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Abstract 

The double blunt rotor airfoil located at the root segment of the coaxial rigid rotor helicopter blades has been 
proved to be effective in suppressing the flow separation of retreating blades in reverse flow, so as to effectively 
reduce the drag coefficient and improve the flight efficiency. However, the complicated flow field environment 
caused by counter-rotating blades and various flight states of the coaxial rigid rotor helicopter put forward more 
design points and higher performance requirements for the double blunt rotor airfoil. In this paper, a multi-
objective aerodynamic optimization method with complex constraints based on Kriging models and 
hypervolume is developed to optimize the double blunt rotor airfoils with a relative thickness of 26% and 40% 
respectively in forward and reverse flow. After the optimization, the full turbulence and free transition calculation 
based on Reynolds Averaged Navier-Stokes (RANS) equations for the airfoils before and after the optimization 
are conducted, the results show that the optimized rotor airfoils generally meet the design indicators proposed 
in this paper with all constraints being satisfied, the drag coefficients in a wide range of Mach numbers are 
reduced, and the vibration of the optimized airfoils is alleviated to a certain extent in reverse flow. 

Keywords: multi-objective optimization, airfoil shape optimization, Kriging model, hypervolume, computational 
fluid dynamics 

 

1. General Introduction 
Coaxial rigid rotor helicopters based on the Advancing Blade Concept (ABC), which have excellent 
high-speed forward flight performance and good maneuverability, have gradually become the 
development trend of high-speed helicopters [1][2]. To solve the problem that the root segment of the 
retreating blades is left in the reverse flow when flying forward at high speed, Sikorsky applied a 
‘double blunt’ airfoil (DBLN526) with a relative thickness of 26% at the root segment of the X2TD 
coaxial rigid rotor verification aircraft. It was verified by experiments that this kind of airfoil can 
effectively suppress the reverse flow at the root segment of the retreating blades, suppress the 
separation of the airflow, reduce the drag and noise, and greatly improve the high-speed forward 
flight efficiency [3]. 
However, compared with the conventional single rotor, the flow field environment of the coaxial rigid 
rotor is more special. Due to the mutual influence of the upper and lower rotor, the unsteady 
characteristics of the flow field are more complicated. The retreating blades are in special operating 
environments such as reverse flow in a large area, periodic changes in the angle of attack of the 
inflow, and dynamic stalling, which require the airfoil at the root segment of the blade to maintain a 
low drag coefficient and reduce the vibration when the forward and reverse flow alternates. On the 
other hand, the forward flight, hovering, maneuvering and other flight states of the coaxial rigid rotor 
helicopters put forward more design points and higher performance requirements for the rotor airfoil. 
For example, wider range of working Mach numbers, small pitching moment coefficient, excellent 
dynamic characteristics, etc. Therefore, the design of double blunt rotor airfoil is a multi-objective and 
multi-constraint aerodynamic shape optimization design problem under multiple design points. 
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In the multi-objective and multi-constraint aerodynamic shape optimization problems, the design 
objectives are usually in conflict with each other. Multi-objective evolutionary algorithm (MOEA) can 
obtain a Pareto front (PF) with good distribution and convergence for decision makers. However, the 
disadvantage of this method is that it requires real function evaluations on a large number of sample 
points in each iteration, which is extremely expensive. The multi-objective aerodynamic shape 
optimization method based on surrogate model can effectively reduce the number of computational 
fluid dynamics (CFD) analysis and significantly improve the efficiency of optimization, which is a 
research hotspot in the field of aerodynamic shape optimization. The commonly used surrogate 
models include Kriging, polynomial response surface models (PRSM), radial-basis functions (RBFs), 
artificial neural network (ANN), etc. Kriging model has a good capability in fitting high-dimensional 
and nonlinear functions [4], which can not only predict the value of an unknown location, but also 
provide the error estimation at the same time, so it is widely used in aerodynamic shape optimization 
and design [5]. 
The early Kriging-based method only took the prediction value of Kriging model as the fitness value 
of multi-objective evolutionary algorithm to optimize, which depends on the accuracy of the Kriging 
model, and the efficiency decreases sharply with the increase of the number of design variables 
[6][7][8]. Afterwards, efficient global optimization (EGO) method proposed by Jones [9] was 
introduced and successfully extended in multi-objective aerodynamic shape optimization problems. 
For example, Kanazaki [10] and Obayashi [11] obtained the PF of the expected improvement (EI) 
functions corresponding to the objective functions by using a multi-objective genetic algorithm, and 
then selected the intermediate and boundary sample points to update the Kriging model, the 
proposed method was applied in a multi-segment airfoil multi-objective optimization problem. Keane 
[7] proposed a multi-objective EI criterion (multi-EI), all of the sample points of the current PF were 
selected as new sample points. However, the multi-objective optimization methods based on Kriging 
models mentioned above do not consider the quality of multi-objective optimization solution set, the 
optimization is not efficient and it is difficult to get the expected Pareto solution set. To solve this 
problem, indictor-based multi-objective optimization methods were proposed. Among the proposed 
quality indicators, hypervolume (HV) [12] was widely studied and applied in real-world multi-objective 
optimization problems because it considers both the convergence and diversity of the solution set. 
For example, Beume [13] proposed SMS-EMOA based on HV and non-dominated sorting method 
and applied it to airfoil aerodynamic shape optimization problems, the results showed that the 
optimization efficiency of the method was significantly improved. Emmerich [14] et al. proposed 
expected hypervolume improvement (EHVI) infill sampling criterion. Shimoyama [15] et al. compared 
the performance of EHVI and EI in bi-objective optimization problems and found that EHVI was more 
efficient than EI in unconstrained problems. Jesús Martínez-Frutos [16] et al. implemented constraint 
handling for EHVI. Zuhal [17] implemented EHVI in three airfoil multi-objective optimization problems 
and found that EHIV performed the best compared with ParEGO [18] and Euclidean-based expected 
improvement (EEI). As a potential method in multi-objective aerodynamic optimization, EHVI was 
suggested to be further explored and studied. 
This paper aims to reduce the drag coefficient of the double blunt rotor airfoil at the root segment of 
the blades in forward and reverse flow, and optimizes the double blunt airfoil DBLN526 with a relative 
thickness of 26% to further improve its performance, in order to obtain the airfoil with better structural 
performance, the double blunt airfoil with a relative thickness of 40% is also optimized. In the 
optimization process, this paper establishes a multi-objective aerodynamic optimization design 
method based on Kriging models, and uses an infill-sampling strategy based on hypervolume in the 
sub-optimization. The airfoils before and after optimization are evaluated by the full turbulence and 
free transition calculation based on Reynolds Averaged Navier-Stokes (RANS) equations. 

2. Multi Objective Optimization Method Based on Kriging Model and Hypervolume 
2.1 Kriging Predictor and Mean Squared Error 
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Kriging model takes the unknown function as the concrete realization of a static stochastic process, 
which can be defined as follows [9]: 

 ( ) ( )0Y Zβ= +x x  (1) 

where x  is the vector of m-dimensional design variables and ( )Y x  is the unknown function of 

interest, the trend function 0β  is an unknown constant, which represents the mathematical 

expectation of ( )Y x , and ( )Z x  is a stochastic process with zero mean and a covariance of 

 ( ) ( ) ( )2, ' , 'Cov Z Z Rσ=  x x x x  (2) 

where 2σ  is the process variance of ( )Z x , ( ), 'R x x  is the spatial correlation function which only 
depends on the Euclidean distance between the sample points x  and 'x .  
Assuming the prediction of the unknown function can be approximated by a linear combination of the 
observed data sy , the kriging predictor of ( )y x  at an unknown point x  can be expressed as 
follows: 

 ˆ( )y = T
sx w y  (3) 

where (1) (2) ( ), ,
Tnw w w =  w   is the vector of weight coefficients. Under the condition of unbiased 

estimation, the mean square error (MSE), which is defined as follows, is minimized. 

 ( )( )2ˆ ˆ[ ( )] ( )MSE y E y Y = −  
x xx  (4) 

Then the predicted value of the Kriging model at any unknown point x  is: 
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The mean square error of the Kriging prediction is: 

 ( ){ } ( ) ( ){ }22 2 T 1 T 1 T 1ˆMSE 1.0 1 /y s σ − − −= = − + −x x r R r F R r F R F  (6) 

2.2 Infill Sampling Criteria Based on Hypervolume 
As mentioned in the introduction, in the multi-objective aerodynamic optimization based on surrogate 
models, infill sampling criterion based on hypervolume is considered to be a potential method 
suggested to be further explored and studied. Here we introduce the two criteria used in this paper. 
The first one is called Constrained Maximization of Hypervolume Prediction (CMHVP), in which the 
sample point with the highest quality of Pareto solution set is directly found, while in the second 
criterion called Constrained Expected Hypervolume Improvement (CEHVI), the quantity and the 
probability of the improvement in the quality of solution set are both considered. Therefore, the 
combination of the two criteria will have higher global exploration efficiency with better local 
exploitation ability. 

2.2.1 Constrained Maximization of Hypervolume Prediction (CMHVP) 
The hypervolume (HV) of the non-dominated solution set is defined as follows [16]: 
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 ( ) { }( ), n
ref refHV Lebesgue= ∈PF f f PF f f  ∣  (7) 

where PF  is the front of non-dominated solutions, reff is the reference point, f  is the feasible 
solutions and Lebesgue represents the Lebesgue measure. 

The first infill sampling criterion called CMHVP used in this paper directly searches the location addx  
with the maximum value of hypervolume on the Kriging models. For multi-constraint optimization 
problems, Kriging models are built for each constraint function ( ) 0iG ≤x  and assume a random 

variable ( ) ( ) ( )( )2
,ˆ ˆ,i i g iG N g sx x x , thus the constrained hypervolume prediction (CHVP) can be 

calculated by multiplying each probability that satisfies the constraint: 
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where f̂  is the Kriging prediction at point x and GN  is the number of constraints. By optimizing the 
learning function above, the optimal solution with the largest CMHVP is found. 

2.2.2 Constrained Expected Hypervolume Improvement (CEHVI) 
EHVI is the expected value of hypervolume improvement (HVI) after the additional point addx  is 
added. It can be calculated as follows [16]: 

 ( )( ) ( )ˆ ˆ ˆHVI , ,add refEHVI pdf d= ∫ PF f x f f f  (9) 

where ( )ˆ
addf x  is the Kriging prediction at point addx , ( )ˆpdf f  is the multidimensional probability 

density function of the objective functions. 
The second infill sampling criterion called CEHVI used in this paper focuses on the improvement of 
PF in the whole multi-objective design space. Similar to the constraint handling method used in 
CMHVP, the learning function can be defined as follows: 
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2.3 Algorithm Framework 
This paper extends the EGO method proposed by Jones [9] to a multi-objective form by implementing 
CMHVP and CEHVI infilling strategy. Firstly, based on the baseline airfoil, a design of experiments 
(DoE) method, which is Latin Hypercube Sampling (LHS) in this paper, is used to generate a certain 
number of initial sample points. Secondly, by running high-fidelity simulations (CFD solver), the 
functional responses corresponding to the initial sample points are obtained. Thirdly, Kriging models 
are built for all objective functions and the constraint functions and trained based on the sample data. 
After that, the sub-optimization problems defined by CMHVP and CEHVI are solved to obtain two 
new candidate sample points. Finally, the sample points are evaluated by high-fidelity simulations 
again and augmented to the sample database to rebuild the Kriging models. The updating process 
is repeated until the convergence condition is satisfied. In the surrogate-based optimization (SBO) 
[19] module, Genetic Algorithm (GA) and BFGS optimization algorithm are used to find the optimal 
solutions of the learning functions defined by CMHVP and CEHVI. The flow chart of the algorithm 
framework is shown in Figure 1. 
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Figure 1 – Flowchart of multi-objective aerodynamic optimization design method based on Kriging 

models and hypervolume.  

3. Double Blunt Rotor Airfoil Optimization 
3.1 Problem Definition 
In this sub-section, the design objectives and constraints are given by analyzing the flow field 
environment of the double blunt rotor airfoil. Take DBLN526 airfoil with a relative thickness of 26% 
as an example, according to the velocity distribution along the spanwise direction of the advancing 
and retreating blades of a coaxial rigid rotor helicopter during forward flight and hovering, the 
minimum and the maximum Mach number is about 0.2 and 0.5 respectively in forward flow, while in 
reverse flow, the maximum Mach number is about 0.22. Therefore, this paper focuses on the 
reduction of the drag coefficient at the conditions of medium angles of attack between Mach 0.3 to 
0.5 in forward flow, on the other hand, the reduction of the drag coefficient at Mach 0.2 in reverse 
flow is also taken into consideration. The baseline airfoil with a relative thickness of 26% is DBLN526, 
while the baseline airfoil with a relative thickness of 40% is NWPU-CR-4000, which is obtained by 
changing the thickness of DBLN526. The design points, objectives and constraints of the two airfoil 
shape optimization problems are shown in Table 1. The superscript of the aerodynamic coefficient 
symbol represents the number of design points, and the dash above the symbol represents the 
average value of the aerodynamic coefficients at positive and negative angle of attack. The triangle 
symbol in the constraint column represents the change of the parameter of the airfoil before and after 
optimization. iw  is the weight coefficient of each design point, in this paper, iw  is set as 

1 4 2 5 3 6= =0.18 = =0.32 = =0.5w w w w w w， ， . 
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As shown in Table 1, the two optimization problems are both aimed at reducing the drag coefficient 
in forward flow and reverse flow respectively. At the same time, in order to maintain good 
maneuverability of the airfoil, the pitching moment coefficient is required to be constrained, and the 
relative thickness and area are not less than that of the baseline airfoil. The airfoil geometry is 
parameterized by a fifth-order CST method [20], and the sample points are evaluated by XFoil [21]. 

3.2 Results and Discussion 
3.2.1 Aerodynamic Performance Using Full Turbulence Calculation  
In the optimization of airfoils with relative thicknesses of 26% and 40%, one sample point with the 
best comprehensive performance in the Pareto front is selected as the final optimal airfoil to be 
evaluated and analyzed in detail. The shape comparison of the new airfoils with baselines is shown 
in Figure 2.  

  

Figure 2 – Shape comparison between baseline and optimized airfoil. 
In this sub-section, the baseline airfoil and the optimal airfoil are evaluated in detail by full turbulence 
calculation (using SST turbulence model) based on Reynolds Averaged Navier-Stokes (RANS) 
equations, the size of O type grids for the evaluated airfoil is 298×140, and the far field is set to 60 
times the chord length of the airfoil. The comparisons of design indicators between baseline and 
optimal airfoil with relative thickness of 26% are shown in Table 2. In the optimization of the airfoil 
with thickness of 26%, the drag coefficient of the optimized airfoil NWPU-CR-2601 is increased at 
the first design point, the drag reduction is achieved at other design points in the range of Mach 0.3 
to Mach 0.5. Table 3 shows the constraint values of the optimal airfoil with relative thickness of 26%. 
It can be found that all the constraints are satisfied, the performance of pitching moment coefficient 
of the optimal airfoil NWPU-CR-2601 is ensured in a wide range of Mach numbers and angles of 
attack. The area and relative thickness of the optimal airfoil are not less than that of the baseline 
airfoil, which ensures the structural performance of the airfoil installed on the blades. 

Table 2 – Comparisons of design indicators between baseline and optimal airfoil with relative 
thickness of 26% 

Design points Design 
Indicators DBLN526 NWPU-CR-2601 ∆(%) 

1.Ma=0.2, Re=1.4×106, 
α=±2°(reverse) 

1
dC  0.02443203 0.02569686 +5.17694795 

2.Ma=0.3, Re=2.2×106, α=±6° 2
dC  0.02545302 0.02403697 -5.56339819 

3.Ma=0.4, Re=2.9×106, α=±4° 3
dC  0.02420315 0.02257095 -6.74375060 

4.Ma=0.5, Re=3.6×106, α=±2° 4
dC  0.02431522 0.02248645 -7.52107881 
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Table 3 – Constraint values of optimal airfoils with relative thickness of 26% 

Constraints DBLN526 NWPU-CR-2601 Constraint Values 
1g  0.07851600  0.07396300  0.004553≤ 0.005 

2g  0.26067321  0.26603968  0.00536647≥ 0 

3g  0.20067655  0.20820642  0.00752987≥ 0 

 
Similarly, from Table 4 and Table 5, it can be seen that the design indicators at all design points of 
the optimal airfoil NWPU-CR-4001 are improved with all constraints being satisfied, the drag 
coefficients are reduced in the range of Mach 0.3 to Mach 0.5, the pitching moment coefficient 
performance is maintained to a certain extent, and the area and relative thickness of the optimal 
airfoil are not less than that of the baseline airfoil. 

Table 4 – Comparisons of design indicators between baseline and optimal airfoil with relative 
thickness of 40% 

Design points Design 
Indicators NWPU-CR-4000 NWPU-CR-4001 ∆ (%) 

1.Ma=0.3, Re=2.2×106, 
α=±10°(reverse) 

1
dC  0.05539229 0.05434355 -1.89328758 

2.Ma=0.4, Re=2.9×106, 
α=±6°(reverse) 

2
dC  0.04996423 0.04923111 -1.46730112 

3.Ma=0.5, Re=3.6×106, 
α=±2°(reverse) 

3
dC  0.05050312 0.05020537 -0.58955213 

4.Ma=0.3, Re=2.2×106, 
α=±10° 

4
dC  0.05537095 0.05427432 -1.98050906 

5.Ma=0.4, Re=2.9×106, 
α=±6° 

5
dC  0.04991898 0.04917273 -1.49490331 

6.Ma=0.5, Re=3.6×106, 
α=±2° 

6
dC  0.05045190 0.05016394 -0.57076242 

 
Table 5 – Constraint values of optimal airfoils with relative thickness of 40% 

Constraints NWPU-CR-4000 NWPU-CR-4001 Constraint Values 
1g  0.11448250 0.11355350 0.000929≤ 0.005 

2g  0.40164000 0.40526000 0.003620≥ 0 

3g  0.30857000 0.30952000 0.000950≥ 0 

 

3.2.2 Aerodynamic Performance Using Free Transition Calculation 
To further explore the aerodynamic performance of the airfoils before and after optimization, in this 
sub-section, the baseline and the optimal airfoil are evaluated by free transition calculation (using 

- tReθγ transition model) based on RANS equations. The laminar flow and airflow separation play 
important roles on the surface of large thickness airfoil, therefore, the transient simulation with 
transition model can bring more details and it is easier to understand the flow mechanism in airfoil 
optimization and design. The results show that there are vortex shedding and generation on the 
surface of leading edge of the airfoil in reverse flow (Figure 4, Figure 5), which lead to the oscillation 
of aerodynamic coefficient. Figure 3 shows the comparisons of the pulsation of lift coefficients 
between baseline and optimal airfoils. The last few time steps after the constant amplitude oscillation 
are selected to compare the vibration of airfoils before and after optimization. The results show that 
the pulsation of lift coefficient of the optimized airfoil is lower than that of the baseline airfoil in the 
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two airfoil optimization problems, which means that the vibration of the optimized airfoils can be 
alleviated to a certain extent in reverse flow. 
 

  

Figure 3 – Comparisons of the pulsation of lift coefficients between baseline and optimal airfoils. 
 

  

Figure 4 – Streamlines of baseline and optimal airfoil with relative thickness of 26%. 
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Figure 5 – Streamlines of baseline and optimal airfoil with relative thickness of 40%. 
 

4. Conclusions 
In this paper, a multi-objective aerodynamic optimization design method based on Kriging models is 
established, in the sub-optimization, an infill-sampling strategy based on hypervolume is used to find 
the optimum design. By analyzing the working environment and flow field of the large thickness airfoil 
at the root segment of the coaxial rigid rotor blades, the design points, optimization objectives and 
constraints are obtained. The purpose is to reduce the drag coefficient of double blunt rotor airfoils 
with relative thicknesses of 26% and 40% in forward flow and reverse flow in the working range of 
Mach numbers. After the optimization is completed, full turbulence calculation and free transition 
calculation based on RANS equations are performed on the airfoils before and after optimization. 
The results show that: 
1) In the full turbulence calculation, the design indicators of the optimal airfoil with relative thickness 
of 26% in forward flow are all improved with all constraints being satisfied, and the drag coefficient at 
each design point in the wide range of Mach numbers is reduced. The drag coefficient in reverse flow 
at Mach 0.2 is improved, which requires further exploration of the weight coefficients and design 
space.  
2) In the full turbulence calculation, the design indicators of the optimal airfoil with relative thickness 
of 40% are all improved with all constraints being satisfied in both forward and reverse flow, the drag 
coefficients are reduced in the range of Mach 0.3 to Mach 0.5. 
3) In the free transition calculation with - tReθγ transition model, there are vortex shedding and 
generation on the surface of leading edge of the airfoil in reverse flow, which lead to the oscillation of 
aerodynamic coefficient. The pulsation of lift coefficient of the optimized airfoil is lower than that of 
the baseline airfoil in the two airfoil optimization problems, which means that the vibration of the 
optimized airfoils can be alleviated to a certain extent in reverse flow. 
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