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Abstract 

Autonomous flight has been highly valued by academia and industrial circles. On one hand, it could replace 

the pilot, cutting down the pilot’s training & use costs and solving the problem of pilot’s shortage. On the 

other hand, it could cope with severe weather conditions and emergencies better than the pilot’s flight, 

improving flight safety. The classic control methods used for autonomous flight are mostly about rule-based 

methods. However their application scenarios are very limited, because the establishment of rules is very 

difficult. While machine learning based methods are mainly about the low-level behavior learning methods, 

and the high-level intention learning methods are unusual. This paper presents a new autonomous flight 

control method in which both the low-level learning and the high-level learning are taken into consideration 

coordinately. According to the flight stages of take-off, cruise and landing, three clusters of neural networks 

are built respectively to bridge the gap between flight states and relative actions. At the same time, the idea 

of fuzzy decision is introduced to implement the top intervention to make a dynamic route adjustment when 

the route deviates from the predefined target to a certain probability. In the X-Plane flight simulation 

experiment environment, as the test carrier, the aircraft of Cessna successfully completed the optimal route 

autonomous flight under different wind-forces, which proved the correctness of the presented method. 
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1. Introduction 
Autonomous flight has been highly valued by academia and industrial circles. On one hand, it 

could replace the pilot, cutting down the pilot’s training & use costs and solving the problem of 

pilot’s shortage. On the other hand, it could cope with severe weather conditions and emergencies 

better than the pilot’s flight, improving flight safety. 

There are some related programs. The program of Aircrew Labor In-cockpit Automation System 

(ALIAS) supported by DARPA [1] intends to develop a portable, extensible & tailorable, drop-in & 

removable kit including hardware and software that enables management of all flight activities. On 

the premise of minimum modification, an automated assistant working 24 hours a day and 7 days a 

week will be installed on the existent aircraft to implement the planned activities for the whole flight 

from take-off to landing even in the face of contingency events such as aircraft system failures. The 

ALIAS program can be divided to three phases. The objective of Phase I is to demonstrate the 

performance of the system in a ground-based simulator. The objective of Phase II is to enhance 

and mature the Phase I system to support the initial flight test on a contractor-sourced aircraft and 

to demonstrate rapid system portability on the ground, including demonstration of the knowledge 

acquisition approach. The objective of Phase III is to continue the evolution of the system by 

porting the system into the specified Phase III flight test aircraft and validating the mission and 

autonomy interface. Final demonstration will include a flight test activity that exercises the system 

in command operation for a minimum of 12 hours of flight, including a complete logistics or ISR 

flight profile from take-off to landing, through contingency events. At now, the previous two phases 

have been completed and the program goes into Phase III, choosing the performers and 

evaluating the research schemes. 

The program of Common Aircraft Retrofit for Novel Autonomous Control (CARNAC) supported 

by AFRL [2] has the similar goal. With no access to any aircraft interface, a robot installed on the 
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pilot’s chair will execute the flight control by reading the information of all instruments in cockpit 

including the data displayed on the glass display. CARNAC envisions a robot with the basic 

software of flight control algorithms that enables to learn the concrete control method to the 

specified aircraft rapidly. It is expected that the prototype will be introduced in recent years and the 

autonomous flight test will be performed in a ground-based simulator. 

The same also the key point to the success of the above programs is they use AI to help to 

finish the autonomous flight control. In addition to complete the routine activities, it is able to deal 

with the uncertain events as well. 

Nowadays, the classic flight control methods [3] like the methods of Proportional Integral 

Derivative control (PID control) and Finite-State Automation control are mostly about rule-based 

methods. However their application scenarios are very limited, because the establishment of rules 

is very difficult. Manually designing and developing all the necessary rules covering all possible 

eventualities to handle the complete spectrum of flight scenarios and uncertainties ranging from 

normal to emergency situations might be unpractical. While the machine learning based methods 

developing in recent years are mainly about the low-level behavior learning methods, and the high-

level intention learning methods are unusual. Furthermore, they are independent which may not 

give full play to the two learning methods. [4] & [5] bridge the gap between the low-level learning 

and the high-level learning. They take them into consideration by neural networks. As is known, if 

the neural networks play a good role, they must rely on big data. Since the uncertain contingency 

events during the practical flight are usually small data, it is debatable whether the neural networks 

are available under this circumstance. 

In order to ensure the effective control for the whole flight, this paper presents a new 

autonomous flight control method in which three clusters of neural networks are built respectively 

according to the different flight stages to execute the bottom basic control and the idea of fuzzy 

decision is introduced to implement the top intervening control to the uncertain contingency events. 

2. Technical Model 

2.1 General Framework 
The general framework is shown in Figure 1. The neural networks based flight control module 

which is at the bottom of the model is used for the basic routine control mapping the flight attitudes 

with their relative actions. The fuzzy decision based flight control module which is at the top of the 

model is composed of different sub modules, such as the modules of flight data acquisition, flight 

status evaluation, route fuzzy calculation, route deviation judgment and status parameters 

adjustment. They are used for the intervention when the route deviates from the predefined target 

to a certain probability, making a dynamic route adjustment. 
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Figure 1 - General framework 
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2.2 Neural Networks Based Flight Control 

According to the flight stages of take-off, cruise and landing, three clusters of forward neural 

networks are built respectively. As the core of the bottom control, these neural networks execute 

the specific flight actions in real time with the changing flight attitudes. 

The topologies of the neural networks are shown in Figure 2. Based on a rule-of-thumb [6], all 

the neural networks have only one hidden layer, because problems requiring more than one 

hidden layer are rarely encountered in the field of control. Furthermore, to avoid under-fitting 

caused by too few neurons in the hidden layer or over-fitting caused by too many neurons, the 

number of hidden neurons is set to twice the number of the input neurons. 
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Figure 2 - Topologies of the neural networks 

 

The activation functions have two types: Sigmoid (Equation (1)) and Hyperbolic Tangent (Tanh) 

(Equation (2)). The Sigmoid function is used by the neural networks in which all input and output 

values are positive, while the Tanh function is used by the ones in which the datasets contain a few 

of negative values. 
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                                                              (1) 

                                                              (2) 

 

The coefficients of weights and biases are updated by the method of backpropagation. It is to 

be noticed that different error calculators should be applied based on the different activation 

functions. 

                                                      (3) 

                                                  (4) 

 

2.3 Fuzzy Decision Based Flight Control 

In light of the status evaluation results at three degrees of freedom relative to the route point like 

the distance, horizontal direction and the vertical direction, a fuzzy controller is designed to adjust 

the status parameters based on fuzzy rules. 

The inputs of the fuzzy controller are defined as the distance d between the aircraft and the 

route point, the angle rh between the aircraft and the route point in the horizontal direction, and the 

angle rv between the aircraft and the route point in the vertical direction. The output of the fuzzy 

controller is defined as the variation in adjustment of status parameters. 

Using continuous domain, the input variable d is partitioned as {N, F}, while N represents the 

air-craft is near to the route point and F represents the aircraft is far from the route point. rh is 

partitioned as {NR, PL, ZM}, while NR represents the aircraft is on the right side of the route point, 

PL represents the aircraft is on the left side of the route point and ZM represents the aircraft and 

the route point have the same heading direction. rv is partitioned as {NU, PD, ZH}, while NU 

represents the aircraft is above the route point, PD represents the aircraft is under the route point 

and ZH represents the aircraft and the route point are at the same height.  

Also using the continuous domain, the output variable is partitioned as {FRAR, SRAR, RAM, 

SRAL, FRAL, FEU, SEU, EM, SED, FED}, while FRAR represents the aircraft needs to roll right 

with a high speed, SRAR represents the aircraft needs to roll right with a low speed, RAM 

represents the aircraft needs to maintain the current heading direction, SRAL represents the 

aircraft needs to roll left with a low speed, FRAL represents the aircraft needs to roll left with a high 

speed, FEU represents the aircraft needs to ascend with a high speed, SEU represents the aircraft 

needs to ascend with a low speed, EM represents the aircraft needs to maintain the current height, 

SED represents the aircraft needs to descend with a low speed, FED represents the aircraft needs 

to descend with a high speed. 

The membership function adopts the form of Gauss, as shown in Figure 3. And the fuzzy rules 

are built in Table 1. 

     

Figure 3 - Membership functions of input variables based on the form of Gauss 
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Table 1 - Fuzzy rules 

Domain partition 
of rv 

Domain partition 
of rh 

Domain partition of d 

N F 

NU 

NR FED FRAL SED SRAL 

ZM FED RAM SED RAM 

PL FED FRAR SED SRAR 

ZH 

NR EM FRAL EM SRAL 

ZM EM RAM EM RAM 

PL EM FRAR EM SRAR 

PD 

NR FEU FRAL SEU SRAL 

ZM FEU RAM SEU RAM 

PL FEU FRAR SEU SRAR 

 

3. Simulation Experiments 

Since X-Plane is an advanced flight simulator that has been used in many research papers such 

as [7] [8] [9] and by multiple organizations and industries such as FAA, NASA, Boeing and Cessna, 

it is chosen as the simulator to build the simulation experiment environment. In order to 

demonstrate the advancement of the designed flight control model, the aircraft of Cessna is 

chosen as the test carrier, because Cessna belongs to a kind of small aircrafts whose flight is more 

vulnerable to the weather conditions. 

There are two weather conditions: with no wind that the wind-force is level of 0-1 and with wind 

that the maximum wind-force is level of 7. As shown in Figure 4 and Figure 5, the Cessna 

successfully completes the optimal route autonomous flight under different wind-forces, which 

proves the correctness of the designed model. 

 

Take-off                                    Cruise                                 Landing 

Figure 4 - Some selected pictures of X-Plane simulation experiments 

 

   

Wind-force: level of 0-1                 Maximum Wind-force: level of 7 

Figure 5 - Comparison of routes under different wind-forces 

 

4. Conclusion and Future Works 

This paper presents a new autonomous flight control method based on the integration of neural 

net-works and fuzzy decision to take the low-level behavior learning and the high-level intention 

learning into consideration coordinately. And the simulation experiments demonstrated the 

correctness of the presented method. 
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To enhance its practicability, e.g. to use it for the personal autonomous aircraft, some technical 

problems must be solved further. 

 Knowledge representation and acquisition of the pilot’s experience. 

 Autonomous flight task planning and re-planning based on historical and current flight data. 

 Autonomous navigation based on low cost avionics system. 

 Non-invasive interaction for the aircraft and the ground-based monitor. 
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