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Abstract

Neural adaptive controller trained by feedback error learning enhanced with additional sampling from estimated
model is investigated. Generally, tuning of the adaptive controller takes a single sampled data every time
step. It is not enough information value to train the multiple layer neural network to use the active fault tolerant
control, and cause low convergence and stability of the control. To improve the sampling efficiency, the estimate
network is adapted to estimate the system model of control target in real time. The additional information of the
current system model is obtained by the online control simulation using the estimated model. And the additional
samples are utilized with real samples for training of the neural controller to enhance the convergence.
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1. introduction
Aircraft failures have caused many lethal accidents, i.e. JAL123 caused by full loss of hydraulics,
UA 232 caused by full loss of hydraulics, and NA85 caused by rudder herd over. There are studies
to achieve a fault tolerant control by actively changing the control law when any failure happens.
Several methods, i.e. model reference control [1], L1 adaptive control [2], simple adaptive control [3],
and adaptive control with feedback error learning [4], are proposed in the aeronautics community.
A feed forward adaptive controller (FFC) is introduced in the feedback error learning (FEL) method
[5]. FFC can be just attached in parallel to the conventional feedback controller. FFC acquires an
inverse model of the target system, and becomes an ideal feed forward controller. Therefore FEL
control system is easily combined with other control methods. A linear adaptive controller, which
can be recognized as a simple perceptron, is used in FEL adaptive control. So the linear control
with non-linear system always connotes the control errors. A multiple layer perceptron known as a
neural network is used to address the control error caused by the non-linearity of the target system.
Neural networks can easily treat non-linear system, in other hand, the convergence of the controller
becomes worse than linear controller.
In the adaptive control scheme, generally a single sample can be used to tuning of the adaptive law
in every single control step. A large learning rate contributes to accelerate the convergence speed,
however a stability of the control law gets worse. This problem is known as the low sample efficiency
problem of reinforcement learning in the machine learning community. Using too old samples effects
accuracy of the learning of the controller, because the control results greatly depends on the control
law at that time. So re-sampling is required at every step, and learning efficiency is decreased.
These years, to tackle the low sampling efficiency, some method using the system estimator consisted
with neural networks is proposed [6]. The short simulation with the estimated model provides the
additional samples depending on the current control low. In these studies the target model is acquired
before control low training and does not change during the learning of the controller. However in
the fault tolerant control problem, the target model will be changed during the controller training.
Therefore the online system estimation is required in the FTC problem.



In this paper, the fault tolerant controller trained by feedback error learning method with enhanced
sampling by the system estimator is investing. The online system estimator is adapted to obtain
additional sample to improve the convergence of the neural FFC. This system consisting of two
control loops and two adaptive laws. These components are described following order as below: L1)
a control loop, A1) a system estimation, L2) a simulation loop, A2) a FEL adaptation. L1) the control
loop is a control of the aircraft with the neural FFC; A1) the control target system model is estimated
by using the samples obtained in the control loop; L2) the simulation loop is a short simulation of
the control of the estimated model with the current neural FFC; and A2) the neural FFC is trained by
using the combined samples, the real samples from the control loop and the predicted samples from
the simulation loop.
We call this method as the feedback error learning method with enhanced sampling, FELES. The
convergence and stability of FELES for some aircraft failure will be discussed in this paper.

2. Background
2.1 Aircraft Model
The commercial aircraft Boeing 747 is utilized as the control target model. The model of the aircraft
is described as a linear state space equation as below:

ẋt = Axt +But (1)

where the xt and ut is a state vector and input vector, A and B is a state matrix and input matrix of
B747, respectively. And this model can be discretized as:

xt+1 = (I−∆tA)xt +∆tBut

= Adxt +Bdut (2)

where ∆t is a control time step.

2.2 Feedback Error Learning
Feedback Error Learning (FEL) is proposed as a training algorithm of parameterized adaptive con-
troller, such like neural network, which mimicking the motor nerve learning system of human brain
[7]. Originally, a neural feed forward controller is attached in parallel to the feedback controller, i.e.
PID controller, state feedback controller. Then the control inputs are generated as the following form:

u f el
t = Fθ (rt) (3)

u f b
t = C(rt ,xt ;K) (4)

ut = u f b
t +u f el

t (5)

where Fθ is a multiple layer neural controller parameterized by θ , C is a conventional feedback con-
troller with gain K, and rt is a filtered reference signal. The order of the filter for the reference signal
is much to the relative order of the target system. The adaptive controller is trained to acquire the
inverse model of the target object, and then it becomes an ideal feedforward controller. If the feed-
forward controller is the ideal controller for target plant, feedback controller output can be set to 0.
Therefore the loss function of FEL consists of the feedback controller output with Eq.(5) as below:

L f el
t =

1
2
(u f b

t )2 =
1
2
(ut −u f el

t )2 (6)

The parameters of the neural controller are tuned by minimizing the loss function using the stochastic
gradient descent with output of the feedback controller [5].

2.3 System Estimator
System estimation is utilized in several studies of reinforcement learning to obtain the additional
information of target dynamics and/or to compensate the difference between the simulation model
and the physical model [8], [6]. The estimator is consisted with multiple layer perceptron (MLP),
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generally called neural network. The network estimates the next time step states from current states
and control inputs. Then the estimator network prediction and loss function can be written as below:

xp
t+1 = Pφ (xt ,ut) (7)

L P
t =

1
2
(
xt+1−Pφ (xt ,ut)

)2 (8)

where xt is a state vector at time t, xp
t is a predicted state, Pφ is a neural network function param-

eterized by weight parameters φ , and ut is an action, which means control input. Recent Ne steps
observations and actions are used as the learning data, and they are applied in few times NeL.

3. FEL with Enhanced Sampling
To improve the sampling efficiency, an online simulation with estimated model is performed.

Figure 1 – FELES diagram

L1) Control loop
The control loop is implemented in the same way to the conventional FEL control scheme as Eq.(9)
- (12). Then the set β R

t of an action and observations, (the state xt , the control input ut , the next state
xt+1, and the reference rt), are stored into the sampling buffer BR at every control step as Eq.(13).

u f el
t = Fθ (rt) (9)

u f b
t = C(rt ,xt ;K) (10)

ut = u f b
t +u f el

t (11)
xt+1 = P(xt ,ut) (12)
BR ← BR∪β

R
t (13)

Stored samples are utilized to update networks, the system estimator and the FFC. Using old sample,
the current system can not be correctly reflected into networks. Therefore, the data sampled before
TR step is removed from the buffer, TR is a hyper parameter to be defined by trainers.

A1) System Estimation
The control target model is estimated with the data sets sampled in L1. To reflect newer information
of the target model, a decay factor γ < 1 is multiplied the estimation error. The objective function of
the system is described as below:

L est =
1
2

γ
k (xt−k+1−Pφ (xt−k,ut−k)

)2 (14)
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min
φ

EBC

[
L est

t
]

(15)

where k denotes data sampled k steps before. To enhance model adaptation speed, the input of the
estimator Pφ , the state xt and control input ut , shall be normalized between -1 ∼ 1 with its assumed
maximum values if the values are quite small or the value range have large gap among the state or
control input values, because smaller values cause the small update values. If the input values are
normalized, the estimated states must be denormalized.

L2) Simulation loop
The online short simulation with the estimated model is performed to obtain additional information of
the target system. The estimated model is used as the control target. And the samples β s

τ are stored
into the simulation data buffer BS. Therefore Eq.(12) and (13) are changed as follows:

xk+1 = Pφ (xk,uK) (16)
BS ← BS∪β

s
k (17)

The reference signal rτ is generated by using filtered constant value. The constant reference values
are randomly selected from a normal distribution r̄ ∼ N (0,1) bounded by the available range of the
state. The filter is same to the reference filter W . Then the initial value of the reference is set to the
current state.

rk+1 = W (r̄,rk) (18)
r0 = xt (19)

Multiple times of the short simulation with different reference values is executed to enrichment the
additional information of the estimated dynamics. This simulation state values are vertically stacked
like xk =

[
xT

1k, · · · ,xT
ik, · · · ,xT

Nsim

]T and multiple simulation should be computed in parallel to enhance the
simulation speed.

A2) FEL adaptation
The FFC network is updated with the samples from the real observation buffered in BR and the
simulated observation buffered in BS. The estimation loss L est

t is used to remove the low accuracy
samples from the simulation. And the decay factor γF is introduced same reason as Eq.(14). The
objective function and FFC network is written as the followings:

L f eles
R =

1
2

γ
k
F (ut−k−Fθ (rt−k))

2 (20)

L f eles
S =

1
2

exp
(
−αL est

t
)
(uτ −Fθ (rτ))

2 (21)

min
θ

EBR

[
L f eles

R

]
+EBS

[
L f eles

S

]
(22)

where α ∈ R is an adjust factor.
We mention this learning method as feedback error learning with enhanced sampling (FELES). The
diagram of FELES is show in Fig.1
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4. Simulation
4.1 Simulation settings
4.1.1 Models
For simulation, the linear model of the vertical motion of the commercial aircraft B747 is used as the
control target. The state-space matrix and the input matrix are defined as below:

A =


−0.0225 0.0022 −32.3819 0
−0.2282 −0.4038 0 869

0 0 0 1
−0.0001 −0.0018 0 0.5518

 , B =


0

−0.0219
0

1.2394

 (23)

and the state vector is x = [u, w, θ , q] forward speed, vertical speed, pitch angle, and pitch angle
speed and the input is the elevator deflection u = δe. In this experiment, the pitch angle θ is the
control target, and the aircraft system is regarded as 1-input 2-output system. The reference filter is
2nd-order as below, because the the transfer function of the pitch motion is described as the transfer
function which relative order is 2.

rt+1 =

(
I−∆t

[
0 1
− 1

τ2 t 1
2τ

])
rt +∆t

[
0
1
τ

]
r̄t , (24)

where r̄t is the original reference input, τ = 1.0 is the filter time constant. The length of the short
simulation is TR = 1.0 and simulation time step is ∆t = 1/50 sec. Feedback gain is tuned as the linear
quadratic regulator.
As the fault, a gain reduction of the elevetor is asummed. This failure reduces the value of the input
matrix B.

4.1.2 Netoworks
The FEL controller consists with the neural network, 16-16 units hidden layers with ReLU function,
and the activation function of the output layer is tanh. The system estimator is also the neural ne-
towork with 2-hidden layer that has 8-8 units and ReLU function. The networks are updated by
stochastic gradient decent algorithm, and the learning lates are 0.05 for the FEL controller and 0.15
for the system estimator. The inputs are normalized into -1 ∼ 1 by assumed maximum ranges, re-
spectively. The output of system estimator is de-normalize to bring it in its actual scale. The decay
factors are γ = γF = 0.9, adjust factor is α = 5×103.

4.2 Result
We show the simulation results of the fault tolerant control by the conventional FEL and FELES. Fig-
ure 2 show the control result of conventional controls, state feedback, FEL and proposed method
FELES. The vertical red line indicate the time which the fault had occurred. In this simulation, effec-
tiveness of the elevator is reduced by 70% . The upper panel is the reference (gray dashed line) and
pitch angle response of the state feedback (blue), FEL (green), and FELES (orange). The middle
panel shows the elevator command. And bottom panel indicates the control errors of each control
method. FEL and FELES had shown quite better result in aspect of control error than state feedback
control, and there is no large difference between these. However soon after the fault occurrence, the
control error of FELES is 33.4% smaller than FEL. This advantage is achieved by the oversampling
using the estimated model. Figure 3 show the state prediction result of the system estimator of FE-
LES. Orange line show the predicted value of pitch angle in the ipper panel and pitch angle rate in
the lower panel. Black line indicates the observed value of them.
Figure 4 and 5 shows the control result with the random value rectangle reference input and system
estimation results. In this case, FELES also has smaller control error at almost time step. However
some point FEL control is better than FELES, i.e. t=170-180 sec. These time, system predict accu-
racy is low, in this simulation especially pitch speed estimation is not correct (Figure 5 middle), and
then the training factor which shown as Equation (21). This low accuracy of system estimation can
leads wrong adaptation of FEL training.
We can avoid these low quality simulation sample by setting the adjust factor high. However there is
a trade off between sample quality and sample efficiency Figure 6.
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Figure 2 – Control result of FELES vs FEL with random reference

5. Conclusion
In this paper, the feedback error learning with enhanced sampling is proposed. This method is
enhance sample by system estimation and online simulation powered by machine learning methods.
FELES show high sample efficiency and better stability than conventional FEL method. But there is
low quality sample problem invoked by low accurate system estimation. We have to remove these low
quality sample more actively. However FELEs is a better choise than FEL for more stability-required
system such like aircraft.
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Figure 3 – Online state prediction by system estimator with random reference
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Figure 4 – Control result of FELES vs FEL with random reference

Figure 5 – Online state prediction by system estimator with random reference
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Figure 6 – Loss of system estimation vs training factor
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