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Abstract 

The rotor airfoils for the helicopter experience dramatically different conditions within a single rotation cycle 

and many objectives and constrains must be considered during the design and optimization. A manifold 

learning approach for the Pareto front exploration has been developed in this paper. The manifold structure of 

Pareto front of a multi-objective problem is explored and reconstructed using the manifold learning method. 

The method is validated by analytical problems, and a three-objectives design problem of the rotor airfoil. 

Enhanced with the approach, the evolutionary optimization converges more rapidly, and the diversity and 

uniformity of the optimal Pareto are improved evidently. The multi-objective optimization enhanced with 

manifold learning shows promising capability in practical application.  
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1. Introduction 
The aerodynamic characteristics of airfoils are critical for the improvement of helicopter blade 

performance. However, the design of airfoils for the helicopter is full of challenges, because airfoils 

experience dramatically different conditions within a single rotation cycle. For the forward flight 

condition, a regime of transonic flow exits around the tip of the forward blade, leading to a shock 

wave and boundary layer intersection. The retreating blade must generate enough lift at the same 

time to maintain helicopter roll stability. Besides, high lift coefficients at low and moderate Ma 

numbers are requested, at all fight conditions. A small pitching moment also needs be achieved for 

helicopter manipulability. Therefore, the design of rotor airfoils is a multi-objective problem with 

strong multi-constraints. 

Wang[1] carried out optimization on SC1095 airfoil aimed at improving the characteristics of airfoil 

under dynamic stall conditions. Hager[2] developed a two design-points design method for airfoils in 

the rotational transonic flows. Jones[3] designed rotorcraft airfoils that address aerodynamic and 

aeroacoustic concerns using a parallel genetic algorithm. Massaro and Benini[4] proposed a multi-

objective approach for rotor airfoil optimization using surrogate-assisted memetic algorithm. 

However, in most of the researches, only a part of characteristics of rotor airfoils are considered 

resulted in partial performance improvement. If all the design objectives are considered, a high-

dimensional multi-objective problem will be resulted in and the optimization algorithms will encounter 

a bottleneck[5], and the Pareto front is hard to be found. For this reason, little research has aimed at 

the improvement for more than three objectives for rotor airfoils. Zhao[6] proposed a principle 

component analysis (PCA) dimensionality reduction method, and a high dimensional problem with 

six-objective is translated into a bi-objective problem.  

In most of the multi-objective optimizations, the regularity that the Pareto set of a continuous m-

objectives problem is a piecewise continuous (m-1) dimensional manifold is always neglected. The 

regularity of the population distribution is formed gradually with the population evolutionary. Yet, few 

methods exist that take advantage of the manifold information of the Pareto front to aid the multi-

objective optimization. Daskilewicz[7] described a process for parameterizing Pareto front employing 

self-organizing maps. Yang[8] proposed a multi-objective evolutionary algorithm combined with the 

locally linear embedding (LLE), which is a representative manifold learning method.  
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In this paper, a novel algorithm for multi-objective optimization enhanced with a manifold 

reconstruction method is proposed. The algorithm rebuilds the distribution of the Pareto front in the 

manifold space using the manifold learning method. Therefore, the high dimensional design space 

is mapped to the (m-1) dimensional space. Then a child population is generated in the manifold 

space, and the optimization algorithm is enhanced by the manifold information. The proposed 

method, based Manifold Reconstruction based Estimation of Distribution Algorithms (MR-EDA) is 

introduced in detail in section 2, and the algorithm is validated by analytical problems in section 3. 

Then the algorithm is applied to the rotor airfoil optimization problems with 3 objectives and the 

results are analysis in section 4. At last, the conclusion is shown in section 5. 

2. Manifold Reconstruction Based Estimation of Distribution Algorithms 

2.1 Manifold Reconstruction 

Almost the manifold learning approaches can map the data in the high-dimensional space to a low-
dimensional manifold space. However, analytic expression is not able to provide for the mapping 
process. For a specific aerodynamic design problem, although we can map the sample points in the 
design space to a manifold space, however, the mapped points in the low-dimensional manifold has 
no specific physical meaning. Thus, the manifold information is hard to utilize. For example, we cannot 
obtain a sample point in the design space corresponding to any specified points in the manifold space, 
and there has no way to solve aerodynamic forces. 

A manifold reconstruction method must be used to employing the manifold information during the 

optimization process. Set k
S is a k-dimensional manifold, which is embedding is a n-dimensional space 

n
D , where k n . i 1{ } N

i=x is N  sample points in n
D , and i 1{ } N

i=y is N  sample points in k
S . The relation 

between ,x y is ( ), g( )f=  =y x x y . According to the Taylor expansion theorem, any point y in the 

neighborhood of iy  can be expressed as: 

 i i i ig( ) ( )( ) R( , )J= = + − +x y x y y y y y   (1) 

where i( )J y is the Jacobian matrix of g( )y  at the point iy , and the iR( , )y y  is the remainder term. Ignoring 

the remainder term and assume ix has z points in the neighborhood, we have the equations： 

 
i i i

i i,1 i i,z i

i i,1 i i,z i

( ) ,

( , ... , ),

( , ... , )

J  

= −    −   

= −    −

X y Y

X x x x x

Y y y y y

  (2) 

 T T 1
i i i i i( ) ( )( )J −y X Y Y Y   (3) 

Now we obtain the Jacobian matrix i( )J y  at the point iy . 

For any point y in the manifold space k
S , the x in the high-dimensional space n

D can be solved by 

the steps:  

1, Find the point sy  in i 1{ } N
i=y ,which is the nearest to the point y ; 

2, Find the sx in high-dimensional n
D  corresponding to sy , and the neighborhood points 

,1 ,2 ,z, , ... ,s s s  x x x  of sx . Then the embedding points ,1 ,2 ,z, , ... ,s s s  y y y of the neighborhood points in k
S can 

be obtained; 

3, Build the matrix s,1 s s,z s( , ... , )s = −    −X x x x x and matrix s,1 s s,z s( , ... , )s = −    −Y y y y y , then the matrix 

T T( )( )G
s s s s s=Q X Y Y Y ; 

4, At last, the embedding pointed of point y in 
n

D  is s( )s s + −x x Q y y . 

2.2 MR-EDA framework 

Estimation of distribution algorithms (EDAs)[10~12] are a class of evolutionary algorithms. The key 
process in EDAs is the probabilistic models construction. Regularization techniques, which are widely 
used in statistics and machine learning[13], have been used in EDAs to obtain a robust prediction 
model. The proposed method adopts the manifold reconstruction for estimating a probability 
distribution model for the space of possible candidate solutions to the given problem. Compared with 
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the regularization techniques, the manifold reconstruction takes advantages of the manifold structure 
of the Pareto front. What’s more, the evolutionary process has much more direct physical meaning. 
The flowchart of the MR-EDA is presented in Figure 1. 

The basic steps of the MR-EDA are introduced as follow: 

1. Generate an initial population Pop(0), and solve the objective function F(x); 

2. Obtain a non-dominated solution set Q(t)by sorting the objectives, where t is the iteration step; 

3. Assume Q(t) is a high dimensional manifold, and the F(x) is the low-dimension embedding manifold 
of Q(t). Using the approach in section 2.1, generate a promising distribution of solution set P(t); 

4. Obtain a new population Pop(t) by merging the Q(t) and P(t), if the convergence condition is 
reached, the optimization process stops, else go to step 1 for iteration.  

 

Figure 1 Flow chart for MR-EDA 

3. Analytical Problems Validation 
In order to validate the performance of the MR-EDA, here we give the results on analytical problems. 

The result will be compared with the NSGA-Ⅱ, a fast and elitist multi-objective genetic algorithm. 

The three test instances are from the ZDT test suit, and the definitions are presented in Table 1. The 

inverted generational distance (IGD)[9] is used for performance evaluation of the multi-objective 

optimization method. A small value of the IGD implied the good convergence of solutions to the 

Pareto front and their good distribution over the entire Pareto front. The IGD is defined as: 

 
**

*

( , )

( )
| |

v S

d v S

IGD S ,S
S

=


  (4) 

where the ( )d v,S  is the minimum distance of the point v  to the points in the Pareto set S , which is 

obtained by the optimization method. *S is the true Pareto front and the *| |S is the points number in 

the set. 

The number of design variables is 30 in the three test instances, and the number of population is 

100. The optimization will be stopped when the maximum iteration step, 200 is reached. Especially 

for the NSGA-Ⅱ, the cross probability is 0.8 and the mutation probability is 0.3.  

Figure 2 shows the optimal Pareto front obtained by the proposed method and the NSGA-Ⅱ for the 

ZDT1 test instance, and the true front is also presented in the figure. As it clearly indicated in the 

Figure 2, the optimal front obtained by the MR-EDA almost coincide with the true front, however, the 

optimal front after 200 iterations using the NSGA-Ⅱ is still not converged the true front. The IGD 

indicator could show a converge history of the iterations, as shown in Figure 3. The value of the IGD 

by the MR-EDA converges more rapidly than the NSGA-Ⅱ, and the former is close to zero after 

about 150 iterations. 

For the ZDT2 test instance, the MR-EDA also shows the good ability of Pareto front exploration. As 

shown in Figure 4 and Figure 5, the MR-EDA can find the true front after about 110 iterations. 
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However, the NSGA-Ⅱ converges much slower. 

The true front of the ZDT3 is piecewise continuous, as shown in Figure 6. Both the MR-EDA and 

NSGA-Ⅱ do not converge to the true front, but the convergence rate of MR-EDA is obviously 

improved, as presented in Figure 7. 

This indicates that the convergence speed using the MR-EDA has been improved significantly, 

compared with the NSGA-Ⅱ. What’s more, the population diversity and uniformity in the optimal 

Pareto front are also improved obviously. These results encourage the application of the proposed 

method to more complex problems. In the subsequent study, the MR-EDA will be applied to multi-

objective optimization problems for rotor airfoils, and its prominent ability of the proposed method 

should be verified. 

Table 1 Definitions of the test functions 
Test 
instances 

Definition True Pareto front 

ZDT1 
2

1 1

2 1

( ) 1 9 / (m 1)

( )

( ) ( )(1 / ( )), [0,1]

m

i

i

g x x

F x x

F x g x x g x x

=

= + −

=

= −   



 11y x= −  

ZDT2 

2

1 1

21
2

( ) 1 9 / (m 1)

( )

( ) ( )(1 ( ) ), [0,1]
( )

m

i

i

g x x

F x x

x
F x g x x

g x

=

= + −

=

= −   



 2
11y x= −  

ZDT3 

2

1 1

1 1
2 1

( ) 1 9 / (m 1)

( )

( ) ( )(1 sin(10 )), [0,1]
( ) ( )

m

i

i

g x x

F x x

x x
F x g x x x

g x g x


=

= + −

=

= − −   



 
1 11 sin(10 )y x x x= − −  

 

  

Figure 2 Optimal front of ZDT1 test 

case obtained by the NSGA-Ⅱ and 

MR-EDA 

Figure 3 Convergence histories of IGD 

of ZDT1 test case using NSGA-Ⅱ and 

MR-EDA 
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Figure 4 Optimal front of ZDT2 test 

case obtained by the NSGA-Ⅱ and 

MR-EDA 

Figure 5 Convergence histories of IGD 

of ZDT2 test case using NSGA-Ⅱ and 

MR-EDA 

  

Figure 6 Optimal front of ZDT3 test 

case obtained by the NSGA-Ⅱ and 

MR-EDA 

Figure 7 Convergence histories of IGD 

of ZDT3 test case using NSGA-Ⅱ and 

MR-EDA 

4. Multi-objective Designs for OA209 Using MR-EDA 

4.1 Multi-objective optimization problem definition 
The OA209 airfoil, developed by ONERA, is chose for the baseline airfoil, as shown in the Figure 8. 

The airfoil has been parameterized by the CST, and the order of the upper and lower surfaces are 

both 6, thus 14 design variables are used for the airfoil design process.  

Several basic performances should be considered for the rotor airfoil, such as the low drag level at 

hover flight condition, high maximum lift coefficient at maneuvering flight condition, low drag 

divergence Ma number, and low level moment coefficient at zero lift condition. Thus, the optimization 

problem for high performance rotor airfoil is defined as: 

  

 

0
1 1

0
2 2 2

2 2 2
3 3 4 4 5

0

0 0

min /

Objective min /

min [( ) ( ) ] / ( Ma) / 0.005

ˆsubject to ( ) 0, 1 ~ 7

( ) / 0.01

D D

L L

D D D D

i

l u

f C C

f C C

f C C C C

g i

A A

t - t t

   =

   = −


  = − + − 

    =

                  

               

                

x

x x x

  (5) 

where the sup script 0 indicate the baseline performance, A is the area of the airfoil, and t  is the 

maximum thickness of the airfoil. In this optimization problem, 7 conditions are involved, as shown in 
Table 2. The first design objective is the minimum drag coefficient at 0.6, 0.6LMa C=  = , and the lift 

coefficient is considered as a constraint. The second objective is the negative lift coefficient at 0.4Ma =  

with the drag coefficient constrained. The last objective is the drag divergence Ma number, and the 
objective value is normalized by dividing 0.005 to close to 1. The moment coefficients at zero lift 
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condition are all considered as constraints, as presented in Table 2. 

Table 2 Design points and constraints for the rotor airfoil 
 Flight condition  Objective  Design point  Constraint 

Hover flight 
0.6

0.6L

Ma

C

=

=
  D(design) C (OA209)DC   6

0.6

Re 4.8 10

3.23

Ma



=

= 

=

 0
1 1L LC C  

Maneuvering flight 

max

0.4

L L

Ma

C C

=

=
 max max(design) C (OA209)L LC   6

0.4

Re 3.2 10

11.0

Ma



=

= 

=

 0
2 1D DC C  

Forward flight 

0.0LC =  
0 0

0

(design) (OA 209)

0.01

Dd Dd

m

Ma Ma

C




 

6

6

6

0.76

Re 6.08 10

0.9

0.78

Re 6.24 10

0.9

0.80

Re 6.4 10

0.9

Ma

Ma

Ma







=

= 

= −

=

= 

= −

=

= 

= −

 

0
3 3

0
3 3

0
4 4

0
4 4

0
5 5

0
5 5

D D

m m

D D

m m

D D

m m

C C

C C

C C

C C

C C

C C













 

Hover flight 
0.6

0.0L

Ma

C

=

=
 0 0.01mC   6

0.6

Re 4.8 10

0.77

Ma



=

= 

= −

 
0

6 6m mC C  

Maneuvering flight 
0.4

0.0L

Ma

C

=

=
 0 0.01mC   6

0.4

Re 3.2 10

0.75

Ma



=

= 

= −

 
0

7 7m mC C  

 

In this paper, the in-house code PMB3D was employed for the flow field analysis. The steady RANS 

equations were solved using multi-block structured grids and the second-order Roe MUSCL scheme 

was used for spatial discretion. The SA turbulence mode was solved for turbulence simulation. The 

grid topology is C-type and the resolution is 449 73 . Figure 9 is the grid distribution near the baseline 

airfoil for CFD simulations. The aerodynamic forces have been compared with the data from wind 

tunnel experiments. The simulations and experiments Ma=0.4, and Re = 61.4 10 . Figure 10 shows 

the lift coefficients versus AoA and the Figure 11 shows the drag coefficients. The simulation results 

are in good agreement with the experiment. 

The number of population is 54, and the objectives are solved in parallel on the high performance 

computer. The maximum iteration step is set to be 50. The NSGA-Ⅱ is also employed for comparison.    

 

Figure 8 The OA209 airfoil 
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Figure 9 Schematic of computational grid 

 

Figure 10 Comparison of lift coefficients between numerical results and experimental data 

 

Figure 11 Comparison of drag coefficients between numerical results and experimental data 

4.2 Results and analysis 
The Pareto fronts obtained by the MR-EDA and NSGA-Ⅱ are presented in Figure 12~Figure 14. As 

we can see in the Figure 12, the first and second objective form a convex front, and the MR-EDA 

converges to a better front. The high performance of convergence is also indicated in Figure 13. A 

wider distribution of solution is generated by the MR-EDA. The fronts for the second and the third 

objective generated by the two methods are very close. We chose one optimal individual in the 

solution set obtained by the MR-EDA for a more detail analysis. The shape of the selected airfoil is 

shown in Figure 15. 
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Figure 12 Optimal front obtained by the NSGA-

Ⅱ and MR-EDA (Objective 1 vs. Objective 2 ) 

Figure 13 Optimal front obtained by the NSGA-

Ⅱ and MR-EDA (Objective 1 vs. Objective 3 ) 

  
Figure 14 Optimal front obtained by the NSGA-

Ⅱ and MR-EDA (Objective 2 vs. Objective 3) 

Figure 15 Optimal airfoil by MR-EDA 

 
Now we examine the aerodynamic performance of the optimal airfoil and compare with the baseline 
airfoil. Table 3 shows the airfoil performance at the first two design condition. The drag coefficient at

0.6, 0.6LMa C= = is increased by 0.57%, which has a negligible change. For the maximum lift coefficient 

at 0.4Ma = , it increased by 3.76%.  

The zero lift moment is critical for the operation performance. In the optimization problem, the moment 
is defined as constrains. In the Table 4, is shown the moment performance at 5 conditions. It obviously 
indicates that the level of moments of the optimal airfoil has been reduced significantly. For example, 

the moment coefficient at the hover flight is 34.4824 10−−   for the baseline airfoil and it is reduced to 
30.2007 10−−  for the optimal airfoil. 

The drag divergence performance is directly relative to the forward flight capability. It is defined as the 
third objective in the multi-objective optimization problem. Figure 16 is the curves of drag coefficients 
with the Ma number. As we can see in the figure, the drag divergence performance of the optimal airfoil 
is improved compared with the baseline airfoil. 
In general, the overall performance of the rotor airfoil is improved using the MR-EDA. The maximum 
lift coefficient at maneuvering flight is increased by 3.76%, and the drag divergence performance is 
also improved. The zero lift moments are considered as constraints, and all the moments are improved 
significantly.   
 

Table 3 Comparison of aerodynamic performance of the baseline and the optimized airfoil 
Design Point Objective Baseline Optimal   (%) 

Hover flight 
0.6

0.6L

Ma

C

=

=
 DC  0.01044 0.0105 0.57% 

Maneuvering flight 

max

0.4

L L

Ma

C C

=

=
 maxLC  1.3499 1.4007 3.76% 

 
Table 4 Zero lift moment coefficient at design point for the baseline and optimized airfoil 

Design Point Condition Baseline ( 310−  ) Optimal ( 310−  ) 

Hover flight 60.6,Re 4.8 10Ma = =   -4.4824 -0.2077 

Maneuvering flight 60.4,Re 3.2 10Ma = =   -3.8040 0.1419 

Forward flight 

60.76,Re 6.08 10Ma = =   -6.5025 -1.8232 

60.78,Re 6.24 10Ma = = 

 

-7.0223 -2.3697 

60.80,Re 6.4 10Ma = = 

 

-8.2591 -5.3153 
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Figure 16 Drag coefficients with different Ma for the baseline and optimized airfoil 

( 6Re 8 10 , 0LMa C=   =  )  

5. Conclusion 
This study addressed a multi-objective optimization for rotor airfoils employing the manifold learning 
method. The proposed methodology used the manifold information during the optimization process 
under the framework of estimation of distribution algorithms. The proposed methodology demonstrates 
that the optimization process converge rapidly and a Pareto optimal front has been obtained for the 
rotor airfoil design. The manifold leaning method has shown great prospect of application.  
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