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Abstract

The present paper presents a refined kinematic model for the prediction of the free-edge stress in composite

structures under thermal loads. An advanced numerical model has been developed in the frameworks of the

Carrera Unified Formulation, which allows any order structural theories to be considered. Equivalent single

layer models, as well as, layer-wise formulations have been considered and compared. A node-dependent

kinematic approach has been used to increase locally the accuracy of the solution. A coupled thermo-elastic

formulation has been considered in order to consider general thermal loads. The model has been used to

investigate the stresses at the free-edge of composite plates. Open literature results have been use to assess

the present approach. The results show that the present model is able to predict the transverse stress con-

centrations that can originate delaminations and failures. The use of refined kinematic elements leads to a

three-dimensional solution avoiding the huge computational costs of classical solid models

Keywords: free-edge, thermal loads, composite material, global-local, Carrera Unified Formulation.

1. Introduction

The development of the new generation of commercial aircraft has led to a large use of composite

materials since they can ensure an high mechanical strength with a reduction of the overall weight of

the structure. The design of composite structures, and in particular the prediction of their failure [12,

11, 13], has been the object of a massive number of numerical and experimental studies in the last

decades but complex phenomena that can appear in such structures cannot always be investigated

with the structural models used up to now.

The prediction of the limit loads for laminate structures requires an accurate analysis of the local

stress field. The transverse stresses, usually neglected by the models used in the design of thin

metallic structures, play a fundamental role in the delamination process that is, enhanced numerical

approaches must be used [8]. Severe concentrations of transverse stresses may appear at the free-

edge of laminates due to the different stiffness orientations of each layer. This phenomenon, named

free-edge effect, has been the object of many studies and most of them propose to use a local

refinement of the model to catch the stress concentration [6]. This phenomenon can be even more

dangerous when the composite structure is subject to thermal loads [9] that may create a local stress

field due to the orthotropy of the thermal expansion coefficients, an example is shown in Figure 1.

Figure 1 – Origin of the free-edge transverse stress due to thermal loads.
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The aim of the present work is to exploit the enhanced capabilities of the models derived in the

frameworks of the Carrera Unified Formulation, CUF,[3] to predict local free-edge effects of general

laminate structures under thermal loads. The use of refined kinematic models allows a layer-wise

description of the kinematic to be obtained; this capability makes it possible to predict with high

accuracy the traversal and inter-laminar stresses [7]. The use of recent developments of the CUF,

such those present in [5, 15], may increase the efficiency of the current approach refining the model

locally, with huge advantages from the computational costs point of view. The capabilities of the

present models to deal with multi-field problems, as demonstrated in [4], can be used to investigate

complex load scenarios such as those due to complex thermal fields. The results show that the

present approach can lead to a 3D-like solution with a significant reduction of the computational

costs since two-dimensional model are adopted.

1.1 Preliminaries

This section presents the refined two-dimensional model used in the following analyses. The coordi-

nate reference frame is shown in Fig. 2.

Figure 2 – Notation of a plate model for laminated structures.

The displacement three-dimensional field is described using the vector u:

uT = {ux, uy, uz} (1)

In the thermo-elastic formulation, in addition to the mechanical variables, also the temperature variation,ϑ ,

must be considered. The solution of the thermo-elastic problem requires to define five quantities in

each point:

qT = {ux, uy, uz, ϑ} (2)

where vector q contains the unknown quantities.

1.2 Geometrical relations

The geometrical relations in the case of the thermo-elastic model allow the strain (ε) and the thermal

gradient (θ ) to be evaluated. The strain vector, ε , can be written as:

εT = {εxx εyy εzz εxz εyz εxy }= Duu (3)

where Du is:

DT
u =





0 0 ∂z ∂x ∂y 0

0 ∂y 0 0 ∂z ∂x

∂x 0 0 ∂z 0 ∂y



 (4)

The spatial temperature variation, θ , can be written as:

θ T = {ϑx ϑy ϑz}= Dϑ ϑ (5)

where Dϑ is:

DT
ϑ =

[
∂x ∂y ∂z

]
(6)
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1.3 Constitutive relations

The constitutive equation for the thermo-elastic model have been derived in according with the work

presented by [1]. The stress, σ can be written in the following form:

σ =Cε −λϑ (7)

The first contribution come from the Hook’s law and derives from the mechanical problem.







σxx

σyy

σzz

σxz

σyz

σxy







=











C11 C12 C13 0 0 C16

C21 C22 C23 0 0 C26

C31 C32 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C54 C55 0

C61 C62 C63 0 0 C66

















εxx

εyy

εzz

εxz

εyz

εxy







(8)

The second therm, λϑ , comes from the thermo-mechanical coupling. The vector λ can be written

as:

λ =Cα =C{α1 α2 α3 0 0 0 }T (9)

Where C is the matrix with the elastic coefficients of the material, and α is the vector of the thermal

expansion coefficients.

The last constitutive equation describe the heat flux, h:

h = κθ (10)

where κ is the conductivity coefficients matrix:

κκκ =





κ11 κ12 0

κ21 κ22 0

0 0 κ33



 (11)

1.4 Kinematic Model

This section introduced the kinematic assumption used in the present work. At first the CUF is

presented. Models based on Equivalent single layer and layer-wise approaches are introduced and,

finally the node-dependent kinematic model is introduced.

1.4.1 Carrera Unified Formulation (CUF) for refined 2D models

In the framework of CUF, the displacement field of a plate structure can be assumed to be:

u(x,y,z) = F0(z)u0(x,y) +F1(z)u1(x,y) + · · ·+FN(z)uN(x,y)

v(x,y,z) = F0(z)v0(x,y) +F1(z)v1(x,y) + · · ·+FN(z)vN(x,y)

w(x,y,z) = F0(z)w0(x,y) +F1(z)w1(x,y) + · · ·+FN(z)wN(x,y)

(12)

where the approximation functions Fτ(z) are also named as thickness functions. In a compact form,

Equation 12 can be written as follows for ESL models:

uuu(x,y,z) = Fτ(z)uuuτ(x,y) τ = 0,1, ...,N (13)

in which Fτ(z) are defined on the domain through the whole thickness of the plate, which means

z ∈ [− h
2
, h

2
]. Alternatively, for LW models, the displacements can be written as:

uuuk(x,y,ζk) = Fk
τ (ζk)uuu

k
τ(x,y) τ = 0,1, ...,N (14)

where k is the layer index, and −1 ≤ ζk ≤ 1 is the adimensional thickness coordinate. The continuity

conditions will be enforced at the layer interfaces.

uk
τ(x,y) represent the unknown primary variables which are the factors corresponding to the expansion

terms.
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When the solution of the problem is achieved using the FE approach, equation 13 becomes:

uuu(x,y,z) = Fτ(z)Ni(x,y)uτ i τ = 0,1, ...,N, i = 0,1, ...,M (15)

Where the function Ni are the shape function used in the FE model. M is the number of nodes of

each element.

1.5 ESL models based on Taylor expansions (TE)

In ESL models, Taylor series can be adopted as thickness functions by substituting Fτ = zτ(τ =
0,1, · · · ,N) into Equation 13, and the obtained thickness functions of the higher-order model read:

F0 = z0 = 1, F1 = z1 = z, . . . , FN = zN (16)

Especially, FSDT [10] can be obtained as a particular case of the complete linear model (N = 1).

1.6 LW models adopting Lagrange expansions (LE)

If Fk
τ are defined as Lagrange interpolation polynomials defined on layer k, as expressed in Equa-

tion 17, an LE-type LW model can be obtained. ζkτ are located at the prescribed interpolation points.

ζk0
= −1 and ζkN

= 1 in the natural reference system signifies the bottom and top surface of the kth

layer, respectively.

Fk
τ (ζk) =

N

∏
i=0,i6=s

ζk −ζki

ζkτ −ζki

(17)

In LW models employing Lagrange expansions (LE), the displacements of each interpolation point

are treated as unknown primary variables, and compatibility of the displacements at layer interfaces

follows:

uk
t = uk+1

b , k = 1, · · · ,Nl −1. (18)

in which Nl is the total number of layers. The continuity of transverse stresses at layer interfaces can

be achieved when a sufficient number of expansion terms are used in each layer, as demonstrated

in the authors’ previous work [2].

1.7 A two-dimensional finite element with node-dependent kinematics

When the modeling of structural geometry or boundary conditions is beyond the capabilities of classi-

cal plate models, higher-order models can be used to improve the solution precision. In most cases,

refined kinematics is necessary only in some local region of the whole structure, e.g. at the free

edge, and classical models could be adequate elsewhere. A new class of node-dependent kinematic

elements is introduced in this work to refine the kinematics only in the area necessary.

As an example, a four node two-dimensional element is considered. Refined plate elements with

uniform kinematics assume the same thickness expansions in all the nodes. By using the node-

dependent kinematic approach, a different kinematic assumption can be introduced at each node.

The displacement field at the first node can be written as:

uuu1 = uuu1τ F1
τ , τ = 1 . . .M1 (19)

The displacement functions at the second node are:

uuu2 = uuu2τ F2
τ , τ = 1 . . .M2 (20)

The displacements at the third node read:

uuu3 = uuu3τ F3
τ , τ = 1 . . .M3 (21)

The displacements at the fourth node read:

uuu4 = uuu4τ F4
τ , τ = 1 . . .M4 (22)
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The thickness expansions, F1
τ , F2

τ , F3
τ and F4

τ , can be chosen arbitrarily at each node. At node 1, a

first order TE model can be considered, and a LE model has been imposed at node 2 while a second

order TE model is allocated to node 3 and 4. Eventually, the expression of the three-dimensional

displacement field of the whole element becomes:

uuu = uuu1τ N1F1
τ +uuu2τ N2F2

τ +uuu3τ N3F3
τ +uuu4τ N4F4

τ , τ = 1 . . .N i (23)

The four different displacement fields are smeared by the FE shape functions over the plate mid-

plane. Using this approach, the continuity of the displacement is obtained at each point.

This approach can be easily included in the CUF formulation and extended to any order plate models.

The displacement field of the two-dimensional element with node-dependent kinematic can be written

including two main novelties:

Fτ(z)−→ F i
τ(z) (24)

N −→ N i (25)

The first equation, Eq. 24, states that the function expansion is not a property of the element, but of

the nodes, that is, the index i is included in the notation. Eq. 25 remarks that the number of terms in

the expansion, N, can be different at each node, and the notation N i is used to underline this aspect.

The generic displacement field can be written as:

uuu = uuuiτ Ni(y)F
i

τ (x,z), τ = 1 . . .N i
; i = 1 . . .Nn. (26)

1.8 Governing equation

The governing equation can be written using the virtual displacements principle, PVD:

δLint = δLext (27)

where δLint is the virtual variation of the internal work while, δLext is the virtual variation of the external

work.

In explicit form the PVD can be written as:

δLint =
∫

V
(δεT σ −δθT h)dV = δLext (28)

If geometrical and constitutive equation are substituted in Equation 28 the following equation is ob-

tained:

δLint =

∫

V
(δεTCε −δεT λ ϑ −δθT κθ )dV (29)

If the kinematic approximation introduced before is used the terms that compose the virtual variation

of the internal work can be written in matrix form.

The first term, δεTCε, represents the mechanical problem. The strain can be expressed in terms

of derivatives of the displacements, moreover the displacements can be written using the shape

functions Ni and Fτ .

δεTCε =δqu
T
js

∫

V
N jF

j
s IDT

u CDuIF i
τ NidV quiτ =

=δqu
T
jsk

i jτs
uu quiτ

(30)

ki jτs
uu is the fundamental nucleus of size 3× 3 of the stiffness matrix of the pure mechanical problem.

quiτ is the part of the unknown vector related to the mechanical variables.

The term δεT λϑ can be written as:

δεT λϑ =δqu
T
js

∫

V
N jF

j
s IDT

u λ IF i
τ NidV qϑ iτ =

=δqu
T
jsk

i jτs
uθ quiτ

(31)
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Figure 3 – σzz distribution evaluated using different equivalent single layer models, reference results

from [14].

k
i jτs
uθ is the fundamental nucleus of size 3×1 of the stiffness matrix of the thermo-elastic problem. qϑ iτ

is the part of the unknown vector related to the thermal variable.

The term δθ T κθ can be written as:

δθ T κθ =δqϑ
T
js

∫

V
N jF

j
s IDT

ϑ κDϑ IF i
τ NidV qϑ iτ =

=δqu
T
jsk

i jτs
θ θ quiτ

(32)

k
i jτs
θ θ is the fundamental nucleus of size 1×1 of the stiffness matrix of the pure thermal problem.

All the fundamental nucleus can be assembled together in fundamental nucleus of the multi-field

problem:

δLint = δqT
js

k
i jτs

︷ ︸︸ ︷













. . .

kuu

. . .













...

kuθ
...







[
· · · 0 · · ·

] [
kθ θ

]









qiτ (33)

The term kθ u can be neglected when an external temperature is imposed as boundary condition, as

in the present paper.

2. Results

The present model has been assessed considering the benchmark presented in [14]. A composite

plate (see Figure 2) with dimensions: a=10 mm, b=4 mm, and h=1 mm has been considered. A

four layers laminate with stacking sequence of [0/90]s has been used. The properties of the material

are: E1 = 137.9 GPa, E2 = E3 = 14.48 GPa, G12 = G13 = G23 = 5.86 GPa, ν12 = ν13 = ν23 = 0.21 GPa,

α1 = 0.36×10−6C−1 and α2 =α3 = 28.8×10−6C−1. The plate has a thermal load of 1 C. The transverse

normal stress, σzz at the interface between the layers at 0 and 90 degree have been investigated. The

through the thickness distribution of σzz at the free edge has been also considered. Equivalent single

layer models, layer-wise models and mixed models have been compared.

Figure 3 shows the σzz distribution evaluated using equivalent single layer models with a different

orders of expansion. The models are denoted as TE-n where n is the order, e.g. model TE4 is a

fourth order model.

The results show that a first order model is not able to detect the normal through the thickness stress.

An higher order model is required to detect the stress concentration. Figure 4 shows the through-the-

thickness distribution of σzz at the free edge. The value of σzz is expected to be zero at the top and at

the bottom of the plate but the present TE models are not able to fulfill the requirements.
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Figure 4 – Through-the-thickness distribution of σzz at the free edge evaluated using different ESL

models.
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Figure 5 – σzz distribution evaluated using different Layer-wise linear models.

Figure 5 shows the σzz distribution, at the interface between the layer at 0 an 90 degree, evaluated

using three different linear layer-wise approaches. The models are denoted using the nomenclature

k − LE −m where k is the number of elements for each layer and m is the order of the Lagrange

expansion. Models 1LE1, 2LE1 and 3LE1 use one, two and three linear Lagrange elements on each

layer.

Figures 6 and 7 show the σzz distributions using quadratic and cubic Lagrange expansion respectively.

The results show that linear and quadratic elements are not able to detect the stress concentrations at

the free edge. Cubic elements, see Figure 7, provide reliable results independently from the number

of elements used through-the-thickness. Figure 8 shows that the use of at least two cubic elements

for each layer leads to a fulfillment of the expected boundary condition with a value of σzz equal to

zero at the top and at the bottom of the plate.

Figures 9 and 10 report the results for two models based on a NDK approach. Both models have a

TE model up to x/b=0.7 and a LE models from x/b>0.7 . The use of a TE model in the central part of

the plate lead to a reduction of the computational cost. The model 3LE3 has 53724 dof. The model

3LE3+TE4 uses a fourth order Taylor model in the central part and has 19164 dofs. Model 3LE3+TE8

has a eighth order TE mdoel in the central part and require 23484 dofs.

The results show that the use of the NDK approach can lead to accurate results with a significant

reduction in the computational costs. The results provided by model 3LE3+TE4 are coparable with
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Figure 6 – σzz distribution evaluated using different Layer-wise quadratic models.
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Figure 7 – σzz distribution evaluated using different Layer-wise cubic models.
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Figure 8 – Through-the-thickness distribution of σzz at the free edge evaluated using different cubic

LE models.
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Figure 9 – σzz distribution evaluated using different NDK models.
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Figure 10 – Through-the-thickness distribution of σzz at the free edge evaluated using different NDK

models.
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those from model 3LE3 but with a reduction of the dofs of about 64%.

3. Conclusions

A refined kinematic model for the free-edge analysis of composite structures under thermal loads has

been presented. The Carrera Unified Formulation has been used to derive the governing equations

in a general form. Equivalent single layer model, as well as, layer-wise models have been adopted

and compared. A node dependent kinematic model has been introduced to refine the results locally.

The model has been assessed using the benchmark available in the open literature. From the results

it is possible to state that:

• The use of refined kinematic models can lead to accurate results in the analysis of the free-edge

stress of composite structures under thermal loads;

• The use of ESL models, up to a twelfth order, can lead to accurate results at the layers interface

but is not able to fulfill the equilibrium condition at the top/bottom of the plate;

• A cubic layer-wise model is required to obtain an accurate stress field at the layers interfaces

and through-the-thickness.

• A node dependent kinematic approach can be used to reduce the computational costs preserv-

ing the results accuracy.
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