
 AGILE AVIONICS SYSTEM DEVELOPMENT

1

AN AGILE PRACTICE OF AVIONICS SYSTEM DEVELOPMENT

Lei Dong1, Wen-Ming Song1

1China Aeronautical Radio Electronics Research Institute

Abstract

Model based systems engineering is the critical approach of future system engineering for coping with

complexity. Key characteristics of high integration of physical domains, complex functional domains, and deep

coupling of logical fields make the complexity of avionics systems continuously increasing. As the core of

various aircraft platforms, avionics systems must adapt to the evolutionary acquisition and incremental

development business mode. An Agile method focused on Incremental and parallel design, the balance

between iteration and schedule, continuous integration and verification is applied to cope with system

complexity and improve the quality of systems design in this paper. An interaction complexity management

method is introduced to enhance system complexity management. A distributed integration and validation

strategy and simulation environment suitable for adapting to the agile pattern are presented. The practice of

an avionics system is presented to illustrate the agile method, and customized steps are applied based on the

project’s specific needs.

Keywords: MBSE; Avionics System; Agile; Collaborative Design; Distributed Simulation;

1. Introduction

Traditionally, a document-based approach was performed to the systems engineering. Information

of systems such as requirements and specifications was often conveyed and transmitted through

documents as text or graphics in the system lifecycle [1]. The completeness, consistency, and

relationships between requirements, design, analysis, and verification are challenging to assess,

making traceability and change impact assessments difficult.

The complexity of systems has increased significantly in recent years, and the increase of complexity

will continue dramatically in the future [2]. The complexity is reflected directly in the number of

requirements, interactions, functions, components, and the mutual dependencies between these

system elements. Complex systems are introduced in system engineering with the complexity

increasing. The nature of complex systems is quite different from traditional non-complex systems.

System complexity which poses a continuous challenge to systems engineering, extends both in

numbers and dependency of all kinds of system elements. The traditional approach is no longer

sufficient to manage complexity.

Model based systems engineering is the critical approach of future system engineering for coping

with complexity. The difference between model based systems engineering and traditional systems

engineering is that models are the prime artifacts of systems engineering [3, 4]. The ever-growing

system complexity is address with the system models, which are based on different levels of

abstraction of systems. Virtual verification and validation are supported by multi-disciplinary analysis

with continuously refined models. Early detection of defects could be realized, and design quality

can be improved. Consistency among documents could be guaranteed based on a model-generated

approach.

To adapt to the highly changing operational environments and threats [5], the informatization,

networking, and systematization levels are significantly increasing with the development of avionics

systems. These trends make system complexity increasing as any other complex system. As the

critical system for various aircraft platforms to accomplish mission objectives, high integration of

physical domains, complex functional domains, and deep coupling of logical fields are key

characteristics of advanced avionics systems. These key characteristics make the complexity of the

avionics system, which in terms of the continuous increase of requirements, system functions,

interactions and number of components, and internal/external interactions is accelerating. With the

 AGILE AVIONICS SYSTEM DEVELOPMENT

2

acceleration of technology updating, especially the rapid growth in information technology, the

system’s complexity and comprehensiveness are significantly improved. This acceleration leads to

the increase of system engineering activities and the intensification of difficulties. Meanwhile,

avionics systems need to adapt to the evolutionary acquisition and incremental development

business mode. It is urgent to develop an agile approach to accelerate innovation and improve the

quality and efficiency of avionics system design.

An agile and collaborative MBSE method is illustrated and applied to the development of an avionics

system according to the needs of supporting virtual verification and validation, rapid selection of

solutions, and iteration of system design. Complexity management and incremental

development/agile iteration are also introduced in the new method in this paper.

2. Collaborative Agile MBSE Method

2.1 Overview of the Method

An Agile method is applied to cope with system complexity and improve the quality of systems design.

Unlike the agile pattern in software development, the agile method in avionics systems mainly

provides a flexible iteration approach that focuses on incremental and parallel design, a balance

between iteration and schedule, continuous integration and verification in the concept and

development stage of the system lifecycle. Iterations are executed inside each process, rather than

just a single process. The agile method allows for a more flexible working approach that is more

realistic than traditional V models. It is possible that the downstream design work is feedbacked to

the requirements process and contributes to the formal requirements.

The Harmony aMBSE [6] and SYSMOD [7] are combined as the framework of the method. Additional

activities and customization, such as effectively incorporating existing knowledge and interaction

complexity management, are introduced in this paper. The method covers most technical processes

in the concept and development stage and parts of the technical management processes of

ISO15288 [8]. The agile method consists of planning for the project, stakeholder requirements

analysis, system requirements analysis, architectural analysis, architectural design, integrate and

validate the model, interaction complexity management, model quality management, and handover,

as shown in Figure 1. SysML diagrams are created flexibly based on the analysis need. There are

no strict rules on what kind and order of diagrams should be used for performing the given analysis.

Figure 1 – Overview of the agile method

Plan for Project

Stakeholder requirement Analysis

Architectural Analysis

Architectural Design

System Requirements Analysis

Integrate and Validate Model

Interaction

Coompleixity

Management

Model Quality

Management

Handover

FeedbackFeedback

Feedback

Stakeholder Reqiurements

Feedback

Model

System Requirements Feedback

Feedback

Model

Interactions

Architecuture

Model
Interactions

Traceability

Feedback

Subsystems

Feedback

Interactions

Validated Model

Feedback

Model

Simulation Result

Traceability

 AGILE AVIONICS SYSTEM DEVELOPMENT

3

2.2 Planning for Project

The project should be well planned to provide a good foundation for collaborative and agile

development. Conflict and omission may emerge due to the lack of planning. Project planning

includes:

Set up and maintain the modeling environment: This process provides a suitable modeling

environment to perform the practice. The modeling tool should be configured and embed into the

project for the implementation of MBSE.

Set up modeling standards and guidelines: models are commonly collaboratively developed by

multiply engineers. A minimal set of rules for using SysML constructs and how to organize the model

should be established. All model builders should comply with the same specification to ensure that

the final models are consistent and meet the requirements of the project and document generation.

Provide MBSE training: requisite training that including MBSE methodology, SysML, modeling tool

tutorial, and modeling standards is indispensable to ensure that assistance for applying the MBSE

methodology is provided in the project.

Tailor the MBSE method: tailor the given MBSE method to the specific need of the project based on

constraints and modeling purposes. The MBSE activities must accomplish the purpose and meet the

cost and schedule constraints of the project.

Define glossary: model elements such as actors, use cases, system architecture, and domain-

specific terminology are commonly shared in the project. These terminologies should be maintained

in a glossary for consistency in the whole project.

Set up model: considering many different engineering aspects may end up in a very confusing way

because of an unclear organization of the model elements. Therefore, properly organizing the model

is crucial for the understanding and usability of the model. A well-organized model project could

make the model more normative and much easier for management and collaboration. Model

structures such as packages with different purposes, model libraries, profiles should be well defined

in the model.

2.3 Stakeholder Requirements Analysis

Stakeholder requirements are captured and elicited by use cases [9]. Use cases are conceptualized

within the general object-oriented paradigm. Use case modeling starts from identifying actors that

interact with the system and the goals or objectives the system must fulfill from an outside

perspective. These goals or objectives are captured with the guidance of life cycle concepts,

including acquisition, deployment, operational, support, and retirement concepts. System contexts

are created with BDDs and IBDs to illustrate the system environments, stakeholders, and their

connections. Actors are identified from system environments and related stakeholders.

Functional boundaries of the system are well-defined by use cases with the observable interactions

of the system. Use Cases describe the interaction between the actor and the system and related to

a particular goal of the actors. Sequence diagrams are introduced to capture these interactions for

the elicitation of stakeholder requirements. The interactions focus on the stakeholder’s goals and the

quality and constraints of these goals, and all interactions serve the purposes of the stakeholders.

Include relationship (in the situation that different use cases invoke the same system functions) and

extend relationships are introduced to organize the structure of use cases.

Associations between use cases should be avoided to keep the independent of use cases, although

non-associations are unachievable due to the system complexity. A further mechanism is discussed

latterly in complexity management to eliminate the ambiguity between use cases in these exceptions.

Existing requirements and actors may be imported as sources of the given information and related

to use cases. Completeness and consistency analysis should be applied due to there may be

incomplete, inconsistent between these requirements.

2.4 System Requirements Analysis

System requirements analysis continues based on the stakeholder requirements analysis. System

requirements analysis focuses on the reaction of the system of the use cases while stakeholder

requirements focus on the external actors. The main goal of system requirements analysis with the

 AGILE AVIONICS SYSTEM DEVELOPMENT

4

use cases is to identify and define the system functions and the external functional interfaces.

Notice that the use case is a specification of behavior. The implementation of the behavior is modeled

using behavior diagrams with different aspects such as activity-based, interaction-based and state-

based diagrams in functional analysis. Blocks with the stereotype of “Use Case” are applied to

represent use cases and for further analysis.

Top-level functional requirements are identified from observable interactions of the use cases.

Activities that decompose the top-level functions are commonly directly used to describe the detailed

behaviors of use cases. Alternatively, sequence diagrams, state machines are used to describe use

case detailed behaviors. Interactions are modeled as asynchronous events; thus, functional

interfaces could be identified and characterized based on these interactions. IBDs are used to

formalize the interfaces from the consistency between structure and behaviors, and ports are used

to elicit the interactions points. Contracts of the ports are captured as “provided” and “required”

services defined by SysML element “Interface” or “Interface Block.”

Functional and interface requirements that both from existing requirements libraries and newly

identified will be grouped into use cases and traced back to stakeholder requirements. System

functions are modeled with stereotyped block “functional” to illustrate the hierarchy and functional

interfaces. These elements are presented in BDDs and IBDs to perform a further functional

architectural analysis and optimization. Black boxed view state machines are developed by

considering events from the external environments that cause state change and execute functions

described in the activity diagram to the external environments. The completeness, accuracy,

correctness, and consistency of the Functional and interface requirements are analyzed and verified

by the execution of the state machines to perform an early validation of stakeholder requirements.

Parametric diagrams are used for the nonfunctional analysis, while not all the requirements could be

related to use cases and could be analyzed with the state machine.

2.5 Architectural Analysis

Several reasonable candidate architecture solutions could meet the requirements in the design

space. Architectural choices are made based on the architectural analysis. A trade study is used to

compare all the solutions. Trade study could be multiple aspects or single aspect. A set of

assessment criteria will be defined to perform the architectural trade study. The assessment criteria

include many aspects that the system could optimize. Typical criteria might consist of cost,

development time, power, the cohesiveness of functions, performance (such as latency), size,

reliability, safety, reusability, etc.

Criteria computation follows after the criteria definition. Here take coupling Matrices as a case

example: functional allocation between functions and subsystems for each candidate solution is

performed to generate the N2 diagram, coupling values are then calculated.

Since not all criteria are equally important, weights are assigned to the criteria for the trade study.

An objective function is defined based on MOEs. MOEs are then assigned to candidate solutions to

computing the objective function. The selected solution is then the candidate solution which resulted

in the highest MOE score among the evaluated candidates. BDDs with constraint blocks and

parametric diagrams are used to create an analysis context and perform the evaluation.

2.6 Architectural Design

The architectural design focuses on the subsystem, their functionalities, interfaces, and how

subsystems accomplish system functionalities by collaboration. Subsystems are identified from the

base architecture selected in the architectural analysis. System functions that represent system

behaviors should be clearly allocated to subsystems. Interfaces between subsystems should be

identified based on the allocation. External interactions of the system should be allocated to

subsystems, and interfaces between system and actors should be updated as interfaces between

subsystems and actors. System data in terms of block properties also should be allocated to

subsystems. All these features must be decomposed into subsystem-level features that trace back

to the system-level source feature. New features are derived when the direct allocation cannot be

performed.

 AGILE AVIONICS SYSTEM DEVELOPMENT

5

Block definition diagrams will be used to show the subsystem’s types of ports interfaces and

properties. A common approach to performing function allocation is to refine the activity diagrams

from use case analysis into activity diagrams with swim lanes representing the different subsystems.

For the interface specification, interfaces between subsystems should be added when control flows

cross between different swim lanes. Another approach is to perform the refinement of sequence

diagrams with precise interactions between subsystems. Interfaces and connections of subsystems

then could be created from these interactions and presented with IBDs. Subsystem state machines

are synchronized to provide a global view of all the functionalities of the subsystems after the

allocation and interface definition of the subsystems.

2.7 Integrate and Validate Model

System models are integrated and validated after the models are built to support the validation of

the system requirements via simulation. A distributed integration and validation strategy is

considered to adapt to agility. Several factors influence the decision of strategy.

1. Performance: the scale of the complex system models often become huge; when a model is

considerably large and involves many objects, the single model would take a long time to

simulate and limit the amount of experimentation performed in the project, simulation delay would

arise with an interactive simulation of state machines.

2. Cooperation: the design of complex systems requires the cooperation of several teams from

different domains across the whole process. Models are distributed naturally, which complies

with the “divide and conquer” principle for complexity management.

3. Continuous Integration and Validation: A single integrated model means the project has to wait

for the completion of the model building or the finish of integration. It is difficult for incremental

development and continuous verification due to the lack of flexibility. The system model will be

repeatedly integrated or modified with the iteration of system design for supporting changes.

A distributed simulation that could accelerate the delivery of integrated capabilities of the system

models is particularly suitable for the models with asynchronous parallelism. Models could be linked

together as parts of larger models and interact directly over a communications network via

middleware. Advantages such as building independent, interoperable simulations could be facilitated.

2.8 Interaction Complexity Management

Managing complexity is the main challenge of complex systems development. Abstraction has long
been used as a means to cope with complexity by encapsulating complexity with the idea of “divide
and conquer”. Interaction truly defines the behavior of an object from its boundaries. Well-organized
interaction management would significantly enhance system complexity management. Interaction
complexity is managed based on the consistency of the model are considered. The SysML elements
for addressing interaction are signals and flow. Since interactions are mostly modeled with signals,
interactions complexity management is illustrated with the signal base interaction in the following
chapters. Interactions that are based on flow are processed in the same way.

The well-defined boundaries of objects would enhance a distinct interaction identification and better

interaction complexity management. A system consists of a set of elements that interact with one

another. To be compatible with this thought, the object in the system domain is a generalized concept.

Objects could be functional objects (such as use cases, activities, functions, and signals), logical

components or physical components, and so on.

As shown in Figure 2, interactions are classified into four categories based on their origination:

interactions from system boundary, interactions from use cases boundary, interaction from activities

boundary, and interactions from subsystems allocation. Consistency is kept by a vertical traceability

approach from the requirements analysis process to the architectural design process. It

is vital to notice that these categories are not based on the final status of the interactions.

 AGILE AVIONICS SYSTEM DEVELOPMENT

6

Figure 2 – Interaction categories with signals

Interactions from systems boundary and use cases boundary: interaction complexity issue arises
from the ever beginning of use case identification. Use cases are used to capture system functionality.
In other words, use cases represent functional characteristics of parts of systems. Two kinds of
interactions exist in use cases: external interactions between system and actors and internal
interaction of system between use cases. External interactions are characterized from system
boundary with a common understanding, while the existence and identification of interactions between
use cases need a further explanation.

Good use cases are independent from other use cases to allows independent analysis. What should
be noticed is that the ideal complete independence of use cases may not be achieved due to the
system complexity. The ideal complete independence means that the system functionalities are
combined rather than integrated organically. A combination of functionalities implies that the system
could be divided into unrelated systems to serve users’ goals, which is noncompliance with the
characteristic of complex systems. Association is inevitable between use cases when the actors get
their value with the execution of the use cases. Boundaries between use cases are crystallized by the
functional requirements related to use cases.

During the requirement analysis process, interactions between use cases are identified to eliminate

ambiguity between use cases and ensure the coordination and consistency of use cases. A

decoupling mechanism based on data definition and usage is introduced to illustrate the boundary

of use cases and ensure consistency between use cases. Data between use cases are identified as

the SysML elements of signals and flow schema. Traceability of these signals and flows are created

in the lately functional analysis process (trace to activities) and architectural design process (trace

to subsystems). Activities for keeping traceability of interactions between use cases are shown in

Figure 3.

Figure 3 – Interaction traceability illustrated with interactions from use cases boundaries

Interactions from Activities boundary: activities as functional objects are relatively equal with the

use case from the object-oriented perspective. Just as interactions between use cases, interactions

between activities also exist within the same use case. These interactions would be identified with

the functional analysis proceeding. The same tracing method is applied to these interactions.

Interactions From subsystems Allocation: interactions between subsystems emerge with the

allocation of actions to subsystems in the architectural design process. Interactions between

subsystems will be characterized by allocating activity partitions that can be used to perform the

behavioral allocation.

Interactions from the system boundary are either providers or consumers, while the other categories

of interactions have both provider and consumer roles inside the system. Four kinds of interactions

«signal»

Signal from Systems Boundary

«signal»

Signal from Use Cases Boundary

«signal»

Signal from Activities Boundary

«signal»

Signal From SubSystems

Allocation

«signal»

Signal

Identify Signals from Use Cases Boundaries

Modeling Signals in System Requirement

Analysis

Modeling Signals in Subsystems

behaviors

Signals Traceabilty

Signals
Traceabilty

 AGILE AVIONICS SYSTEM DEVELOPMENT

7

align their final states at the subsystem level in the architectural design process, as shown in Figure

4. Interactions from system boundaries eventually become interactions between subsystems and

actors. Interactions from subsystems allocation eventually become interactions between subsystem;

interactions from use cases boundary and activities boundary may become internal interaction of

subsystem which means the provider and consumer of the signals is the same subsystem.

Relationships between different classification methods of the signals are shown in Figure 5.

Figure 4 – Interaction traceability management

Figure 5 – Relationships between different classification methods

2.9 Model Quality Management

The review was the primary method to assure the design in traditional document-based system

engineering, while model quality is the assurance of model-based design. The quality of models is

affected by the knowledge and experience (both in the MBSE and avionics system domain) of

modelers and the quality assurance techniques applied. Model quality criteria should be established

to assess the quality of the models [10]. There are several criteria of model quality, such as

correctness, completeness, consistency, complexity, changeability, etc. Correctness, completeness,

and consistency are mainly considered in our method. Model quality is evaluated both by review and

simulation and analysis of the model.

Correctness: the correctness includes grammar correctness and content correctness. Grammar

correctness means that correct SysML elements and relations between these elements are created

correctly without violating rules and conventions. Content correctness means that the model

accurately represents the reality of the system.

Completeness: formal completeness and content completeness are considered. Formal

completeness means that all the necessary model elements are built, such as properties, ports,

connectors, interfaces, events, reception, states, transitions, actions, traceability. Content

completeness means all the necessary information and logic of the system have been described

without missing and with enough detail.

Consistency: some rules are built into SysML to ensure model consistency. For example, type

consistency between different interfaces, the consistency between behaviors and structures,

«signal»

Signal from Systems Boundary

«signal»

Signal from Use Cases Boundary

«signal»

Signal from Activities Boundary

«block,Use Case»

Use Case A

«block,Use Case»

Use Case B

«block,Use Case»

Use Case C

«block,Activity»

Activity A

«signal»

Signal From SubSystems Allocation

«block,Activity»

Activity B

«block,Activity»

Activity C

«block,Subsystem»

Subsystem A

«block,Subsystem»

Subsystem B

«block,Subsystem»

Subsystem C

«block,Subsystem»

Subsystem D

«block,Subsystem»

Subsystem E

«block,Subsystem»

Subsystem F

«block,Subsystem»

Subsystem G

«block,Activity»

Activity D

«block,Activity»

Activity E

«Provider» «Consumer»

«Consumer»

«Provider» «Consumer»

«Provider»

«signal»

Signal from Systems Boundary

«signal»

Signal from Use Cases

Boundary

«signal»

Signal from Activities Boundary

«signal»

Signal From SubSystems

Allocation

«signal,Final»

Intenal Interaction of

Subsystem

«signal,Final»

Interaction between

Subsystems

«signal,Final»

Interaction between

Subsystem and Actor

 AGILE AVIONICS SYSTEM DEVELOPMENT

8

consistency between different behavior diagrams.

Size and complexity metrics are introduced for the workload management of the IPT. Metrics

targeting models are characterized by the number of associations, messages, state transitions, etc.

The complexity of the describing model is measured by the state transition matrix in the state

machine.

2.10 Handover

Once the subsystem specifications are ready, they must be handed off for the following engineering

activities. Two kinds of handovers should be considered: from upstreaming design to the down

steaming design, from the high-level system design to low-level system design. From the

requirements view, the method should be requirements in and requirements out. For handover

between upstream and downstream: all model elements as kinds of requirements are handed off to

downstream for refinement, such as refining a logical interface to a physical interface. For handover

between different levels of systems, high-level requirements are identified, analyzed, and validated,

sub-requirements are generated based on the allocation, subsystem models together with the

requirements should be handed over to next-level system designing.

3. The practice of avionics system development

The method proposed in the above chapter is applied to an avionics system practice in this part. An

IPT is built for the collaborative and agile development of the avionics system and facilitating

communication between team members. Customized design knowledge is introduced in the avionics

system development based on the aircraft system design (such as requirements that hands over

from aircraft design) and the existing avionics system design library.

3.1 Planning for Project Practice

The following activities are performed for the planning of the avionics system practice.

• Standards including naming of modeling elements style, grammar and diagram layout are

established for the guidance of teamwork, as shown in Figure 6.

• Functional architecture analysis described in system requirement analysis is tailored due to the

schedule constraint in practice.

• The glossary that both covers MBSE knowledge and avionics systems knowledge are created

for the whole project.

• Model frame with the organization of packages is set up for a unified model structure.

Figure 6 – Modeling standards

Do Action1

Do Action2

Do Action3 Do Action4

Align Horiziontally

Align Vertically with Same

Interval

Global Rule

Font Name: HYQH;

Font Size:10;

Font Color:Default;

Contorl Flows Should be

Align Vertically

Line Style: Orthogonal

Action Rule

Naming: verb-object

structure;

Length:10 char;

Height:2 char;

 AGILE AVIONICS SYSTEM DEVELOPMENT

9

3.2 Stakeholder Requirement Analysis Practice

The avionics system is the core of the aircraft, which means that the avionics system would not solely

finish the users’ goals. The stakeholders and their requirements are different from the aircraft system.

The primary stakeholder requirements should emphasize fulfilling what the aircraft want from the

avionics system and necessarily keeping agreement with users’ goal. Theoretically, Actors of the

high-level system and architecture constitute a superset of actors of the low-level systems. Actors of

the aircraft and the architecture are introduced to identify the actors of the avionics system. Moreover,

new actors identified from the avionics system context are feedback to aircraft for the iteration of the

aircraft system.

Use cases of the avionics system mainly focus on the operational concept and support concept

(mainly focus on maintenance support) in our practice. Existing stakeholder requirements are used

to aid the identification of the use case. All stakeholder requirements from existing and newly

identified are allocated to use cases to keep traceability and validation purposes. The actors of the

avionics system range from the physical environment, other connected systems, and humans, as

shown in Figure 7.

Figure 7 – Use cases and actors of avionics system

3.3 System Requirements Analysis Practice

System requirements that are decomposed and allocated from a high-level system (base on the

work of aircraft requirements analysis) and a reusable avionics requirements library are imported as

the initial requirements of the avionics system. Comprehension agreement for the avionics system

requirements between aircraft and avionics developers is confirmed at the beginning of the analysis.

Activities which as shown in Figure 8, are used to describe the detailed behaviors of use cases.

External interfaces of the avionics systems are identified, as shown in Figure 9.

Avionics System

FMS

GroundCrew

Pilot

Manage Alert

Manage

Comunicaiton

Maitain System

Manage

Navigation

Manage System

Propulsion System

HMD

 AGILE AVIONICS SYSTEM DEVELOPMENT

10

Figure 8 – System requirement analysis with activity diagram

Figure 9 – External interfaces of avionics system

3.4 Architectural Analysis Practice

System functions, data, signals, and interfaces identified and defined from different use cases during

functional analysis end up in the system architectural analysis. These features are copied and

grouped to a new project with a block named “candidate solution” in the analysis context for the trade

study without merging the existing use cases. Conflicts that exist in system functions between

different use cases are solved after the grouping operation. Functionality integration, latency, weight,

size, reliability, safety, supply reliability criteria are the main criteria in this avionics system practice.

A considerable number of functions are moved into software to provide an integrated avionics system.

Function clustering that based on function types and layer pattern is performed as a pre-treatment.

These function sets are considered as a unity for cohesiveness criteria calculation. The trade study

context is illustrated in Figure 10.

Figure 10 – Architectural analysis context

3.5 Architectural Design Practice

Subsystems are modeled by blocks with the “Subsystem” stereotype. Black box activities created

Record Alert

Propulsion Alert FMS Alert

Display Alert

Generate Alert Voice

Data

Alert Voice Data

determine Alert level

Alert Level

Add to Active Alert

List

: HMD

p2AVonics

: Pilot

p2AVonics

: FMS

p2AVonics

: GroundCrew

p2AVonics

: Propulsion System

p2AVonics

: Avonics Candidate Solution

p2HMD

p2Pilot

p2GroundCrew

p2Propulsion

p2FMS

«block»

Avonics Candidate Solution

properties

 cohesiveness

 cost

 dimensions

 Latency

 reliability

 supply reliability

 weight

«block»

Avoincis System

Candidate Solution A

«block»

Avoincis System

Candidate Solution B

«block»

Trade Study

parts

 : Avoincis System Candidate Solution A

 : Avoincis System Candidate Solution B

 : moe

 «constraintProperty» : Criteria Caculation

«constraint»

Criteria Caculation

 AGILE AVIONICS SYSTEM DEVELOPMENT

11

during system requirement analysis are copied and refined into white box activities with activity

partitions for the avionics system function allocation, as shown in Figure 11. Necessary subsystem

interaction messages are added in sequence diagrams to coordinate with the white box activities.

All interactions are updated as between actors and subsystems or among subsystems. Subsystem

interfaces and connections are created based on the interactions. From the use case view, each use

case is accomplished by the collaboration of different subsystems. From the subsystems, their

functions are distributed in different use cases. Finally, the subsystem state machine is established

and integrated from different use cases, as shown in Figure 12.

Figure 11 – Refinement of activity with partitions

Figure 12 – Partial view of subsystem state machine

«allocate» :Display«allocate» :DMS «allocate» :IPS

Record Alert

Propulsion Alert FMS Alert

Display Alert

Generate Alert Voice

Data

Alert Voice Data

Determine Alert Level

Alert Level

Add to Active Alert

List

Idle

Processing Alert

entry / Add to Active Alert List

[Store]

[Alerting]

Determineing Level

entry / Determine Alert Level

Data Sending

do / Send (Alert Data) To DMS

Post Processing Alert

[Processing Voice]

[Processing Lighting]

[Processing Display]

Processing Voice Data

do / Alert Voice Data

entry / Generate Alert Voice Data

Sending Light Alert

do / Send (Alert Level)

Processing Display Data

do / Send(Alert Display Data)

FMS Alert Avionics AlertPropulsion Alert

 AGILE AVIONICS SYSTEM DEVELOPMENT

12

3.6 Integrate and validate Model Practice

A model-based distributed simulation environment is developed and sustained in practice for the

integration and validation of the models as shown in Figure 13. The simulation environment

architecture based on a co-simulation bus is developed to support to simulate models across the

local network and provides a high degree of flexibility. A DDS data manager controls data

synchronization between the different nodes throughout the co-simulation process.

Figure 13 – Distributed simulation environment

Models are distributed to several different machines to overcome the difficulty in simulating large-

scale systems. Load balancing and better simulation performance are guaranteed in this way.

Models can be mixed and integrated with matched interfaces. Integration and iteration of different

models could be carried out in an independent pattern. Incremental and continuous integration is

achieved by this environment.

Additionally, Individual engineers can focus on their familiar models, and model errors would be

isolated in a partial area in case of leading to a global impact on the whole project. Each model could

be modified and integrated with an independent pattern without interference. Separate models for

each subsystem are created from the use cases models. Both use case models and subsystem

models are integrated and validated with the distributed simulation environment to achieve multiply

views of validation purpose.

3.7 Interaction Complexity Management Practice

The interaction complexity management method is introduced in the above chapter. An example is

illustrated for a detailed explanation. “Manage mission” and “manage alert” are two independent

goals for the avionics system. Thus they are identified as two use cases. Manage mission would

accomplish mission planning, monitoring based on the aircraft missions and various influences from

the external and internal of the avionics system. A source of influence is internal of the avionics

system that belongs to the “manage alert” use case. “Manage alert” just focuses on identifying,

classifying, and sending alerts in various forms (display voice and lighting). These alerts may

influence the execution of the missions which should be analyzed by the “manage mission” use case.

An alert signal event generated from the manage alert use case and sent to the manage mission

use case is modeled for this interaction in the system requirement analysis. This interaction is

identified as an internal interaction of the same subsystem in the subsequence architectural design

process.

Figure 14 – Illustration of interaction complexity management

Bus

Model 1 Model 2 Actor Model

Adapter Adapter Adapter

«signal»

Propolsion Alert

«block,Subsystem»

IPS

«block,Use Case»

Manage Alert

«block,Use Case»

Manage Mission

«block,Activity»

classify Alert

«block,Activity»

Analysis Mission Influence

«Consumer»«Provider»

 AGILE AVIONICS SYSTEM DEVELOPMENT

13

3.8 Model Quality Management Practice

A four-layer model for system model quality management that covers correctness, completeness,

and consistency is created in our practice, as shown in Figure 15.

The first layer focus on the correctness of grammar and standard compliance. Gramma correctness

is checked by checking rules that are supported by the modeling tool, while standard compliance is

checked by reviews.

The second layer focus on the consistency of the model. The consistency that including type

consistency, consistency between behaviors and structures, consistency between different behavior

diagrams is checked by checking rules with the support of the modeling tool. Elements defined

without usage are deleted by this check method, such as a defined signal reception without a

corresponding trigger in the state machine.

The third layer focus on the content correctness of the model. Models are validated by simulations

and reviews to ensure that the models provide the correct modeling of reality.

The fourth layer focuses on formal completeness and content completeness. Coverage analysis

checks the formal completeness so that all the requirements could trace to subsystem solutions with

all required model elements. The content completeness is checked by the same method with content

correctness which focuses on the completeness of the model.

State transition matrices are used to the complexity of the model. The state transition is an index

that reflects the logic complexity of the avionics system. With the inheritance between simple state

and composition state， the elements of the transition matrix are calculated with the creation of the

state transition matrix only with simple states as rows and columns.

Figure 15 –Model for system model quality management

3.9 Handover Practice

The subsystem models are separated from the system models. The contents include subsystem

blocks with properties, ports, operations, receptions, state machines, interfaces used in ports, actors

that interact with subsystems. Subsystem requirements are derived from subsystems allocation at

last.

4. Conclusion

An agile method for avionics system development is applied to cope with the complexity challenge

in this paper. The method is formed to adapt to the agile and collaborative pattern of avionics system

development. An Interaction complexity management method is introduced, and the effeteness is

proved in practice. A suitable distributed integration and validation method and practice are

introduced to support the avionics system’s incremental development and continuous integration. A

quality model which consists of correctness, completeness, consistency, complexity for the system

model is initially constructed. More kinds of complexity should be managed, and further improvement

for the quality model is required in future research.

Layer 4: Completeness

Formal Completeness Content Completeness

Layer 1: Correctness of Gramma and Standard Compliance

Layer 2: Consistency

Type consistency

Structure and Behaivor

Consistency

Different Behavior View

Consistency

Layer 3:Content Correctness

 AGILE AVIONICS SYSTEM DEVELOPMENT

14

References

[1] Friedenthal, Sanford, Alan Moore, and Rick Steiner. A practical guide to SysML: the systems modeling

language. 3st edition, Morgan Kaufmann, 2014.

[2] Holt, Jon, and Simon Perry. SysML for systems engineering. 2st edition, IET, 2013.

[3] Borky, John M., and Thomas H. Bradley. Effective model-based systems engineering. 1st edition,
Springer, 2019.

[4] Hart, Laura E. Introduction to model-based system engineering (MBSE) and SysML. Delaware Valley
INCOSE Chapter Meeting. Mount Laurel, New Jersey: Ramblewood Country Club, 2015.

[5] Gaska, Thomas, Chris Watkin, and Yu Chen. Integrated modular avionics-past, present, and future. IEEE
Aerospace and Electronic Systems Magazine Vol. 30, No. 9, pp 12-23, 2015.

[6] Douglass, Bruce Powel. Agile systems engineering. 1st edition, Morgan Kaufmann, 2015.

[7] Weilkiens, Tim. SYSMOD-The systems modeling toolbox-pragmatic MBSE with SysML. 3st edition, Lulu.
com, 2016.

[8] Haskins, Cecilia, Kevin Forsberg, Michael Krueger, D. Walden, and D. Hamelin. Systems engineering
handbook. 4st edition, John Wiley & Sons, Inc, 2006.

[9] Gomaa, Hassan, and E. Olimpiew. The role of use cases in requirements and analysis modeling. Workshop
on Use Cases in Model-Driven Software Engineering. Montego Bay, Jamaica. 2005.

[10] Mohagheghi, Parastoo, Vegard Dehlen, and Tor Neple. Definitions and approaches to model quality in
model-based software development–A review of literature. Information and software technology, Vol. 51, No.

12, pp 1646-1669, 2009.

5. Contact Author Email Address

Lei Dong: 1409881551@qq.com

6. Copyright Statement

The authors confirm that they, and their organization, hold copyright on all of the original material included in this

paper. The authors also confirm that they have obtained permission, from the copyright holder of any third party

material included in this paper, to publish it as part of their paper. The authors confirm that they give permission,

or have obtained permission from the copyright holder of this paper, for the publication and distribution of this

paper as part of the ICAS proceedings or as individual off-prints from the proceeding

