TENSILE FAILURE PROCESS INENTIFICATION IN C/SiC SAMPLES USING AE

32 Congregs.
II z s: aa of the lnterna‘t%;al Council
of lhe Aeronaullca\ Sciences

_m.._e_QEHI\NE HAl s

FAILURE PROCESS IDENTIFICATION IN C/SIC SAMPLES WITH A
RANGE OF TENSILE PERFORMANCE USING ACOUSTIC EMISSION

Yongzhen Zhang'?, Xiaoyan Tong', Leijiang Yao', Andy T.Augousti®

1 Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710065, China
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
3 Faculty of Science, Engineering and Computing, Kingston University London, SW15 3DW UK

Abstract

C/SiC composites are important hot-structural materials for future aeronautical applications. However, due to
the complexity of the processing method and microstructure, C/SiC often displays a varied mechanical
performance. To identify the failure processes of C/SiC made of different size fiber bundles under
mechanical load, acoustic emission (AE), an effective continuous damage monitoring technique, was used to
monitor tensile tests of C/SiC composites. Combined with the SEM observation on the fracture surface, five
damage mechanisms were identified, and their evolution was described. It was found: (1) the main damage
mechanisms of C/SiC prepared by the precursor impregnation-pyrolysis (PIP) process under tensile load are
matrix cracking, fiber cluster fracture, and fiber cluster pull-out friction; (2) the size of fiber bundles makes the
distribution of matrix defects in fiber bundles vary greatly, which has an important influence on the
macroscopic properties and damage evolution process of materials; (3) for the C/SiC composites with a lager
fiber bundle, lots of matrix cracks appear in the matrix in the fiber bundle at the early stage of loading, which
leads to the decrease of material stiffness, in the later stage of loading, the large energy damage such as
fiber cluster fracture and matrix cracking between fiber bundles appear and increase rapidly, which
accelerates the fracture failure process of the material.
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1. Introduction

Carbon fiber toughened silicon carbide composite (C/SiC) has become one of the key materials for
reusable thermal protection structures of aerospace vehicles and ultra-high sound speed aircraft
due to its lightweight, high specific strength, high specific modulus, good thermal-mechanical
properties, and impact resistance [1-3]. The precursor impregnation pyrolysis (PIP) process is
generally used for the fabrication of C/SiC composites and has many advantages such as lower
component fabrication time to reduce costs significantly and lower fabrication temperature [4].
However, due to the complexity of the processing method and microstructure, C/SiC often exhibits
different mechanical performances. Therefore, the mechanical properties and damage evolution of
C/SiC with different sizes of fiber bundles prepared by PIP under tensile load are of great
importance and should be taken into account for the design of this kind of composites.

In recent years, researchers have conducted many investigations on the mechanical properties of
C/SiC composites. They relied on physical information released from the internal changes in
materials to describe the damage process, such as electrical resistance, acoustic emission (AE) [5-
7]. AE is defined as the class of phenomena whereby transient elastic waves are generated by the
rapid release of energy from a localized source or sources within a material [8]. AE, an effective
continuous damage monitoring technique, provides the feasibility to continuously monitor the
material under loading [9]. However, there are still some challenges in the application of AE in
damage identification of ceramic matrix composites (CMCs), such as its complex propagation and
attenuation processes within the material. Researchers have tried to solve this problem with
unsupervised cluster analysis [10-11]. This method has been used to analyze several kinds of
CMCs and identified that AE signals grouping has a strong correlation with damage mechanisms
[5,10-13].
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The aim of this research is to identify the damage mechanisms and evolution of C/SiC made of
different sizes of fiber bundles by using an unsupervised pattern recognition method and AE data
obtained from tensile tests. Principal component analysis (PCA) and a fuzzy C-means (FCM)
algorithm are used to help realize AE data cluster analysis. Combining fracture surface observation,
the damage mechanisms and their evolution of C/SiC with different sizes of fiber bundles were
characterized.

2. Experimental

C/SiC was prepared by PIP process. The carbon fiber(T-300) bundles are provided by Toray
Industries. The PCS/xylene solution prepared by polycarbosilane(PCS) and xylene was used as the
impregnant. The pyrolysis is carried out at 1200 C, and the impregnation-pyrolysis process was
repeated until the weight gain rate drops below 2%. The C/SiC was machined into straight strip
samples, as shown in Figure 1.
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Figure 1 - Geometry of mechanical test specimens.

The room temperature mechanical tests were performed on a servo-hydraulic test machine (Model
INSTRON 8801) with displacement-controlled loading. Two samples were tested and denoted by S1,
S2. The bundle size of fiber in S1 is 1K, and that in S2 is 3K. Morphologies of the ruptured
specimens were observed with a scanning electron microscope (TESCAN, VEGA 3 LMU).

The AE signals generated during the tests were detected by WD sensor (Physical Acoustic
Corporation, PAC) attached to samples. AE data was collected during the tensile tests using the
PCI-2 AE system (PAC), with a sampling rate 2MSPS. AE signals were frequency filtered between
20 kHz and 1MHz, pre-amplified by 40 dB. An amplitude threshold 40 dB was set to obtain AE hits.
The installation of the sample and the AE sensor is shown in Figure 2. The diameter of the WD
sensor is 16mm. A rubber band and a U-shaped metal sheet were used to fix the sensor at the
center of the sample. Coupling agent is used between the sensor and the sample to eliminate the

gap.

Figure 2 - Installation drawing of sample and AE sensor.

3. Pattern recognition techniques
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The pattern recognition of AE signals is to establish the corresponding relationship between AE
signals and damage mechanisms. The AE signals collected in mechanical tests are unlabeled data,
so it is necessary to use an unsupervised clustering method to complete the pattern recognition.
Figure 3 is the framework of AE pattern recognition. AE signals are generally described as rise time,
counts, energy, amplitude, peak frequency, etc. AE signals are preprocessed and dimensionality
reduced and clustered by FCM algorithm. Then, the AE signals and damage mechanism were
matched by the analysis of material damage modes and fracture observation. Finally, the damage
evolution of specimens is analyzed based on pattern recognition results.
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Figure 3 - The framework of AE pattern recognition.

3.1 Feature selection and extraction

In order to realize the reasonable classification of AE signals, the discrete characteristics of AE
signals waveform are used as the basis of classification. However, redundant features may reduce
the accuracy of classification and make the classification results unreliable. To avoid the problems,
PCA, a most widely used data dimension reduction algorithm, is used to reduce dimension and
extract features of AE signals. The main idea of PCA is to map n-dimensional features to k-
dimensional features [14,15]. The k-dimensional features are new orthogonal features, also known
as principal components, which are reconstructed from the original n-dimensional features. The
selected principal components (PC) were the most representative eigenvectors, whose contributions
were defined as corresponding collectively to more than 97 % of the data set standard deviation.

3.2 Unsupervised clustering algorithm and clustering validity

The fuzzy c-means (FCM) algorithm, developed by Dunn in 1973 [16] and improved by Bezdek in
1981 [17], is one of the most widely used fuzzy clustering algorithms. FCM is an algorithm that uses
membership degree to determine whether each data point belongs to a certain clustering degree.
The clustering algorithm is an improvement of traditional hard clustering algorithm. Compared with
K-means algorithm, FCM provides more flexible clustering results to eliminate the influence of initial
cluster centers.

Calinski-Harabasz index (CH) [18], Davies Bouldin (DB) [19]and Silhouette (Silh) index [20] were
selected to check the validity of the clustering result. The larger CH index and Silh index, the
smaller the DB index, the better the clustering result is.

4. Results and discussion

4.1 Tensile test and AE monitoring results
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The mechanical tests are tensile tests of S1 and S2. The mechanical test and the AE monitoring
results are given in Figure4. It is found that the tensile strength of C/SiC composites prepared by 1K
fiber bundle is 211.8MPa, while that of C/SiC composites prepared by 3K fiber bundle is only
78.1MPa. At the same time, there are some differences in the AE process between the two samples.
The high energy AE signals of S1 appeared in the middle stage of loading, while the high energy AE
signals of S2 mainly concentrated in the later stage. In general, the AE energy of S2 is higher than

that of S1.
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Figure 4 — The stress-displacement curve and AE energy during tensile tests.

4.2 Description of specimen fracture damage

4



TENSILE FAILURE PROCESS INENTIFICATION IN C/SiC SAMPLES USING AE

The fracture surface of the specimens (Figure 5) reveals the material damage modes under tensile
stress. Figure 5 (a), (b), (c) and (d) are SEM images of S1, and Figure 5 (e) (f) (g) and (h) are SEM
images of S2. It can be found from the fracture surface that there are matrix cracks in fiber bundle,
matrix cracks between fiber bundles and fiber cluster breakage. The fracture processes of single
fiber and fiber clusters are accompanied by fiber pull-out friction and cluster pull-out friction.
Comparing with Figure 5 (a) and Figure 5 (e), it is found that in S1, the fiber bundles are relatively
close and the filled SiC matrix is less. While in S2, the distance between fiber bundles is larger and
the matrix between fiber bundles is more, which can clearly distinguish the fiber and matrix.
Comparing with Figure 5 (c) and Figure 5 (g), it is found that the fiber bundles of S1 fracture surface
are relatively dispersed. But in S2, the fibers are more compact, which shows a large fiber cluster
fracture composed of more fibers.
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Figure 5 - The SEM micrographs of the fracture surfaces: (a), (b), (c) and (d) are the images of S1;
(e), (f), (g) and (h) are the images of S2.
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4.3 Pattern recognition results

Although the fiber bundle sizes of S1 and S2 are different, the preparation process and materials of
the samples are identical. Therefore, it is believed that the microdamage forms of the two
specimens are similar during loading. The difference in the final material properties between the two
specimens depends on the evolution of damage mechanisms. In order to achieve the comparability
of the results of unsupervised analysis of AE signals, the AE signals of S1 and S2 are fused to form
an unsupervised clustering AE signals set that included six features: rise time, counts, energy,
duration, amplitude, and peak frequency. PCA is performed on the AE data set, and four principal
components are extracted. FCM clustering algorithm is used to cluster AE data. Figure 5 shows the
CH index, DB index, and Silh index. The larger the value of CH index and Silh index, and the
smaller the value of DB, the better the clustering result. It is found that the number of clusters c=5
gives the best result. Therefore, the AE events of the two samples can be divided into five classes.
Table 1 summarizes the average characteristics of each AE signal cluster in S1 and S2.
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Figure 6 Index values obtained from different number of clusters.

In the process of loading, different damage can produce different AE signals. It is reasonable to
believe that each class represents one kind of damage mechanism, and the center of each class
reflects the basic physical foundation of corresponding damage mechanism. The AE energy is
related to the energy released by the AE source and depends on the size of the source and the
stored elastic energy [14]. Frequency depends to a large extent on the properties of compositions
involved in the micro-fracture process [13]. Thus, cluster labelling can be proposed according to the
peak frequency and AE energy.

The peak frequencies of class B and class D are higher than 400kHz, which belong to high
frequency signals and are obviously different from other signals. At the same time, the matrix
transfers the load to the fibers through the close contact with them. When the local load exceeds the
fiber strength, the fibers begin to fracture. The broken fibers will be pulled out from the matrix with
the loading. In Figure 5 (d) and (h), fiber clusters and fibers pullout after fracture can be observed. In
the process of fibers and fiber clusters pulling out from the matrix, the friction between fiber and
matrix is inevitable, and the corresponding AE signals are generated. At the same time, the friction
is also a toughening mechanism of CMCs. Comparing the AE energy of Class B and Class D, it is
found that the AE energy of Class D is higher than that of Class B, so Class D corresponds to the
friction during the pulling out process of fiber cluster, and Class B corresponds to the friction during
the pulling out process of single fiber or a few fibers. Therefore, Class B and Class D are named
friction of fiber pullout and friction of fiber cluster pullout, respectively.

The peak frequencies of Class A and Class C are close to each other, which indicates that these

7
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two kinds of signals may be the same kind of AE signals. However, the energy, counts, duration,
and amplitude of Class A are larger than those of Class C, indicating that the damage area of Class
A is larger than that of Class C. During the damage process of CMCs, the matrix inside and
between fiber bundles will crack. The matrix in the fiber bundle is mostly small cracks due to the
obstruction of the fiber. In the fiber bundles, there are large pores, and the matrix cracking is less
hindered by the fiber. Large matrix cracks often appear. In Figure 5(c) (d) (e) and (h), two different
types of matrix cracks can be found. Therefore, Class A corresponds to matrix cracking between
fiber bundles, and Class C corresponds to matrix cracking in fiber bundle.

Finally, the unlabeled Class E corresponds to the fracture of fibers and fiber clusters. Fiber plays a
toughening role in CMCs. After the material is loaded, the matrix around the fiber cracks, and the
fiber bearing stress is higher. Therefore, the AE energy generated by the fibers and fiber clusters is
larger. It can be seen from the classes’ parameters of S1 and S2 that the AE energy of Class E is
the largest. The AE energy of Class E in S2 is much larger than that in S1, which indicates that the
broken fiber clusters in S2 is larger than that in S1. This phenomenon can be confirmed in Figure 5

(c) and (g).

Table 1 - AE features of the cluster centers

Risetime Energy Duration Amplitude Peak-Frequency
Sample. No Count Class
(ms) (10uV:s) (1s) (mV) (kHz)
186 47 20 755 60 66 A
82 40 7 323 61 443 B
spe?illllqens 100 28 7 348 58 58 C
260 53 16 759 61 472 D
586 54 20 848 59 144 E
195 41 11 758 58 65 A
128 28 5 365 58 476 B
S1 123 22 5 371 56 61 C
272 45 9 765 59 479 D
590 52 13 851 59 144 E
108 88 93 731 72 79 A
53 47 9 296 63 422 B
S2 52 40 10 302 63 51 C
200 94 50 728 70 436 D
520 82 147 798 68 151 E

4.4 Damage evolution analysis based on AE pattern recognition

When the AE signals in the loading process are classified and the corresponding damage
mechanisms are identified , the damage evolution during the whole tensile process can be
described. The cumulative number and cumulative AE energy of each class with displacement and
time is shown in Figure 7 and Figure 8, respectively. For comparison purposes, cumulative number
and cumulative energy are expressed as percentages.

For sample S1, from the perspective of AE energy, Class A, Class D and Class E are the main
damage modes. Before the stress reaches 147.7MPa, at the initial stage of loading, the main
damage is the matrix cracking in the fiber bundle represented by Class C. This kind of matrix crack
belongs to small matrix crack and appears very early, and the AE energy is very small. It began to
appear when the material was loaded, and developed gradually, converging into larger cracks. After
the stress exceeded 147.7MPa, Class A, which represents the large matrix cracking between fiber
bundles, became the main damage mode and developed rapidly with the increase of load. With the
rapid development of matrix cracking between fiber bundles represented by Class A, the load of
fiber bundles increased greatly. The number of the fiber cluster fracture and pull-out friction events
also increased rapidly. When stress exceeded 185MPa, the matrix cracking between fiber bundles
became the main damage mechanism.

8
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For sample S2, it can be seen from Figure 7 (b) and Figure 8 (b) that before the stress reached
26.2MPa (Displacement:0-0.8mm) the AE signals were relatively fewer, and the AE energy was low.
However, the number of Class C and Class B events representing matrix cracking in the fiber
bundle and friction of fiber pull-out was more than that of other damage mechanisms, indicating that
these two types of damage mainly develop in the early stage of loading. At the same time, when the
stress reached 26.2MPa, the loading displacement were as high as 0.8mm. However, when the
stress reached 147.7MPa, the loading displacement of S1 was only 0.43mm. The macro stiffness of
the S2 with lager fiber bundle(3K) is obviously lower than that of the S1 with smaller fiber
bundle(1K). Under the low stress level of 0~26.2MPa, in the fiber bundle, the matrix close to the
defects and holes began to crack, forming a large number of microcracks. The generation and
development of such microcracks may be one of the important reasons for the decrease of S2
stiffness. With the increase of loading, the AE energy of Class A and Class D increases rapidly.
When the stress reached 66.3MPa, the large energy damage represented by Class A, Class D, and
Class E occurred rapidly, and the material damage intensified until S2 fracture failure. From the time
of appearance of damage, Class A, which represents matrix cracking between fiber bundles, began
to appear at 51.7s. Class E, which represents the fiber cluster fracture, began to appear in 53.4s. In
the later stage of loading, the damage of large fiber cluster made the local stress redistribute,
increased the local stress in the undamaged area, and accelerated the overall failure of S2.

The above analysis found that: (1) whether in S1 or S2, matrix cracking between fiber bundles
represented by Class A, fiber cluster pull-out friction represented by Class D, and fiber cluster
fracture represented by Class E, are the main damage mechanisms. (2) In the aspect of cumulative
energy and cumulative number of AE events, Class A, Class D, and Class E are consistent, while
Class B and Class C are consistent. This conclusion reflects the synchronous occurrence of matrix
cracking, fiber cluster fracture, and fiber cluster pull-out friction during the damage process of CMCs,
which proves the correctness of the corresponding relationship between AE signals and damage
mechanisms. (3) The damage development of S1 with a smaller fiber bundle is relatively stable in
the whole process, while S2 with a larger fiber bundle is not obvious in the early stage of loading.
However, in the later stage, the large cracking of the matrix between the fiber bundles and the large-
area fracture of the fiber cluster, lead to the accelerated failure phenomenon, which eventually leads
to the overall fracture of S2 at lower stress.
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Figure 7 - The development of cumulative energy percentage with displacement and time: (a)S1;
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S2.

5. Conclusions

(1) The pattern recognition method based on AE can accurately identify the damage mechanisms
and their evolution of C/SiC composites prepared by the PIP process under tensile load.

(2) The main damage modes of C/SiC prepared by the PIP process under tensile load are matrix
cracking, fiber cluster fracture, and fiber cluster pull-out friction.

(3) The size of fiber bundles makes the distribution of matrix defects in fiber bundles vary greatly,
which has an important influence on the macroscopic properties and damage evolution process of
materials. For the C/SiC composites with large fiber bundles, in the early stage of loading, there are
more cracks in the matrix in the fiber bundle caused by the material preparation defects, resulting in
a decrease in material stiffness. In the later stage, the large energy damage such as fiber cluster
fracture and matrix cracking between fiber bundles appear and increase rapidly; the local stress in
the material redistributes and increases rapidly in the undamaged area, which leads to the damage
acceleration and the ultimate strength of the material decreases.
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