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Abstract 

This paper is mainly a tutorial and experimental research on the finite-horizon state-dependent Riccati equation 

method, in which a differential Riccati equation arises instead of an algebraic one. With this method, the finite-

horizon sub-optimal control law may be obtained for the non-linear system with affine inputs. As the foundation, 

the analytic solution of the differential Riccati equation, derived in the finite-horizon linear quadratic regulator 

problem, is reviewed. The solution has two presentations while only one is numerically applicable. For 

comparison, an alternative but equivalent way of direct numerical integration is considered. A reusable launch 

vehicle landing example is solved to demonstrate the good performance and high efficiency in both ways. 

Furthermore, three approaches to improve the performance of the solution are investigated, including 

reformulating the linear-like form, the reduced-horizon control strategy, and the iterative control strategy. It is 

shown that they have the potential to generate a better solution. 

Keywords: optimal control; non-linear affine system; state-dependent Riccati equation method; analytic solution 
of differential Riccati equation 

 

1. Introduction 
Optimal control theory aims at determining the inputs to a dynamic system, which optimize a 

specified performance index while satisfying constraints on the motion of the system. It is closely 

related to the engineering and has been widely studied. Because of the complexity, except the linear 

quadratic Optimal Control Problems (OCPs) [1] and some special cases [2], generally OCPs for 

nonlinear systems are solved numerically. The numerical methods, often categorized as the direct 

and indirect methods [3], are prosperously developed and their efficiency has been greatly enhanced. 

For example, the Pseudo-spectral (PS) method is widely studied in recent decades. It possesses 

good properties including insensitiveness to the initial guess and exponential convergence rate [4-

6]. Notably some studies were carried out for its practical application [7-10] or even on-line optimal 

control [11-13]. Recently, a new Variation Evolving Method (VEM) is proposed for the optimal control 

computation [14, 15], and due to its on-line approximation to the optimal solution, it may provide a 

possible way for the real-time optimal control. 

A different strategy for the optimal control, which may bring a closed-form solution, is the State-

dependent Riccati Equation (SDRE) method [16, 17]. Upon the quadratic performance index, 

Cloutier et al. proposed this method for the infinite-horizon optimal control of non-linear affine 

systems. A state-dependent algebraic Riccati equation is solved to give the approximate optimal 

solution and properties including the optimality, the stability, and the robustness are investigated [18]. 

Compared with the infinite-horizon case, the finite-horizon optimal control of nonlinear systems is 

challenging due to the time dependency of the associated Hamilton–Jacobi–Bellman (HJB) partial 

differential equation. Heydari and Balakrishnan [19] introduced the state-dependent differential 

Riccati equation for the finite-horizon optimal control problem, and presented an approximate closed-

form solution, which is the analytic solution for the time-invariant case. Note that the solution has two 

forms while one form is not practically usable, because the involved matrix inverse is easy to become 

singular for problems with large horizon. This will lead to the oscillation of control commands or even 

failure to obtain a solution. 

In this paper, the finite-horizon suboptimal control for the non-linear input-affine system, following 
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the SDRE principle, is studied. Since the differential Riccati equation is stable in reverse-time [20], 

an alternative way of direct integration, upon the efficient numerical computation capacity, is 

investigated. We will not systematically investigate the SDRE control law under various uncertainties 

and disturbances here, whereas just show its ability to generate the control command rapidly and 

investigate strategies to improve the performance of the solution. For this aim, an example of 

Reusable Launch Vehicle (RLV) landing path planning with ideal model is considered. The rest of 

this paper is organized as follows. In Section 2, the finite-horizon SDRE controller for the non-linear 

affine plant is developed. Section 3 applies it to the RLV landing problem. The vehicle landing 

scenario, with the approximate analytic method and the numerical integration method respectively, 

is demonstrated by the closed-loop simulation in Section 4. In Section 5, three approaches, including 

reformulating the linear-like form, the reduced-horizon control strategy, and the iterative control 

strategy, are investigated to improve the performance of the control. The remarks are presented at 

the end. 

2. Development of SDRE Controller 

2.1 Preliminaries of Finite-Horizon LQR Problem 

The finite-horizon Linear Quadratic Regulator (LQR) problem is reviewed first. Such problem has the 

following quadratic performance index as  

 
0

T T T1 1
( ) ( ) ( )d

2 2

ft

f f t
J t t t  x Fx x Qx u Ru                                         (1) 

subject to the linear dynamic equation  

  x Ax Bu                                                                   (2) 

with initial conditions 

 
0 0( )t x x                                                                     (3) 

where nx  is the state vector and mu  is the control vector. Q  and F  are right-dimensional 

positive semi-definite matrixes and R  is a right-dimensional positive definite matrix. The initial time 

0t  and the terminal time ft  are all fixed. “ T ” denotes the transpose operator. Note that the coefficient 

matrixes A , B  and the weight matrixes Q , R  may be time-varying. According to the optimal control 

theory, this problem has an optimal control solution as follows. 

 1 T u R B Px                                                                 (4) 

where P  is the Riccati matrix that conforms to the differential equation 

 T 1 T    P PA A P PBR B P Q                                               (5) 

and 

 ( )ft P F                                                                  (6) 

For the time-invariant case where the coefficient matrixes and the weight matrixes are all constant, 

the differential Riccati equation remains the form. In particular, the Riccati matrix for the time-invariant 

case may have a solution in explicit analytic form under the following assumption. 

 

Assumption 1: ( , )A B  is stabilizable and 1/2( , )A Q  has no unobservable modes on the imaginary axis, 

where 1/2 1/2Q Q Q .  

 

Theorem 1 [21]: For the differential Riccati equation (5), where the matrixes A , B , Q , and R  are 

time-invariant, then under Assumption 1, the analytic solution of the Riccati matrix ( )tP  is 

  
1 T 1 T T 1

( )( ) ( ) ( )1( ) ( )ss f ss ft t t t

ss sst e e
  

        
  

A BR B P A BR B P
P F P D D P                      (7) 

where 
ssP  is the solution of the following algebraic Riccati equation  

 T 1 T
ss ss ss ss

   P A A P P BR B P Q 0                                               (8) 

and D  satisfies the following Lyapunov equation 
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 1 T 1 T T 1 T( ) ( )ss ss
      A BR B P D D A BR B P BR B 0                                   (9) 

Proof. At first, Assumption 1 guarantees the existence of 
ssP  for the algebraic Riccati equation (8) [22]. 

Furthermore, all the eigenvalues of 1 T
ss

A BR B P  will either fall in the open left-half complex plane 

or the open right-half complex plane, which implies that the Lyapunov equation (9) has a unique 

solution [22]. Now the proof is direct. Obviously when ft t , we have ( )ft P F  from Eq. (7). On the 

other hand, with the relation  

 1 1 1d d ( )
( )

d d

t
t

t t

   
M

M M M                                                      (10) 

where M  is a matrix function of t , Eq. (7) may be differentiated to give 

 

 

 

 

1 T 1 T T

1 T 1 T T

( )( ) ( ) ( )1 T 1

( )( ) ( ) ( )1 1 T T

1 T 1

( ) ( )
( ) ( )

( ) ( )

( ) ( ) ( ) ( )

ss f ss f

ss f ss f

t t t t

ss ss

ss ss
t t t t

ss ss

ss ss ss ss

e e

e e

 

 

    

    

 

   
 

   
 
    
 

      

A BR B P A BR B P

A BR B P A BR B P

A BR B P F P D
P P P P P

F P D A BR B P

P P A BR B P P P D P P  1 1 T T( ) ( )ss ss
   D A BR B P P P

   (11) 

Expanding the terms in the right-hand of Eq. (11) renders 

 
 

1 T 1 T T

1 T 1 T T

( )( ) ( ) ( )

( ) ( ) ( ) ( )

ss ss ss ss

ss ss ss ss

 

 

      

     

P P P A BR B P A BR B P P P

P P A BR B P D D A BR B P P P
                           (12) 

with Eq. (9), there is 

 1 T 1 T T 1 T( )( ) ( ) ( ) ( ) ( )ss ss ss ss ss ss
           P P P A BR B P A BR B P P P P P BR B P P        (13) 

Simplify Eq. (13) and add a zero term  Q Q 0  in the right-hand side; we have 

 T 1 T T 1 T
ss ss ss ss

         P PA A P PBR B P Q P A A P P BR B P Q                          (14) 

With Eq. (8), we then see that ( )tP  given by Eq. (7) satisfies the differential Riccati equation (5).   □ 

 

Note that there are two solutions for the algebraic Riccati equation (8); one is positive semi-definite, 

denoted by ss


P , and the other is negative semi-definite, denoted by ss


P . It may be verified that 

ss t
  P P , where 

tP  is the positive semi-definite solution of the following algebraic Riccati equation 

 T 1 T
t t t t

    P A A P P BR B P Q 0                                                (15) 

The solution given by Eq. (7) will not be changed for either ss


P  or ss


P  theoretically. However, the 

numerical computation results may be quite different in practice. With ss


P , the matrix 1 T
ss

 A BR B P  

will have all its eigenvalues in the open left-half complex plane, and the term 
1 T( )( )ss ft t

e
  A BR B P  will be 

fairly large when the horizon ft t  is large. This may lead to the numerical singularity when 

calculating the matrix inverse. On the contrary, with ss


P , the matrix 1 T
ss

 A BR B P  will have all its 

eigenvalues in the open right-half complex plane, and the term 
1 T( )( )ss ft t

e
  A BR B P  will be within a 

reasonable range despite the value of ft t . 

2.2 Suboptimal Controller for Non-Linear Affine System 

The finite-horizon optimal control for general non-linear input-affine systems with quadratic 

performance index is now formulated. The system considered takes the following form 

 ( ) ( )x x f x g u                                                                (16) 

where nx  and mu  are the state and control vectors, respectively. The functions : n nf  

and : n n mg  represent the continuous dynamics of the system. The performance index is given 

by Eq. (1). Note that here the matrixes Q  and R  may be state-dependent, i.e., ( )Q x  and ( )R x . The 

problem is to find the controller that minimizes the cost functional (1) subject to the state equation 

given by Eq. (16).  
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To use the SDRE method, the dynamic equation (16) is transformed to the linear-like form, where 

the coefficient matrixes are state-dependent, that is 

 ( ) ( ) x A x x B x u                                                             (17) 

where ( ) ( )A x x f x  and ( ) ( )B x g x . The factorization of the dynamics to create ( )A x  is not unique, 

and techniques suggested in [23] may be employed. Note that the linear-like form should satisfy the 

following assumption. 

 

Assumption 2:  ( ), ( )A x B x  is pointwise stabilizable and  1/2( ), ( )A x Q x  always has no 

unobservable modes on the imaginary axis for all nx , where 1/2 1/2( ) ( ) ( )Q x Q x Q x . 

 

Following the principle of the SDRE method, the state-dependent differential Riccati equation for 

the finite-horizon problem is 

 T 1 T( , ) ( , ) ( ) ( ) ( , ) ( , ) ( ) ( ) ( ) ( , ) ( )t t t t t    P x P x A x A x P x P x B x R x B x P x Q x                (18) 

with the terminal condition 

 ( , )ft P x F                                                                (19) 

where 
( , ) ( , )

( , )
t t

t
t

 
 

 

P x P x
P x x

x
 is the total time derivative of the Riccati matrix ( , )tP x . Then the 

control is analogously calculated as 

 1 T( ) ( ) ( , )t u R x B x P x x                                                     (20) 

In Ref. [19], Heydari and Balakrishnan analyzed the relation between the proposed solution and the 

optimal solution, showing that when neglecting certain terms, the HJB equation reduces to the state-

dependent differential Riccati equation (18). They gave an approximate solution, according to Eq. (7), 

to solve Eq. (18), namely, freezing the state x in the coefficient and weight matrixes at the current time 

point. Then 

      
T

1 T 1 T
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1( , ) ( )ss f ss ft t t t

ss sst e e
 


    

     
 

A x B x R x B x P A x B x R x B x P
P x F P D D P    (21) 

where 
ssP  is the solution of the following algebraic Riccati equation  

 T 1 T( ) ( ) ( ) ( ) ( ) ( )ss ss ss ss
   P A x A x P P B x R x B x P Q x 0                                (22) 

and D  satisfies the following Lyapunov equation 

    
T

1 T 1 T 1 T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )ss ss
      A x B x R x B x P D D A x B x R x B x P B x R x B x 0    (23) 

Since the analytic form solution involves the matrix inverse computation, 
ssP  should be negative semi-

definite in order to avoid the numerical difficulty. In particular, the differential Riccati equation (5) is 

inverse-time stable [20]. Therefore, an alternative way of directly integrating the differential equation 

with the coefficient matrixes fixed, upon the efficient numerical computation capacity, may also 

produce an accurate solution efficiently. To get P , introduce ft t   ; we then have the following 

Initial-value Problem (IVP) 

 T 1 T

0

d
( ) ( ) ( ) ( ) ( ) ( ),

d 




    P PA x A x P PB x R x B x P Q x P F                        (24) 

Note that the coefficient and weight matrixes are fixed at the current time point in Eq. (24), and the 

IVP will produce the same results as Eq. (21). 

3. SDRE Controller for Vehicle Landing 

Landing is a crucial flight phase for vehicles. The goal during this process is for the vehicle to land at 

a desired runway in a limited downrange with a near-zero vertical velocity [24]. The dynamics of the 

vehicle landing are non-linear and traditional guidance methods rely on the predetermined reference 

trajectories to be followed, while with the SDRE method, the desired reference trajectory is not 

required because the control law may achieve the closed-loop landing control with tolerable 

touchdown vertical velocity. Assuming zero cross range to the runway, the dynamic model for a RLV 
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in the vertical plane is [19]  

 sin
D

V g
m

                                                                 (25) 

 cos
L g

mV V
                                                                (26) 

 sinh V                                                                   (27) 

 coss V                                                                   (28) 

where V  is the velocity magnitude,   is the flight-path angle, h  is the height, and s  is the downrange. 

m  is the mass of the aircraft. g  is the gravity acceleration.   is the angle-of-attack. a LL QS C  is the 

aerodynamic lift and a DD QS C  is the aerodynamic drag. The lift and drag coefficients are modeled 

as 
0L LC C   and 

0

2
D D I LC C K C  , respectively. 21

2
Q V  is the dynamic pressure and 

aS  is the 

reference area. The air density is calculated by 0 exp( / )h H   , where 0  is the sea-level air 

density and H  is the scale height. Note that the system is not affine in the control  . To obtain an 

affine form, the time derivative of   is introduced as the new control input, i.e., 

 u                                                                       (29) 

Since a predetermined and fixed downrange is more interesting in landing [19], the dynamic equations 

(25)-(29) are changed with the downrange s as the independent variable. Denoting the derivative of a 

variable with respect to s  by the prime notation ‘ ' ’, then there are 

 
d 1

' sin
d cos

V D
V g

s V m




 
    

 
                                                (30) 

 
d 1

' cos
d cos

L g

s V mV V


 



 
   

 
                                                (31) 

 
d

' tan
d

h
h

s
                                                                 (32) 

 
d 1

'
d cos

t
t

s V 
                                                              (33) 

 
d

'
d cos

u

s V





                                                              (34) 

Using the SDRE method, the suboptimal controller for a quadratic performance index may be 

designed. The performance index is 

 
0

T T 21 1
( ) ( ) ( )d

2 2

fs

f f s
J s s Ru s  x Fx x Qx                                       (35) 

where the state vector is  
T

V h t x , 0s  and fs  denote the initial downrange and the 

prescribed terminal downrange, respectively. F , Q  and R  are appropriate weight matrixes. 

Referring to the transformation in Ref. [19], we have the linear-like equation (17) for the vehicle landing 

dynamic model where 

 

11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45

51 52 53 54 55

0

0

0
( ) , ( )

0

1

cos

A A A A A

A A A A A

A A A A A

A A A A A

A A A A A
V 

 
   
   
   
    
   
   
    

 

A x B x                                    (36) 

The specific entries for ( )A x  are  
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0 0 0

0

0

2 2
0 3 5 1 0

11

2 2

2
12

1 2 2

0 1 3 1

13

3 2

14

2
0 3 1 5

15

2

exp( / ) ( )

4 cos 4 cos

sin

cos

(exp( / ) )

4 cos

0

exp( / )

4 cos

a D I L a D

a D

a I L

x H S C K C x d S C
A

m x m x

g x
A

x x x

S C x x H d
A

mx x

A

x H S K C x x
A

m x

 





  
 




  




 


 

0

0 0

0 3 2 5

21 22 233
3 21

0 3 2 0

24 25

2 2

2
31 32 33 34 35

2 2

41 42 43 44 452
1 2

(exp( / ) )
, 0,

4 cos

exp( / )
0,

4 cos 4 cos

sin( )
0, , 0, 0, 0

cos( )

1
, 0, 0, 0, 0

cos( )

L

L L

x H d SC xg
A A A

mx xx

x H SC d SC
A A

m x m x

x
A A A A A

x x

A A A A A
x x



 

 
   


  

    

    

 

where 
1d  and 

2d  are the hyper-parameters that regulate the linear-like form. Then we get the control 

law  

 1 T ( ) ( )R s u B x P x                                                         (37) 

upon the following equation 

 T 1 Td
( ) ( ) ( ) ( ) , ( )

d
fR s

s

     P PA x A x P PB x B x P Q P F                       (38) 

Fixing the coefficient and weight matrixes at current time point, ( )sP  may be solved following the 

approximate analytic method, i.e., using Eqs. (21)-(23), or alternatively, it may be obtained numerically 

by solving the IVP transformed from Eq. (38). 

4. Simulation Results 

An RLV landing example with a downrange horizon of 20000ft from [19] is considered. We use flight 

simulation with the closed-loop suboptimal SDRE control to generate the landing trajectory that has 

the least vertical velocity and flight-path angle. The following values are used for the RLV parameters: 

0LC =2.3, 
0DC =0.0975, 

IK = 0.1819, /S m =0.912 ft2∕slug. The sea-level air density is 0 =0.0027 

slugs∕ft3 and the scale height is H =2.7887×104ft. The hyper-parameters are 1d =1 and 2d =1. In 

the flight simulations, the ordinary differential equation integrator “ode45”, with a relative error 

tolerance of 1×10-6 and an absolute error tolerance of 1×10-9, was employed to solve the IVP regarding 

the Riccati matrix. 

Two cases with different weight matrixes in the performance index are investigated. In Case 1, the 

weight matrixes were selected as R =10, Q =diag(0, 0.0365, 1×10−9, 2.5×10−13, 1.6414), and F

=diag(0, 7.2951×107, 1, 0, 0). The simulations with the approximate analytic method and the 

numerical integration method were carried out. As shown in Fig. 1, they both achieve the desired 

target and their solutions are the same. We test the computation time for the control command 

generation. This analytic form solution is efficient and the maximum consumption is only 0.0018 s. 

For the numerical integration method, the maximum consumption is 0.0636 s, small as well, and one 

may expect the time further reduced on a specialized onboard computer. In addition, we checked the 

approximate analytic solution with the positive semi-definite matrix ss


P . It is shown that now the 

approximate analytic method underperforms in that the control commands are coarse, which arises 
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from the inverse singularity. This may be avoided with the negative semi-definite matrix ss


P  in 

employing the method. See Fig. 2.  

 
Figure 1 – State solutions of RLV landing with the approximate analytic method and the numerical integration 

method for Case 1. 

 

Figure 2 – Control solutions of RLV landing with the approximate analytic method and the numerical integration 
method for Case 1. 

In Case 2, the weight matrix Q is slightly adjusted as Q =diag(0, 0.0365, 1×10−9, 2.5×10−13, 3.2828) 

in comparison with Case 1. It is found that with the positive semi-definite matrix ss


P , the approximate 

analytic method fails to give the solution, while the right solution may be obtained with the negative 

semi-definite matrix ss


P  or the numerical integration method.  

Furthermore, we compared the suboptimal landing trajectory with the optimal trajectory planned off-

line with the PS method for Case 1. As shown in Fig. 3, it is found that the suboptimal control also 

well realizes the control objective and the performance, measured by Eq. (35), is only larger by 8.9% 

than that of the optimal solution, even if the curves are different. 
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Figure 3 – Comparison between the optimal solution and the suboptimal solution of Case 1. 

5. Further Investigation 

In order to improve the performance of the control solution, three approaches are further investigated. 

5.1 Reformulating the Linear-Like Form 

Obviously, different linear-like forms will produce different results. In Section 3, we introduce two 

hyper-parameters, i.e., 1d  and 2d , to change the concrete form of A(x). To find whether there is 

better choices of 1d  and 2d  than those in last section. We investigate a series of values for 1d  and 

2d , each of which varies from 0 to 2 with an interval of 0.2. Therefore, 121 simulations, under the 

setting of Case 1, were carried out. It is found that 56 sets of parameters suffer numerical difficulty 

and fail to give a solution due to the violation of Assumption 2, but we did find some better choice of 

the parameters, and they may produce solution closer to the optimal (with a perforce index of 

523.4793). Table 1 gives the performance of the representative solutions among these. 

Table 1 – Representative solutions under different hyper-parameter settings. 

Value of hyper-parameters Performance index of solution 

1d =0.8, 2d =0.8 547.3863 

1d =1, 2d =1 569.9775 

1d =0, 2d =0 952.9076 

5.2 Reduced-Horizon Control Strategy 

The SDRE method assumes a constant matrixes of A  and B  for the whole time-to-go, and one way 

that may promote the method is to reduce the length of the horizon. Rearrange the performance 

index (35) as 

 0

0 0

T T 2 T 21 1 1
( ) ( ) ( )d ( )d

2 2 2

fs s s

f f s s s
J s s Ru s Ru s




     x Fx x Qx x Qx                    (39) 

where s  is the horizon parameter. According the Bellman principle, denote the optimal 

performance index as *( ( ), )J s sx ; then without changing the optimal solution, Eq. (39) may be 

reformulated as  

 0

0

* T 2
0 0

1
( ( ), ) ( )d

2

s s

s
J J s s s s Ru s


      x x Qx                                  (40) 

However, we cannot obtain the analytic expression of *( ( ), )J s sx  and we have to find a substitute 

way. Assuming that the optimal performance may be expressed as 

    * T1
( ), ( ) ( ), ( )

2
J s s s s s sx x P x x                                              (41) 

It was shown in Ref. [19] that neglecting certain terms, the matrix P  satisfies the differential Riccati 

equation (38). Heuristically, we may plan a path with the approximate analytic method to obtain ( )sx , 

and then compute ( )sP  along 0[ , ]fs s  upon Eq. (38). Consider the reduced horizon [ , ]s s s  , the 
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control law may be calculated as  

 1 T ( ) ( , )rR s u B x P x x                                                      (42) 

where ( , )r sP x  is computed by 

      
T

1 T 1 T
1

( ) ( ) ( ) ( ) ( ) ( )1( , ) ( ( ) )ss ssR s R s

r ss sss e s s e
 


      

       
 

A x B x B x P A x B x B x P
P x P P D D P  (43) 

ssP  is the solution of the algebraic Riccati equation (22) and D  is the solution of the Lyapunov 

equation (23). 

To test the strategy, a simulation case, called Case 3, with same initial conditions as Case 1 is 

carried out. The weight matrixes were R =10, Q =diag(0, 0.1824, 1×10−10, 2.5×10−11, 0.3283), and 

F =diag(0, 7.2951×107, 0.2, 0, 0). The horizon span s  was set as 10s  . Figures 4 and 5 plot 

the solution under the reduced-horizon control strategy, whose performance index is 483.52. In 

comparison, the approximate analytic solution (with a performance index of 483.60) and the optimal 

solution (with a performance index of 474.26) are also presented. With the reduced-horizon control 

strategy, the performance of the solution is improved but the improvement is small. We also test 

other settings of s , with the values of 1, 50, and 100 respectively. It is found that the solutions are 

nearly the same. However, when the reduced-horizon control strategy is applied to Case 1, this 

approach fails to give a solution. About the reason, it is found that the velocity of the vehicle 

approaches zero near the terminal downrange and hence the numerical singularity occurs.  

 
Figure 4 – State solutions of RLV landing with the reduced-horizon control strategy for Case 3. 

 

Figure 5 – Control solutions of RLV landing with the reduced-horizon control strategy for Case 3. 
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5.3 Iterative Control Strategy 

By investigating the differential equation in Eq. (38), one may conjecture that if the prior information 

about ( )A x  and ( )B x  along the horizon 0[ , ]fs s  is available, then this IVP may produce a better 

solution of P . However, such information is impossible to obtain before the solution is determined. 

Fortunately, if an iterative strategy is employed, it may provide a prediction of ( )A x  and ( )B x . In 

particular, if the iteration may improve the solution monotonically, it may be boldly supposed that the 

resulting solutions will converge to the optimal with more iterations. Follow this idea; we first use the 

approximate analytic method to generate an initial solution, and then use the numerical integration 

method to compute the control command based on the downrange-varying differential Ricccati 

equation. A simulation for Case 3 was carried out with such strategy. Figures 6 and 7 plot the solution 

under the iterative control strategy, the approximate analytic solution and the optimal solution. It is 

shown that the solution under the iterative strategy is closer to the optimal solution. It has a 

performance index of 475.44 and the index does improve apparently. However, we also find that this 

strategy is not generally applicable. For Case 1, it fails to give a solution, because the velocity at the 

terminal stage becomes too low and the numerical singularity again occurs during this course. 

 
Figure 6 – State solutions of RLV landing with the iterative control strategy for Case 3. 

 

Figure 7 – Control solutions of RLV landing with the iterative control strategy for Case 3. 
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dependent Riccati Equation (SDRE) method, in which a differential Riccati equation emerges instead 

of an algebraic one. Different from the approximate analytic method, which employs the analytic 

solution for the Linear Quadratic Regulator (LQR) problem, an alternative way of direct numerical 

integration is proposed for the control command generation, which avoids the inverse computation. 

Through a reusable launch vehicle landing example, it is found that the integration method may 

produce the control command rapidly. Furthermore, three approaches to improve the performance 

of the solution are investigated, including reformulating the linear-like form, the reduced-horizon 

control strategy, and the iterative control strategy. It is shown that they may generate a better solution. 

The title for the paper may be not very appropriate. Actually, after our initial work was accepted by 

the conference committee in the form of abstract, our understanding towards the SDRE method was 

gradually deepened during the research. We went on to study some motivating ideas to improve this 

approach, for example, the reduced-horizon control strategy and the iterative control strategy. 

However, due to the programme of the conference, we did not alter the title ultimately. 
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