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and with the results of paper [2] obtained using the low dissipative method. In [2] the fourth order 
accuracy scheme in longitudinal and normal to the surface directions, as well as spectral method in 
the lateral direction were used. The time integration in [2] is done by the Runge-Kutta method of 
fourth order approximation. 

 

2. Problem statement 

2.1 Numerical method 
In this paper we used a software package [3] for numerical integration of the full Navier-Stokes 
equations. Equations are solved in curvilinear coordinate system ( , , )ξ η ζ  in dimensionless divergent 
form 
 

0
t ξ η ζ

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
Q E G F . 

The Cartesian coordinates *x xL= , *y yL= , *z zL= are referred to the characteristic length scale L, 
time * /t tL V∞= to the characteristic time scale /L V∞ , components of the velocity vector *u uV∞= , 

*v vV∞= , *w wV∞=  - to the modulus of the velocity vector of the incoming flowV∞  , pressure  
* 2( )p p Vρ∞ ∞=  - to the doubled velocity head in the incoming flow, the other gas-dynamic variables to 

their values in the incoming flow. The asterisk in the upper index indicates a dimensional value; if 
there is no asterisk, the variable is assumed to be dimensionless. The symbol " ∞ " denotes a 
reference to an incoming flow. Dimensional variables will be used for ease of comparison with the 
results of other work. 
A fully implicit finite volume method and a second order time approximation scheme are used to 
approximate differential equations:  

1 1 1 1 1 1
1 1 1 1 1 1 1 1, , , , , , , , , , , ,, , , , , , 2 2 2 2 2 2

3 4
E E G G F F

Q Q Q
0

n n n n n n
n n n i j k i j k i j k i j k i j k i j ki j k i j k i j k

t h h hξ η ζ

+ + + + + +
+ −

+ − + − + −
− − −

− +
+ + + =

Δ
. 

When determining the convective flux values on grid cell faces, e.g. 1
1/2, ,
n
i j k
+
+E , the fluxes are split in 

directions. For each direction, a Jacobi matrix ( /A = ∂ ∂E Q for the direction ξ ) is defined which is 
diagonalised in the form 1A B B−= Λ , where B is the matrix made up of the right-hand eigenvectors, 
and Λ is the diagonal matrix of eigenvalues of the matrix A . 
The convective component of the flux quantities E, G, F at the cell face is approximated using a 
Godunov type monotone scheme (indices i, j, k, n are omitted for readability): 

1
1
2

1 ( ) ( ) ( ( )) ( )
2 L R LR LR LR R Li

B Bϕ λ −

+
⎡ ⎤= + −Φ× Λ −⎣ ⎦E E Q E Q Q Q , 

where the lower indices L and R denote the values calculated on the right and left sides of the face 
in question using the values of the gas-dynamic variables reconstructed using the reconstruction 
procedure. For example, for face i + 1/2, the index L corresponds to cell i and the index R to cell i + 
1. The lower index LR indicates the values calculated using the approximate Roe method for 
solving the Riemann problem. The modification of the eigenvalues ( )ϕ λ provides a physically 
correct entropy change at discontinuities. The reconstruction procedure by the WENO-3 method is 
used in the paper. 
The function Φ  determines the degree of non-monotonicity of the scheme and takes values 
between 0 and 1. For the original monotonic scheme 1Φ = . For the hybrid scheme in the 
computational domain 0max( , )Φ = Φ Ψ  , where 0Φ is some constant, Ψ is the Jameson indicator 
function [4]: 

2
20

2 2

( ) , 10
( ) ( )

divV
divV rotV

ε
ε

−Ψ = =
+ +

                                (1) 

The valueε  is chosen as a small positive number and eliminates the numerical singularity of 
division by zero in regions where divV and rotV both are zero. The value Ψ varies from 0 at 

2 2( ) ( )divV rotV to 1 in the case of 2 2( ) ( )divV rotV . In particular, in the boundary layer 0Ψ→ , 
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( ) ( )0[ ] [ ] [ ]Uk k kJ Y R= . 

The regularisation parameter of Newton's method with respect to the initial approximation [ ]kτ  is 
given by 

( )
( )

[ ] [k 1] [ ]
[k 1]

2[ ] [ 1]

k k

k k

Y Y Y

Y Y
τ

−
+

−

−
=

−
. 

As the iterative process converges [ ] 1kτ →  , and the rate of convergence theoretically tends to be 
quadratic. 
Obtaining the analytical form of the Jacobi matrix J for the numerical scheme in question, including 
the solution of the Riemann discontinuity problem, seems to be very time consuming. The package 
[3] applies a universal method of forming matrix ( ) 00

[ ][ ] / U kkJ R= ∂ ∂ on iteration over nonlinearity 0k
using the procedure of finite increments of the error vector R over the vector of desired variables U  
[5].  In this case the m-th column of the matrix 0[ ]kJ is calculated in the form 
 

( ) ( )0 0

0

[ ] [ ]
[ ] 8, 10 , 1,..., ,

k k
mk

m q

R R
J m n N

ε
ε

ε
−

+ −
= = =

U e U
 

where me is a unit vector of length qn N , consisting entirely of 0, except for a single 1 at position m. 
This Jacobian computation technique is applicable to an arbitrary system of mesh equations. 

2.2 Flow parameters and calculation conditions 
We consider a nominally two-dimensional flow over a pointed plane plate at Mach number of the 
incoming flow 3M ∞ = and temperature of the incoming flow 103.6КT∞ = . The perturbation evolution 
is calculated in a subarea; the calculation procedure is similar to that described in [6]. The Reynolds 
number is 6

1, 2.181 10R ∞ = ×  m-1. The Prandtl number is assumed constant: / 0.71pPr cμ λ= =  . The 
Navier-Stokes equations are closed by the equation of state 2M p Tγ ρ∞ = , where 1.4γ =  is the 
adiabatic exponent. The dynamic molecular viscosity coefficient is calculated using the Sutherland 
formula:  3/2(1 ) / ( )T T T Tμ μμ = + + × , where * */ 110.4 / 103.6 1.07T T T K Kμ μ ∞= = ≈ . 
Numerical integration is carried out in the rectangular area shown below. At the inlet and upper 
boundary the dimensionless parameters of the incoming flow are fixed: 

2( , , , , ) (1,0,0,1 / ,1)u v w p T Mγ ∞= . For steady-state calculations the wall is assumed to be thermally 
insulated and sticking conditions are set on the wall. The outlet boundary is preceded by a buffer 
zone with enlarged cells for the longitudinal coordinate and the coordinate normal to the wall to 
damp the disturbances going out through the boundary. At the exit boundary, soft conditions are 
imposed as a linear extrapolation of the primitive variables from the computational domain. At the 
lateral boundaries minz and maxz the symmetry conditions are imposed. 
The calculation is carried out as follows. Firstly, a two dimensional steady state flow over a flat plate 
is computed until the unconvex value of 10-8 is reached. Second, the subarea in which further 
perturbation development will be simulated is cut out from the obtained solution; gas-dynamic 
values from the first step calculation are fixed at the new input boundaries of the subarea; the 
steady-state field is set additionally until full convergence (the magnitude of the misalignment does 
not exceed 10-8). Third, the steady-state field obtained in the sub-area is duplicated in the third 
transverse direction z ; the surface temperature distribution is fixed; "blow-suction" perturbations are 
introduced into the boundary layer according to the procedure described below. The non-stationary 
calculation is carried out until a quasi-stationary flow regime is established. In this approach, the 
surface of the plate is adiabatic, but there are no temperature pulsations at the surface. 

2.3 Jameson indicator function 
The field of the Jameson indicator function [4] is calculated from a two-dimensional unperturbed 
flow and is shown in Figure 2. "Spotting" of this function value is related to numerical peculiarities of 
formula calculation (1). 
For the calculations of this paper, the valueΨ  is taken to be unity everywhere except in the vicinity 
of the boundary layer, where Ψ changes smoothly from 0 at the surface to 1 as one moves away 
from the boundary layer. 
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dissipative method [1], integral characteristics of the flow (average profiles of gas-dynamic 
variables, average friction coefficient) appear to be quite close to the results obtained with low-
dissipative schemes [2]. At the same time, the hybrid scheme of the present work gives better 
results even on a coarse grid. This conclusion is important for applied problems where it is not 
necessary to solve in detail all structures of the developed turbulent motion, but it is required to 
obtain reliable integral characteristics of the flow. For such problems, the application of the hybrid 
scheme on a coarse grid allows to obtain satisfactory results with limited computational resources. 
 

4. Conclusions 
A hybrid difference scheme for modelling the development of perturbations in supersonic boundary layers has 
been proposed. The scheme is based on a smooth solution indicator and allows one to smoothly reduce the 
dissipation of the original monotonic scheme with respect to the convective flow quantities by reducing the 
monotonic correction that occurs when solving the Riemann problem. The reduction is possible up to some 
threshold value. With further reductions, the scheme seems to lose stability. It is empirically established that the 
threshold level of the monotonic correction depends on the quality of the mesh and the intensity of the external 
perturbations. 
The perturbation evolution calculated using the hybrid scheme on the coarse computational mesh agrees well 
with the results of other works, including those obtained on the detailed mesh using the monotonic scheme. 
However, the monotonic scheme on the coarse grid underestimates the perturbations and resolves the small-
scale vortex structures in the region of young turbulence much worse than the case of the hybrid scheme. 
The proposed hybrid difference scheme is suitable for modelling the development of non-stationary 
perturbations in supersonic boundary layers. It allows one to obtain satisfactory results on limited computational 
resources. 
This work was carried out with financial support from the Russian Science Foundation (project code 21-19-
00307) at MIPT using the equipment of the "Modelling and Data Processing Complex for Mega-Class Research 
Facilities" of NRC Kurchatov Institute, http://ckp.nrcki.ru/. 

 

5. Contact Author Email Address 
mailto: nguyennhucan528@gmail.com 

6. Copyright Statement 
The authors confirm that they, and/or their company or organization, hold copyright on all of the original material 
included in this paper. The authors also confirm that they have obtained permission, from the copyright holder 
of any third party material included in this paper, to publish it as part of their paper. The authors confirm that 
they give permission, or have obtained permission from the copyright holder of this paper, for the publication 
and distribution of this paper as part of the ICAS proceedings or as individual off-prints from the proceedings. 
 



HYBRID NUMERICAL SCHEMES IN PREDICTION OF HIGH-SPEED LAMINAR-TURBULENT TRANSITION 
 

17  

References 
[1] Egorov I.V., Nguyen Can, Nguyen T., Chuvakhov P.V.  Simulation of laminar-turbulent transition with 

dissipative numerical scheme application. Computational Mathematics and Mathematical Physics, Vol. 
61, No. 2, 2021. 

[2] Mayer C.S.J., Terzi D.A.V., Fasel H.F. DNS of Complete Transition to Turbulence Via Oblique 
Breakdown at Mach 3. AIAA, 2008-4398, 2008. 

[3] Egorov I.V., Novikov A.V. Direct numerical simulation of laminar–turbulent flow over a flat plate at 
hypersonic flow speeds. Computational Mathematics and Mathematical Physics, Vol. 56, No. 6, pp 1048-
1064, 2016. 

[4] Ducros F. et.al. Large-Eddy Simulation of the Shock / Turbulence Interation. Journal of Computational 
Physics, Volume 152, Issue 2. 1, Pages 517-549, July 1999. 

[5] Bashkin V.A., Egorov I.V. Numerical Simulation of Viscous Perfect Gas Dynamics. New York • 
Connecticut: Begell House Inc., 2016. 

[6] Chuvakhov P.V., Fedorov A.V. & Obraz A.O. Numerical simulation of turbulent spots generated by 
unstable wave packets in a hypersonic boundary layer. Computers & Fluids, Vol. 162, pp 26–38, 2018 
Available at: http://dx.doi.org/10.1016/j.compfluid.2017.12.001 

[7] Vyshinsky V.V., Sizykh G.B. The verification of the calculation of stationary subsonic flows and the 
presentation of the results. Mathematical Models and Computer Simulations, Vol. 11, No. 1, pp 97–106, 
2019. 

[8] White F. M. Viscous Fluid Flow. New York: McGraw-Hill, 1991. 


