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Abstract 

Model based systems engineering is the critical approach of future system engineering for coping with 

complexity. Key characteristics of high integration of physical domains, complex functional domains, and deep 

coupling of logical fields make the complexity of avionics systems continuously increasing. As the core of 

various aircraft platforms, avionics systems must adapt to the evolutionary acquisition and incremental 

development business mode. An Agile method focused on Incremental and parallel design, the balance 

between iteration and schedule, continuous integration and verification is applied to cope with system 

complexity and improve the quality of systems design in this paper. An interaction complexity management 

method is introduced to enhance system complexity management. A distributed integration and validation 

strategy and simulation environment suitable for adapting to the agile pattern are presented. The practice of 

an avionics system is presented to illustrate the agile method, and customized steps are applied based on the 

project’s specific needs. 

Keywords: MBSE; Avionics System; Agile; Collaborative Design; Distributed Simulation;  

1.  Introduction 

Traditionally, a document-based approach was performed to the systems engineering. Information 

of systems such as requirements and specifications was often conveyed and transmitted through 

documents as text or graphics in the system lifecycle [1]. The completeness, consistency, and 

relationships between requirements, design, analysis, and verification are challenging to assess, 

making traceability and change impact assessments difficult.  

The complexity of systems has increased significantly in recent years, and the increase of complexity 

will continue dramatically in the future [2]. The complexity is reflected directly in the number of 

requirements, interactions, functions, components, and the mutual dependencies between these 

system elements. Complex systems are introduced in system engineering with the complexity 

increasing. The nature of complex systems is quite different from traditional non-complex systems. 

System complexity which poses a continuous challenge to systems engineering, extends both in 

numbers and dependency of all kinds of system elements. The traditional approach is no longer 

sufficient to manage complexity. 

Model based systems engineering is the critical approach of future system engineering for coping 

with complexity. The difference between model based systems engineering and traditional systems 

engineering is that models are the prime artifacts of systems engineering [3, 4]. The ever-growing 

system complexity is address with the system models, which are based on different levels of 

abstraction of systems. Virtual verification and validation are supported by multi-disciplinary analysis 

with continuously refined models. Early detection of defects could be realized, and design quality 

can be improved. Consistency among documents could be guaranteed based on a model-generated 

approach. 

To adapt to the highly changing operational environments and threats [5], the informatization,  

networking, and systematization levels are significantly increasing with the development of avionics 

systems. These trends make system complexity increasing as any other complex system. As the 

critical system for various aircraft platforms to accomplish mission objectives, high integration of 

physical domains, complex functional domains, and deep coupling of logical fields are key 

characteristics of advanced avionics systems. These key characteristics make the complexity of the 

avionics system, which in terms of the continuous increase of requirements, system functions, 

interactions and number of components, and internal/external interactions is accelerating. With the 
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acceleration of technology updating, especially the rapid growth in information technology, the 

system’s complexity and comprehensiveness are significantly improved. This acceleration leads to 

the increase of system engineering activities and the intensification of difficulties. Meanwhile, 

avionics systems need to adapt to the evolutionary acquisition and incremental development 

business mode. It is urgent to develop an agile approach to accelerate innovation and improve the 

quality and efficiency of avionics system design. 

An agile and collaborative MBSE method is illustrated and applied to the development of an avionics 

system according to the needs of supporting virtual verification and validation, rapid selection of 

solutions, and iteration of system design. Complexity management and incremental 

development/agile iteration are also introduced in the new method in this paper.  

2. Collaborative Agile MBSE Method 

2.1 Overview of the Method  

An Agile method is applied to cope with system complexity and improve the quality of systems design. 

Unlike the agile pattern in software development, the agile method in avionics systems mainly 

provides a flexible iteration approach that focuses on incremental and parallel design, a balance 

between iteration and schedule, continuous integration and verification in the concept and 

development stage of the system lifecycle. Iterations are executed inside each process, rather than 

just a single process. The agile method allows for a more flexible working approach that is more 

realistic than traditional V models. It is possible that the downstream design work is feedbacked to 

the requirements process and contributes to the formal requirements. 

The Harmony aMBSE [6] and SYSMOD [7] are combined as the framework of the method. Additional 

activities and customization, such as effectively incorporating existing knowledge and interaction 

complexity management, are introduced in this paper. The method covers most technical processes 

in the concept and development stage and parts of the technical management processes of 

ISO15288 [8]. The agile method consists of planning for the project, stakeholder requirements 

analysis, system requirements analysis, architectural analysis, architectural design, integrate and 

validate the model, interaction complexity management, model quality management, and handover, 

as shown in Figure 1. SysML diagrams are created flexibly based on the analysis need. There are 

no strict rules on what kind and order of diagrams should be used for performing the given analysis.  

 

Figure 1 – Overview of the agile method 
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2.2 Planning for Project 

The project should be well planned to provide a good foundation for collaborative and agile 

development. Conflict and omission may emerge due to the lack of planning. Project planning 

includes:  

Set up and maintain the modeling environment: This process provides a suitable modeling 

environment to perform the practice. The modeling tool should be configured and embed into the 

project for the implementation of MBSE. 

Set up modeling standards and guidelines: models are commonly collaboratively developed by 

multiply engineers. A minimal set of rules for using SysML constructs and how to organize the model 

should be established. All model builders should comply with the same specification to ensure that 

the final models are consistent and meet the requirements of the project and document generation.  

Provide MBSE training: requisite training that including MBSE methodology, SysML, modeling tool 

tutorial, and modeling standards is indispensable to ensure that assistance for applying the MBSE 

methodology is provided in the project. 

Tailor the MBSE method: tailor the given MBSE method to the specific need of the project based on 

constraints and modeling purposes. The MBSE activities must accomplish the purpose and meet the 

cost and schedule constraints of the project. 

Define glossary: model elements such as actors, use cases, system architecture, and domain-

specific terminology are commonly shared in the project. These terminologies should be maintained 

in a glossary for consistency in the whole project. 

Set up model: considering many different engineering aspects may end up in a very confusing way 

because of an unclear organization of the model elements. Therefore, properly organizing the model 

is crucial for the understanding and usability of the model. A well-organized model project could 

make the model more normative and much easier for management and collaboration. Model 

structures such as packages with different purposes, model libraries, profiles should be well defined 

in the model.  

2.3 Stakeholder Requirements Analysis 

Stakeholder requirements are captured and elicited by use cases [9]. Use cases are conceptualized 

within the general object-oriented paradigm. Use case modeling starts from identifying actors that 

interact with the system and the goals or objectives the system must fulfill from an outside 

perspective. These goals or objectives are captured with the guidance of life cycle concepts, 

including acquisition, deployment, operational, support, and retirement concepts. System contexts 

are created with BDDs and IBDs to illustrate the system environments, stakeholders, and their 

connections. Actors are identified from system environments and related stakeholders. 

Functional boundaries of the system are well-defined by use cases with the observable interactions 

of the system. Use Cases describe the interaction between the actor and the system and related to 

a particular goal of the actors. Sequence diagrams are introduced to capture these interactions for 

the elicitation of stakeholder requirements. The interactions focus on the stakeholder’s goals and the 

quality and constraints of these goals, and all interactions serve the purposes of the stakeholders. 

Include relationship (in the situation that different use cases invoke the same system functions) and 

extend relationships are introduced to organize the structure of use cases.  

Associations between use cases should be avoided to keep the independent of use cases, although 

non-associations are unachievable due to the system complexity. A further mechanism is discussed 

latterly in complexity management to eliminate the ambiguity between use cases in these exceptions. 

Existing requirements and actors may be imported as sources of the given information and related 

to use cases. Completeness and consistency analysis should be applied due to there may be 

incomplete, inconsistent between these requirements. 

2.4 System Requirements Analysis 

System requirements analysis continues based on the stakeholder requirements analysis. System 

requirements analysis focuses on the reaction of the system of the use cases while stakeholder 

requirements focus on the external actors. The main goal of system requirements analysis with the 
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use cases is to identify and define the system functions and the external functional interfaces.  

Notice that the use case is a specification of behavior. The implementation of the behavior is modeled 

using behavior diagrams with different aspects such as activity-based, interaction-based and state-

based diagrams in functional analysis. Blocks with the stereotype of “Use Case” are applied to 

represent use cases and for further analysis. 

Top-level functional requirements are identified from observable interactions of the use cases.  

Activities that decompose the top-level functions are commonly directly used to describe the detailed 

behaviors of use cases. Alternatively, sequence diagrams, state machines are used to describe use 

case detailed behaviors. Interactions are modeled as asynchronous events; thus, functional 

interfaces could be identified and characterized based on these interactions. IBDs are used to 

formalize the interfaces from the consistency between structure and behaviors, and ports are used 

to elicit the interactions points. Contracts of the ports are captured as “provided” and “required” 

services defined by SysML element “Interface” or “Interface Block.” 

Functional and interface requirements that both from existing requirements libraries and newly 

identified will be grouped into use cases and traced back to stakeholder requirements. System 

functions are modeled with stereotyped block “functional” to illustrate the hierarchy and functional 

interfaces. These elements are presented in BDDs and IBDs to perform a further functional 

architectural analysis and optimization. Black boxed view state machines are developed by 

considering events from the external environments that cause state change and execute functions 

described in the activity diagram to the external environments. The completeness, accuracy, 

correctness, and consistency of the Functional and interface requirements are analyzed and verified 

by the execution of the state machines to perform an early validation of stakeholder requirements. 

Parametric diagrams are used for the nonfunctional analysis, while not all the requirements could be 

related to use cases and could be analyzed with the state machine.  

2.5 Architectural Analysis 

Several reasonable candidate architecture solutions could meet the requirements in the design 

space. Architectural choices are made based on the architectural analysis. A trade study is used to 

compare all the solutions. Trade study could be multiple aspects or single aspect. A set of 

assessment criteria will be defined to perform the architectural trade study. The assessment criteria 

include many aspects that the system could optimize. Typical criteria might consist of cost, 

development time, power, the cohesiveness of functions, performance (such as latency), size, 

reliability, safety, reusability, etc. 

Criteria computation follows after the criteria definition. Here take coupling Matrices as a case 

example: functional allocation between functions and subsystems for each candidate solution is 

performed to generate the N2 diagram, coupling values are then calculated.  

Since not all criteria are equally important, weights are assigned to the criteria for the trade study. 

An objective function is defined based on MOEs. MOEs are then assigned to candidate solutions to 

computing the objective function. The selected solution is then the candidate solution which resulted 

in the highest MOE score among the evaluated candidates. BDDs with constraint blocks and 

parametric diagrams are used to create an analysis context and perform the evaluation. 

2.6 Architectural Design 

The architectural design focuses on the subsystem, their functionalities, interfaces, and how 

subsystems accomplish system functionalities by collaboration. Subsystems are identified from the 

base architecture selected in the architectural analysis. System functions that represent system 

behaviors should be clearly allocated to subsystems. Interfaces between subsystems should be 

identified based on the allocation. External interactions of the system should be allocated to 

subsystems, and interfaces between system and actors should be updated as interfaces between 

subsystems and actors. System data in terms of block properties also should be allocated to 

subsystems. All these features must be decomposed into subsystem-level features that trace back 

to the system-level source feature. New features are derived when the direct allocation cannot be 

performed. 
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Block definition diagrams will be used to show the subsystem’s types of ports interfaces and 

properties. A common approach to performing function allocation is to refine the activity diagrams 

from use case analysis into activity diagrams with swim lanes representing the different subsystems. 

For the interface specification, interfaces between subsystems should be added when control flows 

cross between different swim lanes. Another approach is to perform the refinement of sequence 

diagrams with precise interactions between subsystems.  Interfaces and connections of subsystems 

then could be created from these interactions and presented with IBDs. Subsystem state machines 

are synchronized to provide a global view of all the functionalities of the subsystems after the 

allocation and interface definition of the subsystems.  

2.7 Integrate and Validate Model 

System models are integrated and validated after the models are built to support the validation of 

the system requirements via simulation. A distributed integration and validation strategy is 

considered to adapt to agility. Several factors influence the decision of strategy.  

1. Performance: the scale of the complex system models often become huge; when a model is 

considerably large and involves many objects, the single model would take a long time to 

simulate and limit the amount of experimentation performed in the project, simulation delay would 

arise with an interactive simulation of state machines. 

2. Cooperation: the design of complex systems requires the cooperation of several teams from 

different domains across the whole process. Models are distributed naturally, which complies 

with the “divide and conquer” principle for complexity management. 

3. Continuous Integration and Validation: A single integrated model means the project has to wait 

for the completion of the model building or the finish of integration. It is difficult for incremental 

development and continuous verification due to the lack of flexibility. The system model will be 

repeatedly integrated or modified with the iteration of system design for supporting changes. 

A distributed simulation that could accelerate the delivery of integrated capabilities of the system 

models is particularly suitable for the models with asynchronous parallelism. Models could be linked 

together as parts of larger models and interact directly over a communications network via 

middleware. Advantages such as building independent, interoperable simulations could be facilitated.  

2.8 Interaction Complexity Management 

Managing complexity is the main challenge of complex systems development. Abstraction has long 
been used as a means to cope with complexity by encapsulating complexity with the idea of “divide 
and conquer”. Interaction truly defines the behavior of an object from its boundaries. Well-organized 
interaction management would significantly enhance system complexity management. Interaction 
complexity is managed based on the consistency of the model are considered. The SysML elements 
for addressing interaction are signals and flow. Since interactions are mostly modeled with signals, 
interactions complexity management is illustrated with the signal base interaction in the following 
chapters. Interactions that are based on flow are processed in the same way. 

The well-defined boundaries of objects would enhance a distinct interaction identification and better 

interaction complexity management. A system consists of a set of elements that interact with one 

another. To be compatible with this thought, the object in the system domain is a generalized concept. 

Objects could be functional objects (such as use cases, activities, functions, and signals), logical 

components or physical components, and so on.  

As shown in Figure 2, interactions are classified into four categories based on their origination: 

interactions from system boundary, interactions from use cases boundary, interaction from activities 

boundary, and interactions from subsystems allocation. Consistency is kept by a vertical traceability 

approach from the requirements analysis process to the architectural design process. It 

is vital to notice that these categories are not based on the final status of the interactions. 
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Figure 2 – Interaction categories with signals 

Interactions from systems boundary and use cases boundary: interaction complexity issue arises 
from the ever beginning of use case identification.  Use cases are used to capture system functionality. 
In other words, use cases represent functional characteristics of parts of systems. Two kinds of 
interactions exist in use cases: external interactions between system and actors and internal 
interaction of system between use cases. External interactions are characterized from system 
boundary with a common understanding, while the existence and identification of interactions between 
use cases need a further explanation. 

Good use cases are independent from other use cases to allows independent analysis. What should 
be noticed is that the ideal complete independence of use cases may not be achieved due to the 
system complexity. The ideal complete independence means that the system functionalities are 
combined rather than integrated organically. A combination of functionalities implies that the system 
could be divided into unrelated systems to serve users’ goals, which is noncompliance with the 
characteristic of complex systems. Association is inevitable between use cases when the actors get 
their value with the execution of the use cases. Boundaries between use cases are crystallized by the 
functional requirements related to use cases.  

During the requirement analysis process, interactions between use cases are identified to eliminate 

ambiguity between use cases and ensure the coordination and consistency of use cases.  A 

decoupling mechanism based on data definition and usage is introduced to illustrate the boundary 

of use cases and ensure consistency between use cases. Data between use cases are identified as 

the SysML elements of signals and flow schema.  Traceability of these signals and flows are created 

in the lately functional analysis process (trace to activities) and architectural design process (trace 

to subsystems).  Activities for keeping traceability of interactions between use cases are shown in 

Figure 3. 

 

Figure 3 – Interaction traceability illustrated with interactions from use cases boundaries  
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align their final states at the subsystem level in the architectural design process, as shown in Figure 

4. Interactions from system boundaries eventually become interactions between subsystems and 

actors. Interactions from subsystems allocation eventually become interactions between subsystem; 

interactions from use cases boundary and activities boundary may become internal interaction of 

subsystem which means the provider and consumer of the signals is the same subsystem. 

Relationships between different classification methods of the signals are shown in Figure 5. 

 

Figure 4 – Interaction traceability management 

 

Figure 5 – Relationships between different classification methods  
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consistency between different behavior diagrams.  

Size and complexity metrics are introduced for the workload management of the IPT. Metrics 

targeting models are characterized by the number of associations, messages, state transitions, etc. 

The complexity of the describing model is measured by the state transition matrix in the state 

machine. 

2.10 Handover 

Once the subsystem specifications are ready, they must be handed off for the following engineering 

activities. Two kinds of handovers should be considered: from upstreaming design to the down 

steaming design, from the high-level system design to low-level system design. From the 

requirements view, the method should be requirements in and requirements out. For handover 

between upstream and downstream: all model elements as kinds of requirements are handed off to 

downstream for refinement, such as refining a logical interface to a physical interface. For handover 

between different levels of systems, high-level requirements are identified, analyzed, and validated, 

sub-requirements are generated based on the allocation, subsystem models together with the 

requirements should be handed over to next-level system designing. 

3. The practice of   avionics system development 

The method proposed in the above chapter is applied to an avionics system practice in this part. An 

IPT is built for the collaborative and agile development of the avionics system and facilitating 

communication between team members. Customized design knowledge is introduced in the avionics 

system development based on the aircraft system design (such as requirements that hands over 

from aircraft design) and the existing avionics system design library.  

3.1 Planning for Project Practice 

The following activities are performed for the planning of the avionics system practice. 

• Standards including naming of modeling elements style, grammar and diagram layout are 

established for the guidance of teamwork, as shown in Figure 6.  

• Functional architecture analysis described in system requirement analysis is tailored due to the 

schedule constraint in practice.  

• The glossary that both covers MBSE knowledge and avionics systems knowledge are created 

for the whole project.  

• Model frame with the organization of packages is set up for a unified model structure. 

 

Figure 6 – Modeling standards  
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3.2 Stakeholder Requirement Analysis Practice 

The avionics system is the core of the aircraft, which means that the avionics system would not solely 

finish the users’ goals. The stakeholders and their requirements are different from the aircraft system.  

The primary stakeholder requirements should emphasize fulfilling what the aircraft want from the 

avionics system and necessarily keeping agreement with users’ goal. Theoretically, Actors of the 

high-level system and architecture constitute a superset of actors of the low-level systems. Actors of 

the aircraft and the architecture are introduced to identify the actors of the avionics system. Moreover, 

new actors identified from the avionics system context are feedback to aircraft for the iteration of the 

aircraft system.   

Use cases of the avionics system mainly focus on the operational concept and support concept 

(mainly focus on maintenance support) in our practice. Existing stakeholder requirements are used 

to aid the identification of the use case. All stakeholder requirements from existing and newly 

identified are allocated to use cases to keep traceability and validation purposes. The actors of the 

avionics system range from the physical environment, other connected systems, and humans, as 

shown in Figure 7. 

 

Figure 7 – Use cases and actors of avionics system 
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Figure 8 – System requirement analysis with activity diagram 

 

Figure 9 – External interfaces of avionics system 
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Figure 10 – Architectural analysis context 
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during system requirement analysis are copied and refined into white box activities with activity 

partitions for the avionics system function allocation, as shown in Figure 11. Necessary subsystem 

interaction messages are added in sequence diagrams to coordinate with the white box activities. 

All interactions are updated as between actors and subsystems or among subsystems. Subsystem 

interfaces and connections are created based on the interactions. From the use case view, each use 

case is accomplished by the collaboration of different subsystems. From the subsystems, their 

functions are distributed in different use cases. Finally, the subsystem state machine is established 

and integrated from different use cases, as shown in Figure 12. 

 

Figure 11 – Refinement of activity with partitions 

 

Figure 12 – Partial view of subsystem state machine 
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3.6 Integrate and validate Model Practice 

A model-based distributed simulation environment is developed and sustained in practice for the 

integration and validation of the models as shown in Figure 13. The simulation environment 

architecture based on a co-simulation bus is developed to support to simulate models across the 

local network and provides a high degree of flexibility. A DDS data manager controls data 

synchronization between the different nodes throughout the co-simulation process.  

 

Figure 13 – Distributed simulation environment 
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be modified and integrated with an independent pattern without interference. Separate models for 

each subsystem are created from the use cases models. Both use case models and subsystem 

models are integrated and validated with the distributed simulation environment to achieve multiply 

views of validation purpose. 

3.7 Interaction Complexity Management Practice 

The interaction complexity management method is introduced in the above chapter. An example is 

illustrated for a detailed explanation.  “Manage mission” and “manage alert” are two independent 

goals for the avionics system. Thus they are identified as two use cases. Manage mission would 

accomplish mission planning, monitoring based on the aircraft missions and various influences from 

the external and internal of the avionics system. A source of influence is internal of the avionics 

system that belongs to the “manage alert” use case. “Manage alert” just focuses on identifying, 

classifying, and sending alerts in various forms (display voice and lighting). These alerts may 

influence the execution of the missions which should be analyzed by the “manage mission” use case.  

An alert signal event generated from the manage alert use case and sent to the manage mission 

use case is modeled for this interaction in the system requirement analysis. This interaction is 

identified as an internal interaction of the same subsystem in the subsequence architectural design 

process. 

 

Figure 14 – Illustration of interaction complexity management  

Bus

Model 1 Model 2 Actor Model

Adapter Adapter Adapter

«signal»

Propolsion Alert

«block,Subsystem»

IPS

«block,Use Case»

Manage Alert

«block,Use Case»

Manage Mission

«block,Activity»

classify Alert

«block,Activity»

Analysis Mission Influence

«Consumer»«Provider»



 AGILE AVIONICS SYSTEM DEVELOPMENT 

13 

 

 

3.8 Model Quality Management Practice 

A four-layer model for system model quality management that covers correctness, completeness, 

and consistency is created in our practice, as shown in Figure 15. 

The first layer focus on the correctness of grammar and standard compliance. Gramma correctness 

is checked by checking rules that are supported by the modeling tool, while standard compliance is 

checked by reviews.  

The second layer focus on the consistency of the model. The consistency that including type 

consistency, consistency between behaviors and structures, consistency between different behavior 

diagrams is checked by checking rules with the support of the modeling tool. Elements defined 

without usage are deleted by this check method, such as a defined signal reception without a 

corresponding trigger in the state machine. 

The third layer focus on the content correctness of the model. Models are validated by simulations 

and reviews to ensure that the models provide the correct modeling of reality. 

The fourth layer focuses on formal completeness and content completeness. Coverage analysis 

checks the formal completeness so that all the requirements could trace to subsystem solutions with 

all required model elements. The content completeness is checked by the same method with content 

correctness which focuses on the completeness of the model.  

State transition matrices are used to the complexity of the model. The state transition is an index 

that reflects the logic complexity of the avionics system. With the inheritance between simple state 

and composition state， the elements of the transition matrix are calculated with the creation of the 

state transition matrix only with simple states as rows and columns. 

 

Figure 15 –Model for system model quality management  

3.9 Handover Practice 

The subsystem models are separated from the system models. The contents include subsystem 

blocks with properties, ports, operations, receptions, state machines, interfaces used in ports, actors 

that interact with subsystems. Subsystem requirements are derived from subsystems allocation at 

last. 

4. Conclusion 

An agile method for avionics system development is applied to cope with the complexity challenge 

in this paper. The method is formed to adapt to the agile and collaborative pattern of avionics system 

development. An Interaction complexity management method is introduced, and the effeteness is 

proved in practice. A suitable distributed integration and validation method and practice are 

introduced to support the avionics system’s incremental development and continuous integration. A 

quality model which consists of correctness, completeness, consistency, complexity for the system 

model is initially constructed. More kinds of complexity should be managed, and further improvement 

for the quality model is required in future research. 
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