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Abstract 

This paper proposes a new approach for the health feature parameters selection of the Aircraft Landing Gear 

(LG) system. Firstly, the health feature parameters selection is summarized in three approaches. Second, the 

working principle of the LG system is analyzed, and the model-based method combining with the theoretical 

knowledge of the control system is applied to establishing the physical-mathematical model of the LG system. 

Third, the LG retraction/extension (R/E) time is determined as the feature parameters of health monitoring. An 

analysis based on the model simulation is conducted to investigate the relationship between the health feature 

parameters and the main hydraulic pressure and the inherent characteristics of the LG system. The response 

characteristics of the second-order system verify the feature parameters’ validity. Finally, the Statistical 

Process Control (SPC) criterion utilizes the factual flight data for LG health monitoring. The Shewhart charts 

and the Nelson rules are adopted to estimate the LG performance. The research approach that the control 

system theoretical to parameter selection can be utilized for the other aerospace applications. 

Keywords: health feature parameters; Aircraft LG system; LG R/E time; SPC criterion; LG health monitoring 

 

1. Introduction 

Latest military and civil aircraft programs have substantively advanced Diagnostics, Prognostics, and 

Health Management (DPHM) technology concepts into an integrated system approach that can 

enhance aircraft reliability and passenger safety. Paul Phillips points out that within the aerospace 

industry there is the desired paradigm shift within aircraft maintenance towards offering maintenance 

systems with predictive capabilities [1]. The effective work about the LG extension/retraction system 

plays a leading part in the safety during the aircraft take-off and landing phases. The DPHM about 

aircraft LG system attracts many researchers to further investigate. Paul Phillips reviews such a 

framework and design methodology being used for the development of knowledge-based condition 

monitoring systems for aircraft LG actuators [2]. Qian Kun proposed Multiple-Models Adaptive 

Estimation (MMAE) for failure detection and identification (FDI) of aircraft LGs [3]. Jie Chen proposed 

health monitoring of LG retraction/extension system based on optimized fuzzy C-means algorithm 

[4]. 

The development of health monitoring technologies for aerospace systems creates many challenges 

for the community of engineers and technical specialists as they seek to integrate the technology 

into well-defined working practices [1]. Andrés Jiménez designed a Weight on the Wheel system 

which detects whether the aircraft airborne is on the ground. Based on CESA experience in this field, 

a new approach oriented to fatigue health monitoring of LGs is presented [5]. S Sivakumar built a 

mathematical model of aircraft with active LGs. Vibration analysis indicates that the active LG system 

increases the fatigue life of the aircraft structure and landing system [6]. Syed Haider overviewed the 

shock absorber PHM system by using multiple sensors to monitors different parameters to perform 

RUL calculations. Its output would allow planning and scheduling of any required component 

replacement and preventing disruption to flight schedules [7]. Wenwen Liu carried out fault analysis 

of the abnormal opening of the main LG door of civil aircraft and improved the understanding of the 

LG door extension/retraction system [8]. However, the sensors installed are limited due to the high 
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requirement of operating safety in aerospace applications. Thus, many degradation estimation 

methods restricted by sensors measurement are not feasible for the diagnosis of GL performance 

degradation. The feature parameters are the health indicators (HIs) that are linked to aircraft system 

functional and operational failures. The health monitoring and prediction based on feature 

parameters are an effective way to solve the problem in GL’s degradation estimation. Many 

researchers devote themselves to the study of feature parameters’ extraction and identification, the 

approaches of which at home and abroad are summarized in this paper. 

The contributions of this paper are that the LG retraction/extension time is determined as the feature 

parameters for the system health monitoring by using a new model-based identification method. The 

main ideas of this paper are organized as follows. Three selection methods of the feature parameters 

for DPHM are summarized in Section 2. Section 3 constructs the aircraft LG retraction system model. 

The simulation results analysis and experiments validation by using the factual flight recorder data 

are shown in Section 4. Section 5 concludes this study and presents our future work. 

2. The identification methods for the health state feature parameters 

The health state feature parameters are also called health indicators, which are the monitoring signal 

applied for reflecting the health state of object systems. Various expressions denote the same 

meaning, such as failure precursor parameters usually appearing in Remaining Useful Life (RUL) 

prediction of electronic systems, physically meaningful parameters which refer to the health 

monitoring indicators in the physical system model, identification parameters which represent the 

model parameters changing with the system degradation. The health state feature parameters 

selection approaches can be grouped into three main categories: Failure Modes, Mechanisms, and 

Effects Analysis (FMMEA), Model-Based approaches, and Data-Driven approaches. 

2.1 Failure Modes, Mechanisms, and Effects Analysis 

FMMEA focus on failure parameters. These parameters provide information about the system's 

performance, its current health, its usage, and the environmental conditions in which it is operating. 

A failure precursor is an event or a series of events that can be used to directly or indirectly indicate 

impending failure [9]. The Center for Advanced Life Cycle Engineering (CALCE) devotes many 

research efforts to the study of failure precursor parameters selection for electronic systems. Born, 

Boenning and Pecht et al. [10] firstly proposed several measurable parameters that can be used as 

failure precursors for electronic systems by FMMEA [11]. A guideline for the selection of failure 

precursor parameters about electronic subsystems is shown in [1]. Table 1 lists failure precursor 

parameters of electronic products which are obtained from several other researchers. Accelerated 

aging based on FMMEA is in-situ monitoring of failure precursor parameters selection, which places 

aging of electronics in a controlled environment with the purpose to monitor degradation parameters 

and capture damage propagation characteristics. For instance, Prasanna Tamilselvanet al. [12] 

carried out the identification of IGBT failure precursor parameters, such as collector-emitter current, 

transistor case temperature, transient and steady-state gate voltages, and collector-emitter voltages, 

through accelerated aging. 

Table 1 Failure precursor parameters about electronic systems 

Researchers electronic systems Failure precursor parameters 

Sachin Kumar et 

al. [11] 

a computers system fan speed, CPU temperature, motherboard temperature, 

video card temperature, %C2 state, %C3 state, %CPU 

usage, and %CPU throttle 

B Shunfeng 

Cheng and 

Michael H. 

Azarian[13] 

PME-MLCC under 

THB conditions 

performance 

parameters 

insulation resistance, 

capacitance, and dissipation 

factor 

environmental 

parameters 

temperature and humidity 

operational 

parameters 

bias voltage 

Shunfeng 

Cheng[14] 

PPTC Resettable 

Fuses 

Trip time 

Resistance Resistance after reset 
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Resistance during trip 

Surface temperature 

Current Current through the devices at 

normal condition, Trickle current, 

Actual hold current 

The voltage across the device 

S. Mathew et al. 

[15] 

the voltage regulation 

unit of the SMPS 

the power MOSFET temperature 

the IC chip temperature 

the output voltage, the output ripple voltage, and the 

output current 

Hyunseok Oh et 

al.[16] 

cooling fans fan bearings acoustic noise, vibration, and 

lubricant temperature 

the aerodynamic 

point of view 

rotational speed 

motor wiring current consumption 

Renxiao Xu et al. 

[17] 

The compressor of a 

Refrigeration Device 

inlet pressure, outlet pressure, compressor current, 

compressor voltage, condenser current, internal 

temperature, controller current, and temperature of the 

environment. 

M. H. Chang et 

al. [18] 

LED Devices 

(Packages) 

[19] 

2.2 A Model-Based Approach 
The model-based approach provides the observations of unmeasurable system state variables or 

the identifications of feature parameters which can be adapted to represent the status system 

performance degradation [20]. The central idea of the Model-Based approach for failure precursor 

parameters identification is to build a physics-based mathematical model. And this model must be 

configured specifically for the system being monitored and should accurately simulate the response 

of the system when given command signals. The multiple, specific parameters that reflect the actual 

physical characteristics of the system are selected by this approach. Carl S. Byington, P.E. proposed 

and summarized the implementation of this model in detail [21]. He demonstrated a physical model 

of an electromechanical actuator (EMA) and changed the single underlying physical parameter to 

simulating the system degradation. Thus, several physical parameters (friction-damping coefficient) 

were identified as indicators of faults within the model. Jie Chen [22] modeled an aircraft flap control 

system based on the bond graph (BG). Based on the system diagnostic BG model, the monitoring 

parameters are selected. Moreover, the parameter uncertainty intervals are estimated and a new 

adaptive threshold is constructed by linear fraction transformation. The model parameters and failure 

models have an apparent correspondence, which is the most significant advantage of model-based 

methods. The adaptive observers are designed to estimate the unmeasurable state variables which 

indicate the health state of the system. C. Martínez-García designed the interval observer scheme, 

which is experimentally evaluated by estimating the upper and lower bounds of a torque load 

perturbation, a friction parameter, and a fault in the input voltage of a permanent magnet DC motor 

[23]. Jinquan Huang described a new aircraft engine gas-path health monitoring architecture using 

a sliding mode observer (SMO), which possesses better feature parameter observing performance. 

As we all know, the occurrence of a fault will cause changes in the physical process parameters of 

the system model. Another basic idea behind the model-based approach is that using parameter 

identification algorithms to identify the process parameters. Md Ashiqur Rahman et al. [24] 

investigated a gradient-free optimization technique, namely particle swarm optimization (PSO) 

algorithm. And this method is utilized to identify specific parameters of the electrochemical model of 

a Lithium-Ion battery. Four electrochemical model parameters which exhibit significant variations 

under severe operating conditions have been successfully identified. Saikumar Reddy Yeratapally 

[25] investigated the fatigue crack initiation in polycrystalline materials. Global Sensitivity Analysis 

(GSA) was used to identify the set of most influential parameters in the microstructure-based fatigue 

life prediction model. Shintemirov et al [26] proposed a novel model-based approach for parameter 
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identification. This method established a transformer core model using the duality principle between 

magnetic and electrical circuits for parameter identification with genetic algorithms (GA). The model-

based parameter identification with GA is based on searching for the optimal model parameters by 

minimizing the difference, i.e., fitness, between reference and simulated model frequency responses. 

2.3 A Data-Driven approach 
With the improvements of user demands for applications veracity and automation, the system 
complexity increases, which distracts the system's accurate modeling. Hence, it is impractical to 
apply the model-based method to develop degradation simulation. However, many sensors are 
deployed on or in the aircraft to monitor various physical parameters. By analyzing these sensors' 
data, the relationship between the feature parameters and the failure/degradation can be evaluated 
and determined in advance. The feature parameters can be selected by quantitatively measuring the 
valuable information. Liansheng Liu et al. [27] proposed an entropy-based sensor selection method 
for condition monitoring and prognostics of the aircraft engine. Compared to the observing method, 
the proposed method can provide the quantitative metric to measure the valuable information 
contained in the sensor data sets. The experimental results showed that the sensors selected by 
their method were more suitable for aircraft engine condition monitoring and prognostics. Zeli Lin et 
al. [28] used the method of information fusion to get a set of information entropy to the 
characterization of hydraulic pump health status parameters, the selection of aircraft hydraulic pump 
inlet pressure, hydraulic pump outlet pressure, hydraulic pump outlet flow, and hydraulic pump power 
as feature parameters of aircraft hydraulic pump health status. 

3. The Aircraft LG system modeling 
Aircraft LG takes an important mission in preventing aircraft structure damage, slowing aircraft flutter, 
improving occupant comfort, and ensuring aircraft flight safety. The health status of the LG R/E system 
directly affects the take-off and landing performance of the aircraft. The LG R/E system is divided into 
a mechanical part and a hydraulic part. The gear actuator is the vital component for connecting the 
mechanical part to the hydraulic part. It converts the hydraulic energy provided by the hydraulic system 
into the mechanical energy of the LG. Modeling the entire landing R/E gear system and simulating the 
overall R/E performance have attracted many researchers’ interest. However, the actuator is simplified 
into a simple actuator model containing a piston rod. There is no specific analysis of the key device 
actuators. However, this paper focus on the LG actuator modeling which contains the association 
between the main hydraulic and the displacement of LG. 

3.1 The working principle analysis of the LG retraction system 
The LG R/E system is the pressure application system. The hydraulic energy provided by the hydraulic 
source is applied to realize the normal R/E tasks of the LG. Firstly, the hydraulic pump transmits 
pressure and flow to the LG system by maintaining outlet pressure stability. The hydraulic oil flows from 
the outlet of the hydraulic pump, through the hydraulic oil filter, the check valve, the accumulator, and 
the pressure relief valve, to the inlet of the LG selector valve. A return oil filter and a check valve are 
arranged downstream of the selector valve return port. The oil flows to the R/E pipeline of the LG R/E 
system through the R/E passage of the selector valve. And the movement of the retracting cylinder is 
driven by the differential pressure thrust F on both sides of the actuator piston, which completes the 
retracting movement of the LG. The schematic diagram of the aircraft's LG hydraulic R/E system is 
shown in Figure 2. The LG retraction system and the LG extension system are two similar action 
processes, so the LG retraction process is only selected for modeling. 
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Figure 1 – Schematic diagram of working principle analysis of LG retraction system. 

3.2 The nose gear actuator modeling 

During the retracting of the LG as shown in Figure 2. Firstly, the actuator moves inward under the 

differential pressure thrust F and drives the wheels and the LG strut to move upwards. The force 

analysis of the whole moving process is shown in Fig.3, where 1o  is the fixed end of the actuator, 2o  

is the fixed end of the LG strut, 3o  is the moving end of the piston of the actuating cylinder. It is 

defined that the center of wheel gravity and the fixed end of the LG strut is equivalent to 1 3o o M

during the LG is extending, where a  represents the distance between 1o  and 2o , b  represents the 

distance between 2o  and 3o , r  represents the distance between 2o  and M , F  is the differential 

pressure thrust, mg  denotes the equivalent load of LG wheel and strut,   denotes the angle 

between a  and horizontal plane,   denotes the angle between r  and horizontal plane,   denotes 

the angle between b  and a , which decreases with the LG retracting,   denotes the angle between 

b  and actuators, which increases with the LG retracting,   denotes the angle between r  and b . 

The motion physical equations for the LG actuator based on this retraction process are shown in 

Table 1, associated with Laplace linear transformation by Equation (1). The transfer function is 

shown in Fig. 4, which describes the relationship between the displacement of the actuator and the 

main hydraulic pressure. 

If the nonlinear function 𝑦 = 𝑓(𝑥1 , 𝑥2, ⋯ 𝑥𝑛) has continuous partial derivatives and derivatives near the 

operating points (𝑥10, 𝑥20 , ⋯ 𝑥𝑛0), then 

 0 1 0 2 0

1 2

(s) ( ) ( ) ( ) ( ) ( ) ( )n

n

f f f
Y X s X s X s

x x x

  

  
= + + + . (1) 

According to Figure 4, the transfer function of the system is transformed into, 

 2

m

( )

( )

g

s k

KY s

P s s T s T
=

+ +
, (2) 

where 
3 4 5

1

m

a a a
T

a
= , 

4 5 6

1

k

a a a
T

a
= , 

2 4 5

1

g

a a a
K

a
= . The transfer function typical form of second-order 

system is expressed as, 
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( ) 2

n

n n

C s

R s s s



 
=

+ +
. (3) 

Equation (2) of the nose LG retraction process can be transformed into the format of equation (3), 
shown as, 

 

2

2 2

( )( )

( ) 2 ( )

g k

s k k k

K TY s

P s T s T s T

 
=  

+ + 
. (4)

 

The over-damping ratio 
k

=
2

mT

T
 of the LG model is obtained. It can be seen that the damping 

coefficient is determined by the inherent characteristics of the system. 
                                                                                                                                                              

o1

o2

o3

 

Figure 2 – Schematic diagram of the front LG retracting process. 
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Figure 3 – Force analysis of nose LG. 
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Table 2  – The modeling of the nose LG actuator 

Force Analysis Relational Expression Laplace linear transformation 

Geometric Relations 2    = − − −  

2 2 2( )
cos =

2

b a m y

ab


+ − +

a m y

sin sin 

+
=  

 

 

1( ) ( )s a Y s =  

The net force acting on the 

actuator 
1 2 0a s fF S p S p F= − −（ ）  2( ) ( ) ( )a fF s a P s F s= −  

Damping force 
f fF K y=  3( ) ( )fF s a sY s=  

Load motion  1
= (0)a aM dt

J
 +  4

1
( ) ( )as s a M s

s
 =  

Net moment cosa aM F bsin Gr = −  5 6( ) ( ) ( )a aM s a F s a Y s= −  

Load inertia 2J mr=  —— 

Note: sp ， 0p  represent main hydraulic pressure and return oil pressure, respectively. 1S ， 2S  are the 

area on both sides of the actuator piston sp and 0p . fK  is the damping coefficient. 1a ， 2a ， ， 6a  is 

the constant term merged after Laplace transform; y  is the actuator displacement. 

 

4

1
a

s

1

s 1

1

a

6a

5a2a

2

1

a 3a s

( )aF s ( )aM s ( )s ( )Y s

( )fF s

- -
+

+( )P s

 

Figure 4 –Transfer function of the LG actuator displacement and main hydraulic pressure. 

4. Analysis of simulation results and data validation of flight records 

4.1 Parameter selection of the LG Retraction System 

As shown in Fig. 5, when the second-order system is in the over-damped state ( 1   ), its second-

order system response curve is an increasing curve, and finally tends to a stable value. This means 
that when the LG is in the retracting process if the main hydraulic system provides continuous 

pressure to the actuator, the LG piston rod will drive its equivalent load mg  to continuously shift along 

the direction of the retraction of the actuator. Finally finishing the entire working stroke of the LG 
actuator. This analysis is consistent with the actual motion effect. The movement of the LG with time 
is determined only by its transfer function. That is, each time corresponds to the unique displacement 
state. The LG retraction time as health feature parameters of the LG system can directly reflect the 
health state of the whole LG displacement. Thus, the validity of the LG R/E time is verified. 
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Figure 5 –The unit step response curve of the second-order system. 

4.2 Simulation verification and result analysis 

According to table 1 and the structure parameters of the factual LG system, the coefficients of 

equation (3) are calculated, shown in Table 2. 

Table 3 – The coefficient of the second-order system response of the nose LG. 

kT  mT  
gK  

1.84 29.3 71.6 10−  

 

 

Figure 6 –The variation of retracting time response of LG with main hydraulic pressure. 

According to equation (3), the response curve of the actuator displacement with the main hydraulic 

pressure is simulated. In Fig. 6, the blue curve represents the actuator displacement with a constant 

main hydraulic pressure. The red curve shows the actuator displacement with a real operating main 

hydraulic pressure during the LG retraction. One can notice that the main hydraulic pressure affects 

the LG retraction time. The longer the main hydraulic low pressure lasts, the longer the LG retracts. 

Moreover, the response curve of the actuator displacement with the variation of the damping ratio is 

simulated, which is based on equation (4). The simulation results are shown in Figure 7. One can 

notice that the LG retraction time is related to the system's inherent characteristics , ,k m gT T K . The 
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retraction time increases with the over-damping ratio rise. It can be concluded that the LG retraction 

time is a health feature parameter of the LG retraction system. As the same as, the LG extension 

time is a health feature parameter of the LG extension system. 

 
Figure 7 –The variation of retracting time response of LG with the over-damped ratio. 

4.3 Flight data verification 

Statistical process control （SPC）is a method of quality control that employs statistical methods to 

monitor and control a process. One of the key tools used in SPC is control charts. The control chart 

is an effective method to judge and predict whether the quality of the production process has 

abnormal fluctuations. The control lines of the control chart are determined using the 3σ.  

There are three common sets of rules for detecting signals: 1）The Western Electric rules；2）The 

Wheeler rules；3）The Nelson rules. The most important principle for choosing a set of rules is that 

making a choice before the data is inspected. The Nelson rules are adopted as the method to 

determine whether some measured variables are out of control (unpredictable versus consistent). 

The LG R/E time data sets are collected, which are obtained from 123 continuous flight sorties, 

containing the retraction time of the nose, left, and right LG. The health monitoring of aircraft LG is 

carried out in Minitab by applying the Nelson discrimination criterion of SPC. 

The Shewhart charts of the aircraft's LG retraction time are drawn. The Nelson rules are applied for 

health status monitoring. Figure 8~10 shows control charts about the retraction time of the nose, left, 

and right LG, respectively. The Nelson rules detect abnormal sorties, which are marked red. These 

red dots indicate that the LG retraction time is abnormal. The abnormal reason is the main hydraulic 

pressure abnormal or the LG failure. However, the three LG systems all give an alarm. The only 

cause is the main hydraulic system abnormal. Thus, the LG R/E time as a health state feature 

parameter is verified. 
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Figure 8 –Control chart test results of the nose LG retraction time. 

  

 
Figure 9 – Control chart test results of the left LG stowed time. 
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Figure 10 – Control chart test results of the right LG stowed time. 

5. Conclusion 

This paper proposes a model-based health feature parameters selection approach. It takes a typical 

civil aircraft LG retracting system as the research object. The mathematical model between the main 

hydraulic pressure and the actuator displacement of the LG is established by combining with 

theoretical knowledge of control systems. The model simulation results verify the validity of the LG 

R/E time as the LG health feature parameters. Moreover, the factual LG R/E time from flight data is 

used to monitor the LG health state by Nelson rules of SPC. The advantage of this health monitoring 

approach is that the monitoring parameters focus on flight recorder data. The additional sensors are 

not needed. And this monitoring approach is simple and effective. 
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