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Abstract

With advancements in technology such as Industrial Internet of Things (IIoT), Machine Learning (ML), and
cloud computing, data-driven approaches to the health monitoring and anomaly detection of systems are
becoming increasingly pervasive. Anomaly detection techniques applied to bearings, in particular, have been
widely discussed in the literature due to the prevalence of bearings in many industries. The large body of
research on data-driven anomaly detection for bearings has largely consisted of benchmarking various model
types and feature engineering methods. This work provides an end-to-end model construction and selection
methodology that results in a model of appropriate complexity, and if necessary, automatically engineered
features and tuned hyperparameters. While the methodology is demonstrated on a candidate dataset selected
from a set of popular datasets used in the bearing anomaly detection literature, this work is expected to be of
interest and value to any practitioners addressing anomaly detection problems.
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1. Introduction and Background
Anomaly detection and fault monitoring capabilities are critical to ensure the operational safety, timely
maintenance, and overall reliability of engineering systems. Among the several potential candidate
mechanical components for application of anomaly detection and fault monitoring, rolling contact
bearings are arguably the most suitable due to their ubiquitous use. Rolling contact bearings are
utilized in a wide array of aerospace systems [1]. Bearings are instrumental to critical components
such as engines, gear-boxes, and transmissions. Therefore, a robust and scalable methodology for
bearing wear/anomaly detection is desirable in order to minimize downtime and ensure maximum
safety and efficiency for these systems.

Due to recent advances in Industrial Internet of Things (IIoT) capabilities, and data infrastructure and
storage, large amounts of operational data can now be generated at various levels of detail. The
abundance of data coupled with advances in artificial intelligence/machine learning has led to the
proliferation of data-driven methods for bearing anomaly detection in addition to anomaly detection
of other components [2–8]. To obtain good predictive accuracy, current data-driven efforts in this do-
main primarily rely on problem-specific feature engineering, which requires significant subject matter
expertise and ad-hoc methods to select appropriate model architectures. This work addresses these
issues by partially automating the feature engineering process and providing a methodology to con-
struct a well-performing model independent of the components studied and measurements provided.

Anomaly detection for bearings and other components has been studied by many researchers. Given
some measured data, this class of problems broadly involves classifying data as either anomalous
(faulty bearing) or non-anomalous (nominal bearing). Some researchers have tested popular ma-
chine learning techniques such as random forest classifiers, K-means clustering, and support vector
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machines on this problem [3]. Others have utilized more traditional statistical methods relying on es-
timating distributions of measured data [4] as well as more advanced state-of-the-art deep learning
techniques such as recurrent and convolutional architectures [2,9].

When solving the problem of bearing anomaly detection, feeding raw sensor inputs directly into the
prediction models is problematic due to the fact that raw sensor inputs can be noisy and can lead
to inadequate results from several model types. Multiple feature engineering approaches have been
implemented [5, 9, 10] to a number of applications, including for anomaly detection purposes. In [9],
different sets of features are pre-selected, then the desired predictive accuracy metrics of the mod-
els are tested on the validation data and analyzed to select which features to retain. While such an
approach produces good models, it may likely require a significant computational effort especially
if many features are present in the training data. In [5], a different model is trained for each fea-
ture and the features are retained or discarded based on the performance of the model associated
with the features. The issues with such approaches is that they do not take into account the interac-
tions between features. Another relatively computationally inexpensive, but extremely popular feature
engineering method is Principal Component Analysis (PCA) [10]. Unlike the previously mentioned
methods, PCA requires pre-processing of the training data without regard for desired metrics such
as validation accuracy. PCA is based on the assumption that features with a high variance will have
a better split between classes. This is true for problems with a linear decision boundary; however, a
linear decision boundary may not always be available depending on the problem. Another field where
feature engineering is common is in the field of deep learning applied to computer vision where com-
binations of convolutions and max-pooling are used to reduce the dimensionality of the input data
and increase computational efficiency [11]. While this approach works well in practice, convolutions
and max-pooling operations on the inputs lack interpretability when utilized with a time-series input
compared to more popular time-domain features. To address the gaps in the aforementioned feature
engineering approaches, this work utilizes various time-domain features and a neural network archi-
tecture to learn the significance of these features while simultaneously optimizing weights to classify
bearing anomalies on a candidate dataset.

While neural network parameters are trained by optimizing a loss function, the selection of hyper-
parameters is a problem that is challenging and often left to hand-tuning. The field of hyperparameter
optimization deals with finding more efficient ways to optimize hyperparameters and neural networks.
A popular hyperparameter tuning method used is Bayesian optimization [12]. Bayesian optimiza-
tion efficiently trades exploration and exploitation of the hyperparameter space to quickly guide users
towards the model configuration that maximizes some overall evaluation criterion like accuracy or like-
lihood of observing the training data. To improve the efficiency of Bayesian optimization, a separate
scheduler is typically employed, such as the hyperband algorithm [13]. In the hyperband algorithm, a
certain number of resources are allocated to each hyperparameter setting. As the settings are eval-
uated and hyperparameters are down-selected, the budget for each configuration is increased until
the stopping criterion of the algorithm is satisfied. A modification to the hyperband algorithm is the
Asynchronous Successive Halving Algorithm (ASHA). This algorithm improves upon the hyperband
algorithm by promoting certain hyperparameter configurations earlier if they meet a certain perfor-
mance criterion. In this work, the optimizer used will combine the benefits of Bayesian optimization
and the ASHA algorithm. The Bayesian optimizer is used for efficient searching of the space, and the
ASHA algorithm is used for efficient scheduling (to decide how long to evaluate and when to promote
specific configurations) [14].

Hence, as discussed, many papers in the anomaly detection field focus on solving the problem
of anomaly detection using a specific method [4, 5] or benchmarking multiple methods on various
datasets [2,3]. Unlike these other works, the goal of this work is to present and demonstrate an end-
to-end model development methodology that can be followed for any candidate dataset and anomaly
detection problem. Initially, some popular datasets are tested on relatively simple classification al-
gorithms to select a candidate dataset for demonstrating the methodology. The candidate dataset
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selected is the one with the poorest performance. In the next step of the process, relatively complex
model types, with and without engineered features, are trained on the candidate dataset. Finally,
efficient hyper-parameter optimization is employed in a bid to improve the predictive accuracy. This
methodology can be applied by practitioners interested in solving anomaly detection problems in di-
verse applications.

The structure of the paper is as follows. Section 2 presents an overview and description of the pro-
posed methodology, summary of the data-sets considered for the demonstration, and summary of
metrics of interest. Section 3 benchmarks multiple candidate datasets, selects a sufficiently chal-
lenging dataset from the pool, applies the proposed model selection methodology to this dataset,
and presents the results. Fially, Section 4 summarizes the highlights of the capabilities developed as
part of this research and discusses avenues for future work.

2. Methodology
This section presents a methodology that can be followed to select an appropriate model for a given
dataset. The steps of this methodology include benchmarking relatively simple classifiers, traditional
neural network architectures, and neural networks with automated feature engineering, and finally
employing hyperparameter optimization. These steps are illustrated in Figure 1.

Figure 1 – Model Selection Methodology

2.1 Datasets
First, a sufficiently challenging dataset was selected to demonstrate the proposed methodology. To
accomplish this, multiple datasets were tested using various popular machine learning classifiers.
The datasets considered include a number of datasets traditionally used in the bearing anomaly
detection literature [2]. A summary of the datasets considered is presented in Table 1.

Dataset number of features Type of Fault Component

CWRU [6] 3 (vibration) artificial bearing
MFPT [7] 1 (vibration) artificial bearing
PU [3] 3 (current and vibration) both bearing, gear-box, and motor
SEU [8] 8 (vibration) artificial bearing

Table 1 – Dataset Summary

All of the datasets in Table 1 are from test stands in which bearings (other components in some cases)
are outfit with sensors and data is recorded for both anomalous and nominal cases. In the third row
of Table 1, the artificial features refers to instances where faults are applied to specific locations of
the components. For example, faults can be applied to the inner-raceway, outer race-way, or the
ball/roller of a bearing. Alternatively, a combination of the previous faults could be applied as well.
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Real faults refer to trials in which the test stand is run until a fault occurs naturally. Next, the datasets
were benchmarked using some popular machine learning models.

2.2 Simple Models (Figure 1, Step 1)
As an initial step, simple machine learning models such as K-means clustering, Logistic Classifier,
Random Forest Classifier, and a PCA Classifier [15] were used to train models on the aforementioned
datasets. These were chosen to represent popular models that are vastly different in terms of their
formulation. The models were benchmarked based on their performance (using a variety of metrics)
on the binary classification problem of determining whether data is anomalous or nominal. The
metrics were calculated using the results of the models in a 5-fold cross-validation experiment. In
these experiments the datasets were stratified to ensure that the ratio of anomalous data to nominal
data was consistent between training and test sets in each fold of the cross-validation.

2.3 Neural Nets (Figure 1, Step 2)
For many datasets, the relatively simple models specified in the previous section were expected to
achieve inadequate classification performance. A popular method to solve complex classification
problems is using Multilayer Perceptrons (MLP) or neural networks. This approach has been used in
the anomaly detection literature for both bearings and other components [2, 9]. The structure of an
MLP is shown in Figure 2.

Figure 2 – MLP architecture

Another benefit of MLPs, which is also a large reason for their popularity, is the flexibility of the
architecture. The hyperparameters that allow for flexible model definitions include number of layers,
nodes per layer, optimizer, the type of loss function, among others. This large number of hyper-
parameters allows for MLPs to be a candidate solution for many classification problems of varying
levels of complexity. MLPs are used in this work as a relatively complex model type when compared
to the previously mentioned simple models.

2.3.1 Time-Series Problem
If classifier performance trained using raw data is not satisfactory, it may be useful to consider the
anomaly detection problem as a time series classification (TSC) exercise. A time-series is formally
defined as an ordered set of real values with a length equal to the number of values in the set [16].
Considering a dataset D = [(X1,Y1),(X2,Y2), . . . ,(XN ,YN)] as a collection of pairs (Xi,Yi) where Xi is a
time-series with Yi as its corresponding label, the time series classification task consists on training a
classifier to map the labels Yi to their possible input Xi. Multiple deep learning architectures have been
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successfully trained on time-series data with results comparable or outperforming the current state-
of-the-art models [16]. The benefit of formulating the anomaly detection problem as a time-series
problem is that the relationship between sequential data-points in time may be of importance when
determining whether that sequence corresponds to a damaged component or a nominal component.
Figure 3 illustrates how raw data can be converted to a time-series classification problem. In this
example, there are three measurements and each measurement is converted to a set of time-series,
where each time-series is of length 3. The length of each time-series is a parameter that must be
tuned. Also in this example, an anomalous point is 1 and a nominal point is 0.

Figure 3 – Conversion from Raw Data to Time Series Data

2.3.2 Automated Feature Extraction (Figure 1, Step 3)
We can take advantage of the fact that the datasets considered in this work can be organically rep-
resented as time-series data to extract additional features and try improving classification accuracy.
Reference [5] lists multiple time-domain features commonly extracted and used from time-series in a
bearing anomaly detection context. For the proposed end-to-end process, a subset of these features
is selected, as shown in Table 2.
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Table 2 – Time Domain Features

However, all of these features will have varying levels of importance when it comes to classifying the
data. In this work, we modify the standard MLP architecture to have the activation functions of the
nodes of the first layer transform the time-series inputs into the features listed in Table 2. Every fea-
ture in Table 2 is calculated separately for each measurement in the selected dataset. For example,
if a dataset has one current measurement and one vibration measurement, the neural network will
calculate a separate mean for current and vibration. These features could be extracted beforehand
and directly used as inputs to the neural network. However, the Keras library [17] can be leveraged
to extract these features directly in the nodes of the MLP. This is useful because feature extraction
and training occur seamlessly in the same function call. The described architecture is illustrated in
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Figure 4.

In this work, the significance of a feature is defined as the sum of the weights of the connections
of that feature node to the first hidden layer. To determine whether this approach is a valid feature
engineering strategy for a specific dataset, the following hypothesis is tested: “Let model A be a
model trained with the top 5 significant features removed (based on the aforementioned definition of
significance). Let model B be a model with the bottom 5 significant features removed. Then, model
B will outperform model A in terms of validation accuracy and training loss”.

Figure 4 – MLP with automated feature engineering (architecture A)

For a fair assessment of the benefits/detriments, this approach must be compared to the one that
solves the time-series classification problem without feature extraction. An MLP architecture for this
problem is shown in Figure 5. These two methods will be compared to an MLP with raw features
(shown in Figure 6) as input to assess the benefit of using time-series inputs for anomaly detection.
For the remainder of the paper, the three MLP architectures described in Figures 4, 5, and 6 are
referred to as architectures A, B, and C, respectively.

Figure 5 – MLP with time-series inputs (architecture B)

2.4 Metrics of Interest
The metrics used to evaluate these methods are common metrics for binary classification. The most
commonly used metric is accuracy (Equation 1), where T P, T N, FP, and FN are used to denote
true-positive, true-negative, false-positive, and false-negative, respectively. This is a good indication
of classifier performance when the datasets are balanced, i.e., when there is a comparable number of
nominal labels and anomalous labels. For imbalanced datasets a popular metric to use is balanced
accuracy (Equation 2). Both Equations 1 and 2 indicate that the balanced accuracy provides a more
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Figure 6 – MLP with raw inputs (architecture C)

robust metric of model behavior when the two classes are imbalanced.

Accuracy =
T P+T N

T P+FN +T N +FP
(1)

Balanced Accuracy =
T P

T P+FN + T N
T N+FP

2
(2)

2.5 Hyperparameter Optimization (Figure 1, Step 4)
As stated in the introduction, the optimizer used combines the benefits of Bayesian optimization and
that of the ASHA algorithm [14]. The implementation of this optimizer is done utilizing the Hyperopt
library, which allows for the specification of separate algorithms for search and scheduling [18]. To
run the optimizer, first the architecture is defined using the number of layers and type of layer as
the parameters. For a single neural network architecture, there exists both layer-specific parameters
and general parameters that can be optimized. Table 3 shows the hyperparameters to be optimized
as part of this work. This table is by no means exhaustive. Indeed, other parameters exist that are
associated with other model types such as convolutional and recurrent architectures.

Non-layer specific Dense Layers Dropout Layers

Optimizer Type Number of Nodes Dropout Rate
Learning Rate Activation Function
Batch Size
Optimizer Specific Parameters

Table 3 – Search Space

3. Experiments and Results
First, the candidate datasets are benchmarked using popular classifiers. For the PU data-set only,
the current measurements were utilized (vibration measurements were excluded) to try and replicate
a real motor health detection scenario as much as possible. Current measurements are more realistic
because it is generally easier to outfit standard motors with current sensors than to outfit the rotating
components with accelerometers to measure vibration [3].

3.1 Simple models
From the results presented in Table 4, it is clear that the PU dataset consisting of naturally occurring
anomalies is a difficult dataset for these classifiers. The difficulty in achieving good classification
accuracy in addition to it being the only dataset with current measurements makes this dataset a
good candidate for the more advanced MLP-based models and the rest of the methodology.
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Data-set Logistic Classifier Random Forest Classifier K-means Clustering PCA Classifier

CWRU 0.67 0.74 0.5 0.67
MFPT 0.89 0.86 0.58 0.89
PU 0.51 0.61 0.50 0.50
SEU 0.99 0.99 0.3 0.5

Table 4 – Model Accuracy across the Datasets Considered

3.2 MLP Experiements
In these experiments, architectures A, B, and C are trained to solve the anomaly detection problem
for the PU data-set. Every model is trained 5 times and the hyperparameters are roughly hand-tuned.
The hyperparameters and their values used for the purpose of these experiments are shown in Table
5. Early stopping was employed for termination, i.e, the training stopped when the loss function did
not change by a tolerance for a specified number of epochs. For architectures A and B, different
models were trained for different time-series input lengths.
The metrics observed for these experiments were validation accuracy and binary cross-entropy loss.
Binary cross-entropy loss is the standard loss function for training MLPs for binary classification [19].
Since the PU dataset happens to be balanced, we do not require the balanced accuracy metric as
it will be approximately equal to regular accuracy. Augmenting this process for imbalanced datasets
will be addressed in future work.

Parameter Value

Nodes 50
Batch Size 100
Hidden Layer Activation Function Relu
Output Layer Activation Function Sigmoid
Loss Function Binary Cross-entropy
Optimizer Adam
Learning Rate 0.005
early stopping tolerance 0.1
early stopping epochs 5

Table 5 – Hand Tuned Hyper-parameters

3.2.1 MLP with Raw Features
For the first experiment, the performance of architecture C on classifying the PU dataset is tested.
The resulting accuracy and loss of the experiment are both 0.63.
It is clear from these results that, while the results improve slightly from the best simple model (ran-
dom forest) tested on the PU dataset, there is much room for improvement. The next step in the
process is to test out the predictive performance of MLP architectures A and B.

3.2.2 MLP with Time Series Input
The accuracy and loss values for architectures A and B using different time-series input lengths are
shown in Figures 7 and 8, respectively. The results are also tabulated in Table 6. For this particular
dataset, architecture A outperforms architecture B in almost the whole range of time-series input
length. The difference in performance increases as the lengths of input time-series are smaller. For
almost all time-series input lengths tested, architectures A and B vastly outperform architecture C
and the simple models with raw feature inputs and all other models previously tested. The only
configuration that did not perform as well was architecture B with a time-series input length of 25
time-steps.
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Figure 7 – Accuracy vs. Time-steps for Architectures A and B

time-steps Architecture A Accuracy Architecture B Accuracy Architecture A Loss Architecture B Loss

25 0.88 0.55 0.24 0.64
50 0.90 0.79 0.21 0.44
100 0.94 0.88 0.15 0.26
150 0.95 0.93 0.11 0.15
250 0.98 0.99 0.054 0.036

Table 6 – MLP with Time-Series Input

Now that we have some candidate models that have significantly higher accuracy than models previ-
ously tested, we shall look into feature engineering.

3.2.3 Significance of Features
The purpose of the following experiment is to test the hypothesis stated in Section 2.3.2. To that end,
for time-series inputs of various lengths, multiple sub-architectures are constructed with various fea-
tures omitted in each one. The accuracy and loss of these models are then compared. The accuracy
and loss values are averaged over 5 trials for each model, with random initialization of the datasets.
Note that the datasets are a stratified train-test split of 75% to 25%. Table 7 shows the significance of
the features for the classifier trained with 100 time-steps as the input time-series dimension. These
significance values, which were extracted from the experiments described in Section 3.2, are also
averaged over 5 trials. From Table 7 it can be observed that the most significant feature for both
measurements is the variance, and one of the least significant features for both measurements is the
kurtosis. This may be an indication that variance of time-series data is the best feature to distinguish
between nominal and anomalous data points, and kurtosis is one of the worst features to accomplish
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Figure 8 – Loss vs. Time-steps

the same task.

Feature Mean Max Value Root Mean Square Variance Crest Factor

Current 1 8.43 4.59 5.69 32.56 10.63
Current 2 12.69 4.48 3.55 26.86 13.08

Feature Kurtosis Clearance Factor Impulse Factor Shape Factor Peak to Peak

Current 1 4.15 7.04 9.55 19.18 3.31
Current 2 1.16 13.04 13.40 18.92 6.77

Table 7 – Significance of Extracted Features

For each time-series input dimension, two models are trained. First, a model with the bottom five
significant features omitted, i.e., with the top 15 significant features retained. Second, a model with
the top five significant features omitted, which means the bottom 15 significant features retained. For
example, in Table 7, the top 5 features are variance of Current 1, variance of Current 2, shape factor
of Current 1, shape factor of Current 2, and impulse factor of Current 1. The bottom 5 features are
kurtosis of Current 2, peak to peak value of Current 1, root mean square of Current 2, kurtosis of
Current 1, and max value of Current 2. Two separate models are trained with the aforementioned top
5 features and bottom 5 features omitted. The results of these experiments are shown in Figures 9
and 10.
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Figure 9 – Accuracy vs. Time-steps
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Figure 10 – Loss vs. Time-steps

These results show that across all time-step values, the model trained with the top 15 features out-
performs the model with the bottom 15 features. Also, the difference in performance for the model
trained with the top 15 features and the model trained with all the features is relatively small. These
observations hold for both the validation accuracy and the training loss. These results show that the
hypothesis mentioned in section 2.3.2 is valid for this specific dataset. This is important because it
indicates that inference with such models for an anomaly detection application may work with data of
a smaller dimension and yield similar results, thereby lowering the computational cost of performing
inference. While the hypothesis validity holds true for this dataset, it is likely dataset specific. Conse-
quently, similar experiments should be run for the practitioner’s specific use-case before reducing the
dimension of data during inference based on significance.

3.3 Hyperparameter tuning
To demonstrate the hyperparameter tuning step of the proposed end-to-end process, a candidate
model was chosen from architecture A. The model was chosen with time-series input length of 25
time-steps, which had the poorest predictive accuracy, i.e., has the most room for improvement with
the Bayesian optimizer. The model was optimized using the framework described in the Methodology
section. The search space considered is shown in Tables 8 and 9. The results of the optimization are
shown in Table 10.

Optimizer Type Learning Rate Batch Size (Relative to Input Size) Momentum (SGD only)

Adam, SGD [log(0.00025), log(0.25)] [0.00002,0.0005] [0.05,0.25]

Table 8 – Search Space for Experiments (Not Layer Specific)
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Number of Nodes
Number of Features Activation Function

[0.1,10] Relu, Sigmoid, Hyperbolic Tangent

Table 9 – Search Space for Experiments (Dense Layers)

Model accuracy loss

Original 0.88 0.24
Optimized to minimize training loss (500 evaluations) 0.89 0.23
Optimized to maximize validation accuracy (500 evaluations) 0.90 0.21

Table 10 – Optimized Model

Table 10 shows that the optimization improved upon the original model. The best performing model
was optimized with the goal of maximizing the accuracy of the model on the validation set. This
resulted in a 2% increase in validation accuracy and a 12.5% improvement in loss. The optimal
parameters for the different models are shown in Table 11.

Model Optimizer Type learning rate batch size activation function number of nodes

Original Adam 0.0005 100 Relu 50
Optimized to minimize training loss (500 evaluations) Adam 0.0042 84 Relu 101
Optimized to maximize validation accuracy (500 evaluations) Adam 0.00084 80 Hyperbolic Tangent 127

Table 11 – Optimized Model Parameters

4. Conclusion
This work presented a methodology in which a suitable model for anomaly detection is constructed
for a given dataset. In particular, this work provides a stencil for practitioners to follow for solving
time-series classification problems for any application. The methodology involves starting with a va-
riety of simple models before moving on to more complex models, which can then be further tuned
through automated feature engineering and hyperparameter optimization. The methodology is ap-
plied on a candidate dataset that is challenging to model using conventional data-driven approaches
to demonstrate that it can lead to an effective and parsimonious model with good predictive accuracy.
This work also demonstrated an automated, interpretable feature engineering approach for MLPs.
While this method of automated feature engineering was validated on a bearing anomaly detection
problem, it is expected to provide modelers with the means to investigate performance and efficiency
improvements for MLPs, for any application, in an interpretable manner.

As discussed, this methodology first explores simple models before moving on to more complex
models, automated feature engineering, and finally hyperparameter optimization. Future work in-
cludes quantifying the computational complexity of the algorithms utilized, investigating techniques
for working with imbalanced datasets, providing mathematical justification of the automated feature
engineering approach, and investigating the significance of frequency domain features.
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