are, respectively, the inertial velocity and acceleration vectors expressed in the
ground or global axes.
The angular velocity and acceleration in body axes can be expressed as:

ω = [wy,wx,−wz]
T ; α = [ay,ax,−az]

T (35)

where wx,wy,wz and ax,ay,az are, respectively, the components of the elemental angular velocity and
angular acceleration, which are defined in the element frame Ue, in the light of the co-rotational
approach.
With the translational velocity in body axes, the angles of attack and sideslip of an element can be
calculated as:

α = arctan(Vbz/Vbx); β = arcsin(Vby/V ) (36)

where Vbx, Vby, Vbz are the components of Vb; and V is the norm of Vb.

2.7 Peters’ Finite State Inflow Model
The unsteady aerodynamic loads used in the current framework are based on the Peters’ 2-D finite
state inflow theory [28]. The aerodynamic loads per unit span calculated about the aerodynamic
center (A.C.) are given as:

lac = πρb2(z̈+ ẏα̇ −dα̈)+ clαρbẏ2
[

ż
ẏ
+(

1
2

b−d)
α̇
ẏ
− λ0

ẏ

]
+ρbẏ2(cl0 + clδ δ ) (37)

mac =−πρb3
[

1
2

z̈+ ẏα̇ +(
1
8

b− 1
2

d)α̈
]
+2ρb2ẏ2(cm0 + cmδ δ ) (38)

dac = ρbẏ2cd0 (39)

where ρ is the air density, b is the semichord, d is the distance of the mid-chord in front of the
reference axis (here is the shear center (C)), δ is the trailing-edge flap deflection angle. clα is the lift
curve slope, clδ and cmδ are the lift and moment slopes due to flap deflection, respectively. cl0, cm0
and cd0 are the lift, moment and drag coefficients for zero angle of attack (AOA), respectively. And λ0
is the inflow parameter, which accounts for induced flow due to free vorticity.
To transfer the loads from A.C. to the wing reference axis (here is shear center (C)), one may use

lra = lac; mra = mac +(
1
2

b+d)lac; dra = dac (40)

Furthermore, the aerodynamic loads are rotated to the body coordinate system, and then the global
coordinate system, which yields:

Fa = Ue

cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

 cos(β ) sin(β ) 0
−sin(β ) cos(β ) 0

0 0 1

−dra

0
−lra

 l (41)

Ma = Ue

cos(α) 0 −sin(α)
0 1 0

sin(α) 0 cos(α)

 cos(β ) sin(β ) 0
−sin(β ) cos(β ) 0

0 0 1

 0
mra

0

 l (42)

where l is the local span, here is the length of the corresponding element.
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2.8 Nonlinear Trim of the Flexible Aircraft
The nonlinear trim of the flexible aircraft is performed for zero resultant force and moment of the
whole aircraft. A cost function is defined as:

f = [FT
R ,M

T
R ]

T (43)

where FR and MR are the resultant force and moment of the whole aircraft, which can be expressed
as:

FR =
N

∑
i=1

Fai +
N

∑
i=1

Fti +
N

∑
i=1

Fgi (44)

MR =
N

∑
i=1

Mai +
N

∑
i=1

di × (Fai +Fti +Fgi) (45)

where Fai, Mai, Fti and Fgi are, respectively, the aerodynamic force and moment, thrust and gravity
acting on the ith node of the aircraft; and di is the distance vector from the moment reference point
(e.g. center of gravity or the constraint point of the aircraft) to the ith node.
The cost function f is minimized over the solution space using the body angle of attack α, elevator
deflection angle δ , and thrust T . The Newton-Raphson iteration is employed to find the optimal trim
parameter S, i.e.

Sk+1 = Sk −
[

∂ f
∂S

]−1

k
fk (46)

where S = [α,δ ,T ]T , and
[

∂ f
∂S

]
is the Jacobian matrix that relates the resultant force and moment of

the whole aircraft with the trim parameters, which is computed numerically trough finite differences
as:

Ji j ≡
[

∂ fi

∂S j

]
≃

fi(S+∆S j)− fi(S)
∆S j

(47)

2.9 Discrete Gust Model with Spatial Distribution
Generally, the wind in atmosphere is random, and its range and speed changes are difficult to accu-
rately describe with a set of simple mathematical expressions. Therefore, a 1-cos gust model with
time and space distribution is proposed and adopted in this paper. It forms an ellipse with only vertical
upward speed. The gust area is arranged on the flight path. At each moment, the gust speed reaches
a given maximum value at the center of the gust and decreases to zero at the edge of the area. The
distribution of the gust amplitude in east-west and north-south directions can be different, and the
gust velocity at each point in the gust area has the same 1-cos distribution at the same moment.
The gust amplitude at a certain point in the gust area at a certain moment can be calculated by the
following equations:

A(r,η , t) =
1
2

Ac[1− cos(2π
t − t1

tg
)]
√

(AE cosη)2 +(AN sinη)2 (48)

AE(r) = sin(
π
2
[1− (

r
r0
)nE ]) (49)

AN(r) = sin(
π
2
[1− (

r
r0
)nN ]), (0 ≤ r ≤ r0) (50)

where the subscripts E and N represent east-west and north-south directions, respectively; Ac is the
gust amplitude at the center of the gust; r0 is the radius of the gust area; r is the distance from a
point in the gust area to the center of the gust; η is the horizontal azimuth of a point in the gust area.
nE and nN are the parameters for adjusting the spatial distribution of the gusts in the east-west and
north-south directions, respectively.
Equations 49 and 50 ensure the amplitude be the maximum at the center of the gust while zero at
the edge. t1 is the moment when the gust starts, and tg is the duration of the gust. Given different
parameters, the different time-varying characteristics and different spatial distributions of the discrete
gust models can be obtained.
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3. Numerical Validation
Validations of the structural static solution under given loads and static aeroelastic responses with
different flight conditions, have been presented in the previous work of the authors [19, 20], which will
not be repeated here.
To validate the implementation of the coupling of flight dynamics with nonlinear aeroelasticity and the
corresponding computing codes, the trim and dynamic responses of a representative highly flexible
flying-wing aircraft with a span of 72.8 m, a constant chord of 2.44 m, and a payload varying from 0
to 227 kg on the central pod (Note that the payload is not considered all the mass at the point where
the central pod locates; apart from the payload, there is also the structural mass of the central pod
itself, which is 27.23 kg.), as shown in Figure 3 and Table 3, are analyzed and compared carefully to
the results taken from Patil [9] and Su [13], respectively.

Figure 3 – Geometry of the flying wing model.

Table 3 – Properties of the flying wing (after [13]).

Strucutral Property Value Aerodynamic Property Value
Cross-sectional elastic axis 25% chord from L.E. clα for wings (25% chord) 2π

Cross-sectional center of gravity 25% chord from L.E. clδ for wings (25% chord) 1
Torsional stiffness 1.65301×105 Nm2 cd0 for wings (25% chord) 0.01
Bending stiffness 1.03313×106 Nm2 cm0 for wings (25% chord) 0.025

Chordwise bending stiffness 1.23976×107 Nm2 cmδ for wings (25% chord) -0.25
Mass per unit length 8.92898 kg/m clα for pods (25% chord) 5

Torsional mass moment of inertia 4.14765 kgm cd0 for pods (25% chord) 0.02
Flatwise bending mass moment of inertia 0.691275 kgm

Chordwise bending mass moment of inertia 3.45637 kgm

3.1 Trim Analysis
At the flight speed of 12.2 m/s on sea level, the highly flexible aircraft with the varying concentrated
payload is trimmed for zero resultant force and moment. Figure 4 shows the variations of the trimmed
AOA, flap deflection angle (assuming constant throughout the span) and thrust per motor with the
varying payload. It can be seen that the trim AOA increases with the payload, for the heavier the
payload, the higher lift required, and so the higher AOAs. When the concentrated payload increases,
the aerodynamic loads get higher, which leads to large bending deformations in the highly flexible
wings; and the aircraft turns into a “U” shape as illustrated in Figure 5.
As the aircraft deforms to a “U” shape, the aerodynamic center moves backward, which brings about
a pitch-down moment, and the flap deflection decreases to reduce the additional pitch-down moment
of the flap.

3.2 Stability Analysis
Time-domain simulations of the nonlinear dynamic responses of the highly flexible aircraft with three
different payload masses (122 kg, 152 kg and 227 kg) are performed. The aircraft is initially at its
trimmed state; perturbation is introduced by adding a pre-defined flap deflection change: the flap
deflection angle ramps linearly up to 5◦ between 1 and 2 seconds, and then ramps linearly back to
its trimmed angle between 2 and 3 seconds, then it keeps constant.
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Figure 4 – Trim results of the flying wing with varying payload mass.

Figure 5 – Initial and deformed shapes with heavy payload.

The simulation is conducted by the direct solution of the complete nonlinear dynamic equations by
implicit predictor-corrector schemes with the mixed time-marching algorithms and a time step of up
to 0.1 s. Figures 6-8 show the variations of altitude, airspeed, and AOA of the mid-span (the center)
of the aircraft, respectively.
It can be seen from Figures 6 and 7 that, with a payload of 122 kg at the central pod, the phugoid
mode of the highly flexible aircraft is neutrally stable, for the altitude and airspeed of the vehicle
after perturbation oscillate with equal amplitudes. When the payload increases to 152 or 227 kg, the
phugoid mode becomes unstable with increasing amplitudes of oscillations: the heavier the payload,
the higher frequency and larger amplitude of the oscillation. For the differences between the two
results given by Patil [9] and Su [13], Su attributed them to the differences of damping of the models
used, which the authors think was not explained precisely. In the opinion of the authors of the present
paper, it is more likely to be the difference of payload masses that leads to the different results.
From Figures 6 and 7, the exchange between potential energy and kinetic energy of the highly flexible
aircraft can be seen clearly from the out-of-phase variations between the altitudes and airspeeds.
Besides, the aircraft altitude loss indicates a loss of energy due to the unstable phugoid mode and
constant thrust.
As shown in Figure 8, within several cycles of oscillations, the mid-span (also the whole aircraft) starts
to experience very high AOAs in every cycle, which is the inevitable result of the excited unstable
phugoid mode.
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Figure 6 – Altitude of flight with different payload.
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Figure 7 – Airspeed of flight with different payload.

It is to be noted that, since stall is not yet included in the present framework, the results at high AOAs
cannot be considered to be the real motion of the aircraft. Once the dynamic stall is included, one
would see the different responses at the highest altitudes, where the lift will be insufficient to balance
the weight and the aircraft drops with the increase in velocity, resulting in instantaneous higher AOAs.
In addition, it can be clearly seen that excellent agreements are made with the results supplied by
Patil [9] for 227 kg payload mass and Su [13] for 152 kg payload mass, which demonstrates the
validity and accuracy of the presented framework and its corresponding computing codes.

3.3 Mechanism Analysis of the Disintegration of Helios Prototype
As shown in figure 9, the Helios HP03-2 aircraft adopts a high aspect-ratio full-wing layout, with a
wingspan of 75.3 m, consisting of 6 segments. The 4 inner segments are straight wings, and the 2
outer ones each have a dihedral of 10◦. The chord length of the wing is 2.44 m, and the aspect-ratio
is 30.9. Five pods are evenly distributed under the wings. The central pod is equipped with fuel cells
and weighs 235.9 kg, and the 4 pods on both sides are equipped with avionics. A hydrogen fuel pod
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Figure 8 – AOA at mid-span with different payload.

weighing 74.8 kg is installed in the middle of the left and right outer wing sections. After installing
hydrogen-oxygen fuel cells and experimental equipment, the take-off weight of the HP03-2 aircraft
increased to 1052 kg[2].

Figure 9 – Helios HP03-2

The geometry, mass distributoin, thrust characteristics and cruising state are set the same as the
above-mentioned Helios HP03-2 aircraft. The structural rigidity and cross-sectional aerodynamic
coefficients of the wing adopt the parameters of the aforementioned "Helios-like" aircraft. At the initial
moment, the aircraft was trimmed at an altitude of 850 m above sea level (atmospheric density of
1.13 kg/m$ˆ3$) and flew straight and level at a speed of 11.6 m/s. At the end of 2 s, an infinite
full-wavelength 1-cos discrete gust with an amplitude of 1 m and a duration of 10 s began to be
encountered.
The spatial locations and shape, pitch angle and pitch angle rate, airspeeds and overloads of wing
tip and root of the "Helios" HP03-2 are illustrated in Figure 10 to Figure 12.

Figure 10 – The position and morphological change of the aircraft
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It can be seen from figure 10 that when the plane is flying straight and level, the wing has a certain
degree of bending deformation, and the wing tip deflection is about 7 m, which is about 9% of the
wingspan. After being affected by the vertical upward gust, the aircraft climbes up about 5 m. During
the climb, the wing tip deflection decreases slightly. After the gust, the altitude of the aircraft begin to
drop, and the effective angle of attack and airspeed of the aircraft increases during the descent. The
dihedral and wing tip deflection of the wing also increase accordingly.
As the bending deformation of the wing increases, the pitch moment of inertia and the longitudinal
static stability margin of the aircraft become larger, and the phugoid mode change from stable to un-
stable. The amplitudes of altitude, pitch angle and airspeed increase with the number of oscillations.
It can be seen that in each oscillation period, the bending deformations of the wing decrease when
the aircraft climbs, and increases when it descends. When the aircraft is at the lowest point of the
oscillation period, the bending deformations of the wing reach the maximum.
As the oscillations continue, the altitude of the aircraft gradually decreases, and the amplitude of
altitude and wingtip deflection gradually increases. After 6 oscillations, the altitude droppes by about
20 m, and the wingtip deflection reaches 12 m, about 30% of the half-wing span.

Figure 11 – Pitch angle and pitch angle rate v.s. time

It can be seen from figures 11-12 that due to the unstable phugoid mode, the amplitude of the
pitch angle of the aircraft gradually increases. In the first three oscillations, the amplitude of each
oscillation almost doubles, but the pitch angle rate is very small and never exceeding ±0.1◦/s. After 6
oscillations, the range of pitch angle change is expanded to -25◦˜50◦, and the pitch angular rate also
begin to fluctuate sharply, reaching ±2◦/s. In the last oscillation before disintegration, the pitch angle
of the aircraft at the highest point reaches 68◦. Then, it dived down at a pitch angle of -40◦, with an
airspeed approaching 30 m/s, approximately 2.5 times of the cruising speed. There are severe jitters
at the same time, the pitch angle speed exceeded ±5◦/s, and the overload of the wingtip exceeded
±10 g, indicating that the wing is about to break up.
In this section, by establishing a time-domain nonlinear aeroelastic and flight dynamics coupling
model with the same geometric shape, structure, and mass characteristics as the "Helios" HP03-2
aircraft, it is calculated and interpreted that it produces a large and continuous upward deformation
after being disturbed by gusts in flight, which leads to rapid divergence of the phugoid mode and finally
disintegration in the air. The main characteristics of the aircraft’s motion obtained are completely
consistent with the phenomenon described in the accident investigation report.
By the modeling and calculation of the motion of "Helios" HP03-2 aircraft in flight after being disturbed
by gusts, combined with the research in the previous section, it is shown that the fundamental reason
for the disintegration of the aircraft is the reduction of stability of phugoid mode of the aircraft, which
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Figure 12 – Overloads of wing root and wing tip v.s. time

is the result of relatively large bending deformation of the wings caused by the unreasonable load
distribution of the aircraft.

4. Concluding Remarks
A comprehensive analytical framework for the coupled flight dynamics and nonlinear aeroelasticity of
highly flexible aircraft has been presented.
The present framework accounts for realistic design elements including arbitrary structural shapes
and properties, concentrated masses, multiple thrusts and control surfaces, and unsteady aerody-
namics. With excellent agreements reached, the accuracy, stability, efficiency and reliability of the
presented framework and its corresponding computing codes are validated. It is adaptive and easy
to accommodate with other models, and can be used for complete aircraft analyses in the concep-
tual and preliminary design phases, including the quick linear and nonlinear trim, aerodynamic load
estimation, stability assessment, as well as linear and nonlinear time-domain response simulations.
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