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Abstract

In the present paper some problems of mathematical modeling and computational simulation of two-phase
gas-particle flow, as applied to aerodynamics, are discussed, and the results relating to the dispersed phase
flow structure and energy flux to the body surface are presented. The main attention is paid to modeling and
simulation of random phenomena: collisions between particles, scattering of non-spherical particles from a
body surface, particle size dispersion. These phenomena are typical for actual gas-particle flows, but they are
not taken into account in the classical two-phase gas-particle flow theory. A kinetic model and a Direct Simula-
tion Monte Carlo method are used for calculation of a "collisional gas" of particles in the carrier gas flow. A new
three-dimensional particle-wall collision model is proposed. Scattering of non-spherical particles of different
shape rebounded from a smooth solid surface is studied by direct numerical simulation of rebounding the great
number of particles. The lognormal law was taken for the particle size distribution in an undisturbed flow. The
developed approach is incorporated into the gas-particle flow model, and the investigation of the particle phase
flow structure is carried out for high-speed gas-particle flow over a blunt body (cross-wise cylinder). The distri-
bution of the particle energy loss in particle-wall collisions along the body contour is calculated for particles of
different shape. The shielding effect of the particle-particle collisions on the energy loss is discussed.

Keywords: gas-particle flow, scattering of rebounded non-spherical particles, particle-particle collisions, par-
ticle energy loss in particle-wall collisions

1. Introduction
Scientists and engineers face the problem of two-phase aerodynamics when they study and analyze
a flight of vehicle in a dusty atmosphere. The atmosphere dust loading can be caused by volcanic
eruptions, dusty storms, sizable fires, etc. The key engineering problems can be formulated as fol-
lows: (1) how does the dispersed phase influence the drag force and heat transfer, and (2) what is
the rate of surface erosion due to particles’ impacts. As is seen, the prime and immediate interest
is focused on the functionals of a two-phase gas-particle flow. Experimental and theoretical results
on the subject obtained by 2007 are accumulated in [1]. Eventually these functionals are determined
by the gas-particle flow structure and particle impact interaction with the streamlined surface. The
carrier gas and the dispersed phase behaviour depends on micro- and macro-phenomena, like the
gas-particle interaction, the particle-particle collisions, the particle-wall impact interaction, the collec-
tive effects in a gas-particle mixture, and the effect of particles on a carrier gas flow. Consideration
and study of these phenomena refers to the fundamentals of the multiphase flow mechanics. Spe-
cific features of particle phase flow patterns over bodies, as well as mathematical models of some
"elementary" interactions in such flows and the basic regimes of flows were analyzed in [2]. Differ-
ent specific aspects of the problem were studied and analyzed later in [3]–[7]. Some of the most
important results entered into the review paper [8].
As is known, the classical theory of two-phase gas-particle flow assumes that particles are equal in
size, have spherical shape, do not collide with each other, and rebound regularly from a streamlined
surface. In actual gas-particle flow, these assumptions are not valid. In recent time a consider-
able number of publications have been devoted to more realistic effects: interaction of non-spherical
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particles with the carrier gas flow [9]–[12], non-spherical particle-wall collisions [13]–[16], flow of
polydisperse particle phase [17]–[18]. Systematic experimental investigations on particle-wall impact
interaction continue for more than thirty five years [19]–[21]. Much attention was given to development
of high-speed particle-wall impact interaction models with taking account for mechanical properties
of the particles and the wall [24]–[25]
In spite of considerable efforts of many researchers, many questions remain open up to now. Among
them modeling of some random phenomena in high speed gas-particle flows, development of the
wall abrasive erosion and forming the landscape of wall roughness. The aim of the present study is
to propose a new model of high-speed particle-wall impact interaction and investigate scattering of
rebounded particles, to extend a developed earlier approach for a collisional "gas" of particles [26]
to taking account for particle scattering, to investigate a high-speed dusty gas flow over a blunt body
by an example of cross-wise cylinder, and to estimate the energy flux from the particle phase to the
body surface.

2. Three-dimensional particle-wall collision model
The particle-wall impact interaction has an essential effect on the pattern and properties of dusty
gas flow. The important feature of particle-wall collisions in two-phase aerodynamics is high speed
particle impacts. The majority of particle-wall collision models are based on the information about the
coefficients of restitution for the velocity components [7]–[8], [19]–[21], [24], [27]. A very few papers
are devoted to collision modelling with explicit inclusion of mechanical properties of a particle and a
wall [22], [23], [25]. In actual flows particles are not spherical in shape (see Fig. 1), and the direction
of their rebound is random. A non-spherical particle can have experienced more than one collisions
with the wall during rebounding before it flies away.

Figure 1 – Shape of natural and manufactured particles.

At first we consider an isolated collision of a particle with a flat wall and then investigate statistic
parameters of rebounded non-spherical particles taking account for all collisions during a process of
rebound. Here we describe a new 3D particle-collision model which represent a substantial modifica-
tion of the developed earlier model [14]. Let OXY Z be the local Cartesian coordinate system with the
XZ-plane coincident with the wall surface and the Y -axis normal to it (XZ-plane will be referred to as
the plane of impact). Denote the coordinates of the particle gravity center by Xp,Yp,Zp. We introduce
also the particle-fixed coordinates Opξ ηζ with the axes directed along the particle principal axes of
inertia. The angles ϕ,ψ,ϑ define the particle orientation with respect to the coordinate system OXY Z
and particle shapes in the present study are shown in Fig. 2.
The ’hard particle model’ [28] will be used in simulating the particle-wall collisions. Let the vectors
of the particle translational and angular velocities, Vp and ΩΩΩp, and the angles ϕ,ψ,ϑ be given just
before a collision. The problem is to determine the post-collisional particle translational and angular
velocities. Assume that the particle-wall collision occurs at a point which will be designated as the
contact point (point C in Fig. 3). If the contact area is an edge or a face of a prismatic particle, we
consider the geometric center of the edge or the face as the contact point to avoid the uncertainty in
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Figure 2 – Particle configuration and the angles ϕ,ψ,ϑ defining the particle orientation in space.

calculations. The position of the contact point with respect to the particle center of gravity is defined
by the vector rc.

Figure 3 – Collision of a non-spherical particle with a wall.

We assume that the collision duration is very short, so that the particle position relative to the wall
surface does not changes during the collision process. The equations for the change of the particle
momentum and angular momentum can be written in the following integrated form

mp(V+
p −V−p )≡ mp4Vp =

δ t∫
0

fc(t)dt ≡ S, ‖Jp‖(ΩΩΩ+
p −ΩΩΩ

−
p )≡ ‖Jp‖4ΩΩΩp = rc×S, (1)

where mp, ‖Jp‖ are the mass and the inertia tensor of the particle, fc, S are the force and the impulse
acting on the particle at the contact point, δ t is the time interval in which the force fc acts on the
particle, superscripts "−" and "+" signify the pre- and post-collisional particle parameters (Fig. 3).
The velocity of the particle contact point Vc, and the particle translational and angular velocities Vp
and ΩΩΩp are related by the kinematic equation

Vc = Vp +ΩΩΩp× rc. (2)

From this we obtain
4Vc ≡ V+

c −V−c = 4Vp +4ΩΩΩp× rc. (3)
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Combining Eqs. (1) and (3) yields

1
mp
‖Jp‖4ΩΩΩp = rc×4Vc− rc× [4ΩΩΩp× rc]. (4)

Equation (4) contains two unknown vectors 4Vc and 4ΩΩΩp.
Let up, vp, wp and uc, vc, wc be the components of the vectors Vp and Vc in the coordinats OXY Z, and
4up, 4vp, 4wp and 4uc, 4vc, 4wc be the components of the vectors 4Vp and 4Vc, respectively.
The most difficult problem in modeling the particle-wall impact interaction is in describing the force
acting on a particle at the contact point C (or in the contact area in general case). Preliminary
detailed simulation of the impact of a hard non-spherical particle on a ductile wall by methods of
solid mechanics showed that a particle is sliding during interaction, and the post-collisional particle
parameters (translational and angular velocity) depend substantially on the particle space orientation
before an impact. Based on these results the following assumptions for a particle-wall collision model
were taken in the present study:
(i) the tangential to the wall impulse of the force acting on a particle is proportional to the normal
impulse and the mean tangential velocity of the contact point;
(ii) the restitution coefficient for the normal velocity of the particle center of gravity obtained experi-
mentally by measuring the force acting from the particle phase on a solid plate can be applied to the
normal velocity of the contact point.
In the case of low speed of particle impact the tangential impulse is usually considered to be pro-
portional to the normal one only. However at high speed particle impact on the wall of ductile metal
(namely this case is considered in the present study), the wall experiences the plastic deformation
which depends on the strain velocity. The first assumption implies that this dependence is linear.
In line with these assumptions we can write

4up =−C f4vp(u−c +0.54uc)/|V−c |,
4wp =−C f4vp(w−c +0.54wc)/|V−c |,
4vc =−v−c (an +1),

(5)

The coefficient C f in these equations may be interpreted as the coefficient of dynamic resistance to
particle sliding in the tangential direction. It depends on the position of the contact point relative to the
particle center of gravity at the impact instant. In the present study the following relation was taken
for C f

C f = exp[(rc ·V−p )/|rc||V−p |]

It is important to notice that the parameter an is the coefficient of restitution of the normal velocity of
the particle gravity center, it is defined as follows an =−v+p /v−p , and in the present study we used for
it the following experimental formula [20] which was obtained by measuring the force acting from the
particle phase on a plate at different angles of impact:

an = 1− [1− exp(−0.1|V−c |−0.61)](v−c /|V−c |).

The set of equations Eqs. (3)–(5 is closed. It is not linear and can be solved numerically by the
method of successive iterations to give the components of vectors 4ΩΩΩp, 4Vc and 4Vp.
For validation of the proposed impact model, we took a mixture of particles of different shape (see Fig.
2) in equal parts. Let dimensions of particles in the directions of principal axes be Lξ = 2a, Lη = 2b
and Lζ = 2c. The value of Lξ for particles of the same shape were fixed, but ratios b/a and c/b were
considered as independent random variables from the range [0.5, 1] and distributed by the normal
law with mean value of 0.8 and standard deviation of 0.04. Such mixture in some sense is close to
that used in experiments. Direct numerical simulation of a great number of particles (∼ 108) from this
mixture was carried out using the proposed impact model to determine the particle translational and
angular velocities. Every time the particle orientation was taken as random. The distributions of the
rebounded particles’ velocity at different impact angles, were obtained. The mean velocities and the
most probability velocities were found at different impact angles.
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Figure 4 – Mean restitution coefficients V+
p /V−p , v+p /V−p and u+p /V−p as functions of the angle of

incidence α1 for separate particle shapes and for the uniform mixture of particles of different shapes.

Figure 5 – Most probability ratios V+
p /V−p , v+p /V−p and u+p /V−p as functions of the angle of incidence

α1 for separate particle shapes.

For comparison, the same simulations were performed for separate particle shape also with varying
ratios b/a and c/b as described above. The results for the mean and most probable values of re-
bounded particles’ velocities are shown in Figs. 4 and 5. Experimental data for mean velocities are
given in these figures. It is seen that the mean and most probable velocities for every impact angle
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differ noticeably from each other. The calculated results for mean velocities of particles in the mixture
are on the whole in better agreement with the experimental data than those for separate particle
shapes.

3. Scattering of rebounded particles
Non-spherical particles impinging on a wall at a given angle of incidence α1 (see Fig. 3) and with
the same translational and rotational velocities, V−p and ΩΩΩ

−
p , rebound in different directions. Such

a phenomenon is referred to as the particle scattering. It is caused by the random orientation of
particles in space before the first collision. A particle can experience several collisions during one
rebound. We use the particle-wall collision model described in the previous Section for each collision.
Let (XY ) in Fig. 6 be the plane of impact (the plane in which vector V−p and the normal to the wall
surface lie). The direction of the particle rebound can be defined by two angles α2 and β2 (Fig. 6).
The angle α2 lies in the range from 0 to π, and the angle β2 from −π/2 to π/2.

Figure 6 – Angles α2 and β2 define the direction of a particle rebound.

Let N be a number of incident particles with the fixed Vp1, ΩΩΩp1 and α1, and dN(α2,β2,dα2,dβ2) be
a number of those particles, which are reflected in the direction specified by the intervals of angles
[α2,α2 + dα2] and [β2,β2 + dβ2]. Introduce the distribution function I(α2,β2) of rebounded particles
over the angles α2 and β2 by the relationship I(α2,β2)dα2 dβ2 = dN(α2,β2,dα2,dβ2)/N. This expres-
sion represents the probability of particle rebound in the direction defined by the angles (α2,β2)
within the intervals dα2 and dβ2, respectively. The function I(α2,β2) will be referred to as the three-
dimensional (3D) scattering indicatrix. Integrating I(α2,β2) over β2 from −π/2 to π/2 we obtain the
two-dimensional (2D) scattering indicatrix which describes the distribution of rebounded particles
over the angle α2 (denote it by F(α2)).
The scattering indicatrices for particles rebounded from a smooth solid wall were calculated using the
direct statistical simulation technique. In the domain of angles 0 6 α2 6 π and −π/2 6 β2 6 π/2, we
introduced the uniform rectangular grid with the steps 4α2 = 4β2 = π/180 (= 1◦). The rebound of a
great number of particles (≈ 5 ·107) was simulated for initially non-rotating particles (ΩΩΩ−p = 0) at fixed
(V−p and α1).
In calculations, the particle shape parameters were taken as in the previous Section. Note that the
size Lξ = 2a had no effect on the indicatrices. Initial space orientation of a particle in every trial was
considered as random and equiprobable. The collision model described above was used for every
collision of a test particle during its rebound. For (i j)-cell of the grid, the value Ni j was determined
as a number of particles with rebound angles α2 and β2 lying in the intervals (i−1)4α2 6 α2 < i4α2,
( j−1)4β2 6 β2 < j4β2. For large enough N, the ratio Ni j/N is close to the probability of reflection of a
particle in the direction defined by the above indicated intervals of the angles. Then an approximate
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value of the function I in the cell (i j) is calculated by the formula:

I(α2,β2)i j ≈
Ni j

N ∆α2 ∆β2 cos[∆α2(i+1/2)]
.

Once values of I(α2,β2)i j are calculated in all grid cells, the distribution function I(α2,β2) in the whole
calculation domain can be constructed. Two-dimensional (2D) scattering indicatrix F(α2) in the plane
XY ) can be found from the relation:

F(α2)i ≈
∑
j

Ni j

N ∆α2
,

where the summation is over all cells (i j) with the fixed index i. A number of particles in calculations
for every impact angle α1 was about 108 that guaranteed statistical convergence with high accuracy.
2D indicatrices for a particle mixture described in Section 2 at different impact angles are shown in
Fig. 7.

Figure 7 – 2D scattering indicatrices of rebounded particles in the plane of impact (XY ). Direction of
incident particles’ motion is shown by solid black line; direction of spherical particles’ rebound is

shown by red dotted lines.

Figure 7 indicates that rebounded particles are scattered substantially at all impact angles. The
most strong scattering occurs at a right impact angle. An indicatrix being one-modal in a range of
impact angles 0 6 α1 . 70◦, becomes bemodal at angles α1 & 70◦. Note that non-spherical particles
experience not one but several collisions during the process of rebounding before it flies away from
the wall.

4. Model of gas-particle interaction
The force fp acting on a particle includes the drag force fD and the lift Magnus force fM (fp = fD + fM)
which dominate over all other force components in the flow under consideration. These forces and
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the torque lp can be expressed in terms of the dimensionless coefficients CD, Cω , and Cl:

fD =
1
2

CDπr2
pρ|v−vp|(v−vp), fM =

4
3

Cωπr3
pρ[(ΩΩΩ−ΩΩΩp)×(v−vp)], lp =

1
2

Clr5
pρ|ΩΩΩ−ΩΩΩp|(ΩΩΩ−ΩΩΩp), (6)

where ΩΩΩ = (1/2)curlv.
Although we consider particles of non-spherical shape, the model of gas-particle interaction is based
on the results for spherical particles. It is partially substantiated by the closeness of drag coefficients
for non-rotational spherical and non-spherical isometric particles in a wide range of Reynolds number
(up to Re∼ 103) [10]. The influence of particle rotation on the drag and lift forces, was studied in [11]
where it was shown that the particle shape can effect on these forces. However, at present there are
no suitable formulas for the drag and lift forces for non-spherical particles. Because of this we use
for coefficients of the drag and lift Magnus forces, and also for the torque, correlations proposed for
spherical particles. These correlations approximate the analytical, experimental and numerical data
in wide ranges of the governing parameters of the flow around a single particle.
The drag coefficient CD was calculated from the approximation formula proposed in [29]:

CD(Rep, Mp, Tp/T ) =


C1

D, 0 < Mp ≤ 1,

C1
D1 +

4
3
(Mp−1)(C2

D2−C1
D1), 1 < Mp ≤ 1.75,

C2
D, Mp > 1.75,

(7)

where

C1
D(Rep,Mp,Tp/T ) = 24

{
Rep +

√
γ

2
Mp

[
4.33+

3.65−1.53Tp/T
1+0.353Tp/T

exp

(
−0.247

√
2
γ

Rep

Mp

)]}−1

+

[
4.5+0.38(0.03Rep +0.48

√
Rep)

1+0.03Rep +0.48
√

Rep
+0.1M2

p +0.2M8
p

]
exp

(
−

Mp

2
√

Rep

)
+0.6

√
γ

2
Mp

[
1− exp

(
−

Mp

Rep

)]
,

C2
D(Rep,Mp,Tp/T ) =

[
0.9+

0.34
M2

p
+1.86

√
Mp

Rep

(
2+

8
γM2

p
+

2.116
γMp

√
Tp

T
− 4

γ2M4
p

)]
·

(
1+1.86

√
Mp

Rep

)−1

.

Here Rep = 2ρ|v−vp|rp/µ and Mp = |v−vp|/
√

γℜT are the relative particle Reynolds and Mach num-
bers, C1

D1 is the value of C1
D at Mp = 1, and C2

D2 is the value of C2
D at Mp = 1.75. The dependence of CD

on Tp/T is very week in the flow under consideration. That is why we have ignored this dependence
and put Tp/T = 1.
For calculation of Cω , the exact solution from [30] and the formula proposed in [31] were used

Cω =

 3/4, 2γω < 0.45,

3/8 Ĉω , 2γω ≥ 0.45,
(8)

where γω = |ΩΩΩ−ΩΩΩp|rp/|v−vp|, Ĉω(γω ,Rep) = γ−1
ω [0.45+(2γω −0.45)exp(−0.075γ0.4

ω Re0.7
p )].

The expression for the coefficient Cl was taken in the form proposed in [32]

Cl =
Cl1√
Repω

+
Cl2

Repω

, (9)

where Repω = ρ|ΩΩΩ−ΩΩΩp|r2
p/µ, and constants Cl1 and Cl2 are given in the Table 1.

5. Model of particle-phase motion with particle-particle collisions in gas-particle flow
Particles are more inertial than the carrier gas, and they do not follow the streamlines. Motion of
particles in the flow over a body is governed by the gas-particle interaction, inter-particle collisions and
impact interaction of particles with the body surface. Solid particles colliding the body rebound from
it and then they can collide with the incident ones. These collisions, being random in nature, result in
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Table 1 – Coefficients Cl1 and Cl2 in different ranges of the particle rotational Reynolds number Repω

Repω Cl1 Cl2

0−6 0 16π

6−20 5.32 37.2
20−50 6.44 32.2

50−4 ·104 6.45 32.1

chaotic motion of particles. In this Section we describe briefly a kinetic model for the collisional "gas"
of dispersed particles proposed in [26].
As well as in the model of gas-particle interaction, particles in collisions between them are assumed
to be hard spheres. They interact with each other only through binary collisions that is valid if the
"gas" of particles is not too dense. Besides, it is assumed that collision process is instantaneous
and the position of colliding particles does not change during a collision. We also consider the
particles of the same radius rp. The state of the i-th particle is determined by a point xi of the
phase space which includes the particle position vector ri, the particle translational and rotational
velocities (vpi and ΩΩΩpi, respectively), i.e. xi = (ri,vpi,ΩΩΩpi). The vector xi is split into ri and yi =
(vpi,ΩΩΩpi). We denote the parameters of the i-th and j-th particles before and after their collision
by the superscripts "−" and "+", respectively. The post-collisional parameters of colliding particles
are fully determined by the pre-collisional ones and the relative position of particles at the collision
instant, thus we can write y+k = y+k (y

−
i ,y

−
j ,ni j), k = i, j, where ni j is the unit vector directed from the

centre of i-th particle towards the centre of j-th particle at the instant of collision. The above relation
for y+k is presumed to give a one-to-one correspondence between y−k and y+k , so that the Jacobian
J1 = |D(y+i ,y

+
j )/D(y−i ,y

−
j )| 6= 0 and, hence, the relation can be resolved for the particle parameters

before a collision y−k = y−k (y
+
i ,y

+
j ,ni j), k = i, j. A collision is physically feasible only when g−i j ·ni j ≤ 0,

where gi j = v j − vi. We assume also that states of any two particles in the phase space are not
statistically correlated. This assumption is valid if the mean free path of particles moving in the
carrier gas is much smaller than the particle momentum response length. These assumptions and
reasoning are similar to those accepted in rarefied gas dynamics for collisions between molecules.
Let f1 = f (x1, t) be the distribution function such that f1 dx1 = f (r1,vp1,ΩΩΩp1, t)dr1dvp1dΩΩΩp1 is the num-
ber of particles with coordinates and velocities from the elementary volume dr1 dvp1 dΩΩΩp1 in the
vicinity of the point x1 = (r1,vp1,ΩΩΩp1) of the phase space. Then, the following kinetic Boltzmann-type
equation for f1 can be derived

∂ f1

∂ t
+

∂

∂r1
(vp1 f1)+

∂

∂vp1

(
fp1

mp
f1

)
+

∂

∂ΩΩΩp1

(
lp1

Ip
f1

)
= Icoll . (10)

This equation is a particular case of the more general kinetic equation [26] which also takes gas-
particle heat transfer and particle size distribution into account. The collisional integral in the right-
hand side is given by

Icoll = 4r2
p

∫
dy2

∫
g12·n12≤0

(
f−1 f−2

J
− f1 f2

)
|g12 ·n12|sin χ12dχ12dε12, J =

∣∣∣∣g12 ·n12

g−12 ·n12
J1

∣∣∣∣ . (11)

Here mp and Ip are the particle mass and moment of inertia, fp1 and lp1 are the force and the torque
acting on a particle from the carrier gas which are calculated for the particle with the parameters
(vp1,ΩΩΩp1) at the point r1 of flow, f2 = f (r1,y2, t), f−1 = f (r1,y−1 , t), f−2 = f (r1,y−2 , t), g12 = vp2−vp1 and
n12 has been defined above. The inequality g12 · n12 ≤ 0 is the condition of physical feasibility of a
collision between the 1-st and the 2-nd particles, and the angles χ12 and ε12 specify the direction of
n12 in spherical coordinates with the origin at the centre of the 1-st particle [26].
The function J which enters into the collisional integral depends on the particle-particle collision model
which will be discussed later.
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Let Φ = Φ(xi) be a parameter of an individual particle. If a hydrodynamic parameter of a "gas" of
particles (in other words, macroparameter of the dispersed phase) 〈Φ〉(r, t) at a point r of the physical
space is defined as the ensemble averaged value of Φ = Φ(xi) in a unit volume of the gas–particle
mixture, then 〈Φ〉(r, t) can be expressed in terms of Φ and f (x1, t) as follows:

〈Φ〉(r, t) =
∫

Φ(r,y1, t) f (r,y1, t) dy1. (12)

For example, the particle numerical density np, the particle volume fraction αp, the hydrodynamic
velocity wp and the specific energy of the particle chaotic motion ep are calculated as follows:

np = 〈1〉, αp =
4
3

πr3
pnp, wp =

〈vp〉
np

, ep =
1

mpnp

〈
mp(vp−wp)

2

2

〉
.

A model of a non-completely elastic collision between two particles is an important part of the kinetic
model. The momentum and angular momentum balance equations for a pair of i-th and j-th colliding
spherical particles can be written in the form:

mpv−pi +mpv−p j = mpv+pi +mpv+p j, Ip(ΩΩΩ
+
pk−ΩΩΩ

−
pk) = mprpek× (v+pk−v−pk), k = i, j, (13)

where ei = ni j, e j =−ni j. The system of these three equations is not closed because it involves four
unknowns v+pk and ΩΩΩ

+
pk, k = i, j. Some additional hypotheses for the interaction between particles

should be introduced to make this system closed. Considering the relative velocity of particles at the
contact point

Ui j = vp j−vpi− rp(ΩΩΩpi +ΩΩΩp j)×ni j (14)

we represent U+
i j in the form

U+
i j =−apnU−i j(n)+aptU−i j(t), (15)

where apn and apt are the restitution coefficients of the normal (Ui j(n) = (Ui j ·ni j)ni j) and tangential
(Ui j(t) = Ui j−Ui j(n)) components of the relative velocity Ui j. These coefficients are assumed to take
into account the loss of the particles’ kinetic energy due to inelastic collisions (apn) and due to the
particles’ surface friction (apt). Their values lie in the ranges: 0≤ apn ≤ 1, −1≤ apt ≤ 1.
The true values of apn and apt in different conditions of a collision are unknown. We assume these
restitution coefficients to be constant. If the values of apn and apt are given, then the system of
equations becomes closed and can be solved for the parameters of i-th and j-th particles after their
collision. In this case we can also calculate the Jacobian J1 = |D(y+i ,y

+
j )/D(y−i ,y

−
j )| = −apna2

pt and
then the parameter J in the collisional integral: J = a2

pna2
pt . In reality, the absolute values of apn and

apt are always less than a unity, hence J < 1. The multiplier 1/J in the collisional integral takes into
account the "compression" of the phase space caused by the losses of the kinetic energy of colliding
particles.

6. Model of the carrier gas flow
In the present study the particle volume fraction is assumed to be low enough so that the reverse
effect of the particle phase on the carrier gas is negligible. We consider two-dimensional supersonic
dusty gas flow over a cross-wise cylinder at not too high Reynolds number so that the flow is laminar.
In this case the flow can be described by the Navier–Stokes equations, which can be written in
Cartesian coordinates (x,y) in the following compact form [33]:

∂Q
∂ t

+
∂Fx

∂x
+

∂Fy

∂y
=

∂Gx

∂x
+

∂Gy

∂y
, (16)

where the vectors Q, Fx, Fy, Gx and Gy are defined as follows

Q =


ρ

ρu
ρv
ρe

 , Fx =


ρu

ρu2 + p
ρuv

(ρe+ p)u

 , Fy =


ρv
ρuv

ρv2 + p
(ρe+ p)v

 , (17)
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Gx =


0

τxx

τxy

uτxx + vτxy−qx

 , Gy =


0

τxy

τyy

uτxy + vτyy−qy

 .

Here,

τxx =
2
3

µ

(
2

∂u
∂x
− ∂v

∂y

)
, τyy =

2
3

µ

(
2

∂v
∂y
− ∂u

∂x

)
, τxy = µ

(
∂u
∂y

+
∂v
∂x

)
, (18)

qx =−λ
∂T
∂x

, qy =−λ
∂T
∂y

, p = ρRT, e = cvT +
u2 + v2

2
. (19)

In these equations, t is the time; (xy) is the plane of flow, u and v are the x- and y-components of the
velocity vector; ρ, p, e, T , µ and λ are the gas density, pressure, specific total energy, temperature,
viscosity, and thermal conductivity, respectively; R is the gas constant; and cV is the specific heat
at constant volume. For µ and λ the following relations were used µ = µs(T/Ts)

3/2(Ts +Cs)/(T +Cs)
and λ = cpµ/Pr, where the first relation is the Sutherlend formula (for the air µs = 1.71 ·10−5 N·s/m2,
Ts = 288 K, Cs = 117 K); Pr is the Prandtl number; and cp is the specific heat at constant pressure.
The above system of equations is closed.

7. Gas-particle flow over a cylinder: results and discussion
At first, the equations 16–19 were solved numerically by CFD method with high accuracy. Total
number of grid cells in the shock layer was about 250 thousands. A number of cells along the cylinder
contour from the stagnation point to the maximal cross-section was one thousand, and across the
boundary layer about 15. Steady-state flow was obtained as a limit of unsteady solution at large time.
Input data for computational simulation were taken as follows: the cylinder diameter D = 20 mm, the
free stream velocity V∞ = 600 m/s, the pressure p∞ = 853 Pa, the temperature T∞ = 88.7 K. These
values correspond to the Mach number M∞ = 3.18 and the Reynolds number Re = ρ∞V∞D/µ∞ =
0.7 ·105. The Prandtl number was equal to Pr = 0.71. At the cylinder surface the normal and tangential
velocity components were zero, the temperature was Tw = 300 K.
Motion and interaction of a particle cloud with the cylinder was studied to investigate the effects of
scattering of rebounded non-spherical particles, the particle-particle collisions and the particle size
distribution in formation of the particle phase flow structure. The model of the particle-wall collision
described in Section 2 was used. Computational simulation of "collisional gas" of particles in the
carrier gas flow was performed by the Direct Simulation Monte Carlo (DSMC) method described in
detail in [34]. In calculations, the restitution coefficients for colliding particles entering the relation
15 were taken as follows: apn = 0.5 and apt = 0.9. The initial position and configuration of a cloud
(L = 100 mm, B = 20 mm) is shown in Fig. 8.
Particles in an undisturbed flow were assumed to have the velocity and the temperature equal to
those of the carrier gas. The carrier gas flow was considered as two-dimensional, but the motion of
every particle was simulated as three-dimensional. The particle material density was equal to ρ◦p =

2650 kg/m3. The size of spherical particles was equal to their diameter dp. For non-spherical particles,
the size was equal to the dimension in ξ -direction (see Fig. 2). In calculations the particle size was
varied from 1 µm to 10 µm. These particle parameters together with the parameters taken for the gas
flow correspond to the Stokes number Stk = ρ◦p d2

pV∞/(18µ∞D) from 0.77 (particles of medium inertia)
to 77 (coarse particles of high inertia). The results are given in Figs. 9–12.
Instant patterns of coarse spherical and non-spherical prismatic particles rebounded from the forward
part of a cylinder are shown in Fig. 9. For low particle concentration when collisions between particles
are negligible (see top row of pictures), a particle shape have a pronounced effect on the particle
phase flow structure. The strongest effect is observed for prismatic particles and prismatic particles
with cut vertices. These prismatic particles fly off from the cylinder surface after rebound much
farther than spherical and ellipsoidal ones of the same size. Such difference in behaviour of, say,
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Figure 8 – Initial configuration of a particle cloud in an undisturbed flow.

Figure 9 – Field of Mach number in the carrier gas and instant patterns of monosized (10 µm)
rebounded particles of different shape with fixed parameters: spherical particles (a), (e), prolate

ellipsoids with b/a = c/a = 0.8 (b), (f ), prismatic particles with cut vertices with b/a = c/a = 0.8 (c),
(g), and prismatic particles with b/a = c/a = 0.8 (d), (h); particle-particle collisions are not taken into

account (a)–(d); particle-particle collisions are taken into account (e)–(h).
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Figure 10 – Effect of the particle shape and the particle-particle (p-p) collisions on the particle
kinetic energy loss during particle phase interaction with the forward part of a cylinder. αp∞ = 10−3.

spherical and prismatic particles can be explained by that the value of the most probable normal
velocity of rebounded prismatic particle is much higher (two times higher at the impact angle of 90◦)
than for spherical particles (see Fig. 5). In Fig. 9 the results for "collisional gas" of particles are also
displayed (see bottom row of pictures). As is seen the particle-particle collisions can distinctly affect
the particle phase flow pattern even at rather low particle concentration (the particle volume fraction
in an undisturbed flow was equal to αp∞ = 10−3). Note that at αp∞ = 10−4 collisions between particles
play no role.
The layer of chaotically moving and colliding with each other particles near the forward part of a cylin-
der has a shielding effect on high-speed particles from an undisturbed flow. These particles cannot
reach the cylinder surface with high speed because they interact with this layer through collisions with
chaotically moving particles and lose their speed. The quantitative shielding effect is demonstrated
by Fig. 10 where the relative kinetic particle lost ∆E/E during the particle cloud interaction with a
cylinder versus the angle θ (shown in Figure) is displayed for two particle shapes. For every particle
the energy lost ∆Ep/Ep is defined by relations

∆Ep =
1
2
[mp(v−p )

2 + Jp(ω
−
p )2]− 1

2
[mp(v+p )

2 + Jp(ω
+
p )2], Ep =

1
2

mpv2
p∞.

It is clearly seen that for both, spherical and prismatic, particles this effect is pronounced (for pris-
matic particles it expressed stronger). Note that prismatic particles experience as a rule from 2 to 5
collisions during one rebound, and they much stronger twisted in particle-wall collisions that spherical
ones.
The particle energy loss is distributed between rebounded particles, cylinder, and the carrier gas,
however this distribution is unknown and requires further experimental and theoretical investigations.
This question is of great importance for prediction of the body erosion rate in a gas-particle flow.
Next point in the present study is the effect of particle size dispersion. As is known, real particles
never have the same size. For the particle distribution in size in a initial particle cloud we took the
lognormal law:

g∞(dp) =
1

√
2π dp logσ

exp

[
−
(

logdp− logdg√
2logσ

)2
]

(20)

where parameter dg is related with the most probable particle size dpm by the formula dg = dpm exp(log2
σ).

Calculations were performed for σ = 1.2 and 1.728. Plots of g∞ are shown in Fig. 11.
In Fig. 12 are given the particle phase flow patterns for monosized and polydispersed prismatic
particles. It is seen that the effect of the particle size dispersion is expressed very weakly, much
weaker than the effects of particle shape and particle-particle collisions.
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Figure 11 – Lognormal law of particle size distribution in an initial cloud.

Figure 12 – The effect of particle size dipersion on the particle phase flow pattern.

8. Conclusion
Computational simulation of supersonic two-phase gas-particle flow over a blunt body (cylinder) was
performed with taking account for the following effects of random nature: scattering of particles re-
bounded from the body surface due to non-spherical particle shape, collisions between particles,
and particle size dispersion. Several non-spherical particle shapes were considered: ellipsoids, rect-
angular parallelepiped (prismatic particles) and rectangular parallelepiped with cut vertices, and the
results were compared with those for spherical particles. Calculations were performed for medium to
highly inertial particles (Stokes number was varied from a value of order of a unity to several tens).
The most important conclusions are sum up below.
It was found that rebounding of non-spherical particles is accompanied very often by two and more
particle-wall collisions. Such particles are strongly twisted, and the magnitude of their normal velocity
after a rebound is much higher than that for spherical particles. Non-spherical particles fly away from
the forward part of a blunt body much farther than spherical ones of the same size.
All considered random phenomena (scattering of rebounded particles, particle-particle collisions and
particle size distribution) have different effects on the particle phase flow pattern. The effect of scat-
tering is of primary importance for any particle concentration. Collisions between particles begin
to play a noticeable role for rather high particle concentration, when the particle mass load in the
flow is close to that for the carrier gas. For considered two-phase flow parameters, the particle size
dispersion has a weak effect even for rather high dispersion in an undisturbed flow.
The particle shape and the particle-particle collisions has a essential effect on the particle kinetic
energy loss during rebounding. Collisions between particles result in formation of a rather dense
layer of chaotically moving particles near the body surface. This layer inhibits high-speed particles
impacts on the body surface producing a shielding effect.
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The present study has shown that all considered effects can play an important role in gas-particle
flows over bodies, and they should be taken into account.
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