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Abstract 

The amount and quality of manufacturing knowledge in the knowledge base determine the degree of 

intelligence in the manufacturing process, and one of the most challenging issues is how to assess knowledge 

capability in a quantitative manner. From the perspective of manufacturing knowledge function, measurement 

indicators including verification environment, knowledge coverage and using effect, are conducted to construct 

an evaluation framework of knowledge capability maturity model. An algorithm model is proposed to calculate 

knowledge coverage, which is a new concept presented to determine the inventory of available knowledge in 

the knowledge base. Based on the percentage value of allowance for quality indicators, a novel method is also 

presented to evaluate using effect in a quantitative way. For measuring knowledge capability, we develop a 

knowledge capability maturity model with nine stages. Meanwhile, knowledge maturity level transition is 

presented and some suggestions are given to managers for making decisions. An application example not 

only adequately validates the effectiveness of the proposed model, but also fully demonstrates its advantages 

in the quantitative measurement.. 

Keywords: Knowledge Capability Maturity Model; Knowledge Measurement; Knowledge Coverage; 
Discretization; Knowledge Maturity Level Transition 

1. Introduction 
Intelligent manufacturing has become the main current trend in the new generation manufacturing 

[1]. As one of the most vital resources for sustaining manufacturers’ competitive advantage, 

knowledge plays a central role in realizing manufacturing intelligence[2-4]. In order to make full and 

effective use of organizational knowledge resources, knowledge should be organized in a 

standardized way such as knowledge based systems. Meanwhile, in order to maintain a competitive 

advantage, enterprises should constantly keep acquiring new knowledge to adapt to the rapid 

changes in the environment [5,6]. In such situations, companies must clearly know what knowledge 

is available, what knowledge must be acquired or what knowledge needs to be improved and so on. 

Therefore, it is necessary to develop an assessment model that can be used to accurately evaluate 

the knowledge in the company's knowledge base[7,8]. 

When characterizing the development and evaluation of an entity, a maturity model is usually 

referred and used to describe the varying states of an entity, with the entity being anything that is of 

interest [9]. In general, maturity models have the following properties [10,11]: i) The development of 

a single entity is simplified and described with a limited number of maturity levels; ii) Levels are 

characterized by certain requirements, which the entity has to achieve on that level; iii) Levels are 

ordered sequentially, from an initial level up to an ending level (the latter is the further improvement 

of the former); iv) During development, the entity progresses forward from one level to the next. As 

a natural application of the life-cycle approach, maturity models have been applied in many fields. In 

the IT field, ‘‘Capability Maturity Model (CMM)” for software development was constructed by the 

Software Engineering Institute of Carnegie-Mellon University. In addition, a lot of research on 

maturity models in the field of knowledge management has emerged one after another in recent 

years. 
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KPMG defined a maturity model as five stages: knowledge chaotic, knowledge aware, knowledge 

focused, knowledge managed, and knowledge centric [12]. They also defined the four key criteria as 

people, process, content and technology. In each area there are certain activities to be done. Firms 

can be assessed according to how they implement these activities. Infosys Technologies described 

the five knowledge management maturity (KMM) levels as default, reactive, aware, convinced and 

sharing [13]. Each maturity level is characterized by certain observable capabilities along each of 

the three major prongs: people, process and technology. Siemens has constructed a knowledge 

management maturity model (KMMM) which consists of an analysis model, a development model 

and a defined assessment process [14]. The analysis model helps the KMMM consultant to take 

account of all important aspects of knowledge management (KM) and reveals which key areas and 

topics should be developed in the future. The development model provides information as to how 

the respective key areas and topics can be best developed to reach the next maturity level. The 

assessment process structures all relevant steps from assessment definition to result interpretation. 

In order to further improve the possibility of success, a variety of knowledge management models 

have been presented. For example, Teah et al. [15] reviewed, compared, and integrated existing 

Knowledge Management Maturity Models to propose a General KMMM, which focuses on assessing 

the maturity of people, process and technology aspects of KM development in organizations. Chen 

et al. [16] proposed an approach of measuring knowledge management performance from 

competitive perspective. The approach integrates analytical network process (ANP) with balanced 

scorecard (BSC) to establish the model of KM performance measurement from four perspectives, 

including customer perspective, internal business perspective, innovation and learning perspective, 

and financial perspective. Wen [17] has developed a model to measure the effectiveness of 

knowledge management activities by using focus groups, analytical hierarchy processes and 

questionnaire analysis. These qualitative and quantitative methods have been integrated to 

summarize the experts’ opinions, select the measurement indicators, and calculate the weightings 

of dimensions and items. Hiseh et al. [18] have constructed a knowledge navigator model (KNM) 

which consists of an evaluation and calculation framework. Furthermore, they defined the KM 

maturity level into five stages: knowledge chaotic stage, knowledge conscientious stage, KM stage, 

KM advanced stage, and KM integration stage. The evaluation framework of KNM consists of three 

aspects: three target management objects (culture, KM process, and information technology), 68 KM 

activities, and 16 key areas. The calculation framework includes the research methods used in 

constructing this framework, and the derived results such as the score ranges used to differentiate 

maturity levels. Measuring various processes of knowledge management, namely, creation, 

accumulation, sharing, utilization and internalization of knowledge at the firm level have also been 

descripted by Lee et al. [19]. Through social resources embedded into their structure, a model was 

presented to optimize their knowledge management maturity [20]. 

In addition to knowledge management maturity modeling, some people focus more on the knowledge 

aspect. Schenkl et al. [21] proposed an approach for evaluating the knowledge within a company 

and to specify the required knowledge for providing a specific product-service system. Through 

Multiple-Domain Matrix based knowledge maps, the knowledge gap can be derived. Wen et al. [22] 

have presented a knowledge-based decision support system for measuring enterprise performance, 

using both neural network forecasting and knowledge reasoning, so that it could help managers 

better understand current and future situations of the enterprise. Xu and Bernard [23] restricted 

knowledge to the context of product development, and proposed some effective definitions and 

measurements of knowledge value. Based on those, the values of both tacit and explicit knowledge 

can be quantified. In addition, they have proposed an integrated knowledge reference system which 

could serve as a base to characterize product development and knowledge evolution process [24]. 

Those ideas and methods introduced by former researchers all have insightful contributions to the 

modeling and analysis of knowledge management in industrial productions. However, they mainly 

describe or analyze the knowledge integrated systems in a qualitative way and there is a lack of 

direct discussions on knowledge capability that could be quantified [25]. Meanwhile, in order to 

promote the application of assessment model, it should aim to develop means that help identify the 

level of maturity [26].Therefore, there is a growing need to specify the concrete impact of knowledge 

on the product development process and also to analyze knowledge capability in a quantitative way. 
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One of the uses of KM is in the area of decision making and assessment of process. Decision makers 

can verify the quality of development of their knowledge base in order to move forward to the next 

step. It could help managers better understand current and future situations of the enterprise 

knowledge [27,28]. 

Although there is considerable research in knowledge management performance measurement, 

there seems to be a lack of quantitative evaluation methods for knowledge capability, and this paper 

proposes an approach to address this issue. The paper is structured as follows: Section 2 is the 

characteristic and capability analysis of manufacture process knowledge. Section 3 introduces a 

knowledge vector, which characterizes knowledge capability in a comprehensive way, and its three 

elements, i.e., verification environment, knowledge coverage and using effect are analyzed in detail. 

Moreover, the specific evaluation method for each index is constructed. In Section 4, a knowledge 

capability maturity model is established to describe knowledge activities, and the knowledge maturity 

level transition machine is established. In Section 5, a case is studied to illustrate how knowledge 

capability measurement can be implemented by using the method. Finally, the paper concludes with 

Section 6. 

2. 2 Measurement indicators for manufacturing process knowledge 

2.1 The characteristic and capability analysis of manufacturing process knowledge 

Through studying the composition and characteristics of manufacturing process knowledge, the 
factors affecting the maturity of manufacturing knowledge are analyzed, thereby the evaluation 
indexes of knowledge maturity are determined. As a bridge between design and manufacture, the 
task of process design is to provide parts processing solutions for the manufacturing stage based on 
the information received from the design stage. In this process, the actual situation of the enterprise 
and the functional characteristics of the product should be considered, which determines the 
complexity and diversity of manufacturing process knowledge. 

Manufacturing process knowledge is the cross-integration of multidisciplinary knowledge in machinery, 
materials and mechanics. Among them, the forming mechanism of many process methods has not 
been clarified, and this process knowledge comes from a lot of practice in production. Since that, it 
usually needs to go through research, development, verification and other stages of development 
before it can be applied. Like a thing, knowledge has a life cycle. New knowledge is born as something 
fairly nebulous and that it takes shape as it is tested, and matures through application in various 
settings. That is to say, in different environments or stages, the knowledge system embodies the 
feasibility, stability, reusability and other performance. Therefore, verification environment is taken as 
an index to evaluate the capability maturity of the knowledge-based system in this paper.  

At the same time, there is a great variety of manufacturing process knowledge. Different 
manufacturing objects or different processing links need to use different process knowledge, which 
requires enterprises to have a certain amount of process knowledge reserve to be competent and 
complete corresponding manufacturing process design tasks. As with other things, the product 
objects that the system supported by manufacturing process knowledge can solved are also very 
limited. Thus, this paper proposes a coverage index to assess the range of objects that the knowledge 
system can solve. In addition, the reliability of process knowledge is directly reflected in production. 
That is, using effect reflects the effectiveness of manufacturing process knowledge system. 
Accordingly, this paper takes using effect as another index to evaluate capability maturity of 
manufacturing process knowledge. 

For the operation of the knowledge base system, as shown in Figure 1, the three most concerned 

aspects are: ① whether the current object can be solved; ② whether the solution process is reliable; 

③ whether the results obtained are valid. The three indicators proposed in this paper can also reflect 

the performance of these three aspects. Through the coverage index, it can know whether the current 
object can be solved. With verification environment, it can clarify whether knowledge system is reliable. 
With using effect, it is clear whether it is effective. 
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Figure 1 – Operating mechanism for manufacturing knowledge base system 

In view of the above analysis, knowledge capability maturity (KCM) is characterized by three main 
aspects: verification environment (VE), knowledge coverage (KC), and using effect (UE), as shown in 
Figure 2. 
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Figure 2 – The evaluation indexes of knowledge capability maturity 
 

2.2 Verification environment 

The lifecycle of manufacturing process knowledge is the state sequence of the various stages 
knowledge application in different environments. From theoretical research to actual mass production 
application, the development of manufacturing process knowledge usually needs to go through the 
following stages: theoretical analysis and research, verification of laboratory simulation environment, 
test verification of manufacturing plant, and batch production of the actual production environment. 
Among them, the degree of mass production ranges from the initial single-piece trial production to 
small-scale production, to mass production and finally to lean production. In this process, the 
capability maturity of manufacturing process knowledge is constantly improved. It can be seen that 
verification environment refers to the specific conditions and background of manufacturing process 
knowledge in the mature process of generation, use and optimization. 

By referring to verification environment of technology maturity and manufacturing maturity in existing 

studies, this paper summarizes verification environment of manufacturing process knowledge into 

four main stages. ① Theoretical research: the technology supported by the knowledge system is in 

the stage of basic principle and feasibility study; ② Laboratory validation: the technology supported 

by the knowledge system is in the verification phase of the laboratory simulation operating 

environment; ③ Manufacturer test verification: the technology supported by the knowledge system 

is in the verification phase of manufacturing environment; ④ Actual production applications: the 

technology supported by the knowledge system is applied in actual production. 
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2.3 Knowledge coverage 

With the help of machine equipment, tooling and men as labor, manufacturing is the process of 
converting raw material into products according to a certain process. In fact, the classification of 
manufacturing process is derived from the way materials are transformed. Therefore, the classification 
model for manufacturing process knowledge can be established in accordance with part categories, 
process methods and manufacturing activities. Firstly, according to the part category, manufacturing 
process knowledge is classified. Where, parts categories= {frame rib, skin, panel, profile, ..., pipe}. 
Usually, all kinds of parts can be manufactured by one main forming process at least. Next, 
manufacturing process knowledge for a certain part can be classified based on process method. 
Where, process methods= {rubber hydraulic forming, bending forming, shot peening, ..., tube bending}. 
After determining the main process method used for a certain part, manufacturing process knowledge 
can be further divided in line with manufacturing activities. Where, manufacturing activities = 
{manufacturability assessment, fabrication order design, manufacturing model design, ..., forming die 
design, machining parameters design}. 

The core of the knowledge base system is knowledge content itself, and the lack of knowledge cannot 
provide a reliable decision. Thus, if companies need to make reliable decisions from the knowledge 
base, they must accurately know the reserves in the knowledge base, that is, which areas have 
sufficient knowledge, and which areas require more knowledge. This paper presents knowledge 
coverage to quantitatively assess the knowledge reserves in the current knowledge base, which will 
be defined from the following two aspects. (1) Granularity. Knowledge granularity embodies the 
hierarchical situation of knowledge in the entire knowledge organization and is described by a 
knowledge tree. Knowledge is organized as a tree of several levels, and each knowledge unit at a 
higher level is comprised of one or several knowledge units of its sublevels. The knowledge unit on 
the leaf nodes of the tree is regarded as the basic unit of enterprise knowledge. They are introduced 
to clarify the level number of knowledge units and the integrity of the knowledge types of 
manufacturing business activities. (2) Quantity. Knowledge quantity is an important aspect of 
knowledge that should be considered. From the perspective of functional characteristics of knowledge, 
knowledge quantity can be described by the range of objects that the corresponding knowledge unit 
can solve. 

2.4 Using effect 

Using effect describes whether the knowledge can be held in a relatively stable state and its ability 

to recover from perturbation. The quality of parts is regarded as the outcome of knowledge activities. 

In order to measure the effect of knowledge in industrial production quantitatively, the score of using 

effect should be defined in the first place. Since the quality of parts is characterized by multiple 

indicators, the score can be calculated by means of integrating all those indices. Each index has 

different unit to measure and different allowance error. As a result, it is reasonable to use a 

percentage value to quantify using effect. In the real-world application, using this method to assess 

using effect of knowledge can help people make the appropriate choice among different knowledge 

resources. 

3. Evaluation method for indicators 

3.1 Evaluation method for verification environment 

For quantification, a 9-level scale is used for verification environment, where 0.1 to 1 corresponds 

from theoretical research to real production environment, respectively, as shown in Table 1. 

Table 1 Rating for verification environment 

Grade Definition  Score 

1 Content and rationale study 0.1 

2 Feasibility research 0.2 

3 It has passed the laboratory environment verification and achieved the 

required performance indicators. 

0.3 

4 It has been verified in the laboratory environment for many times and 

achieved the required performance indicators. 

0.4 

5 It has passed the factory environment verification and achieved the 0.5 
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required performance indicators. 

6 It has been verified in the factory environment for many times and achieved 

the required performance indicators. 

0.6 

7 In the actual production environment, the procedure is stable with an 

element of repeatability. 

0.8 

8 The standardization of the procedure is realized and applied to mass 

production. 

0.9 

9 The prodecure is continuously improved and optimized in actual 

production. 

1.0 

3.2 Computing method for knowledge coverage 

Knowledge unit is represented as two sets of feature-value pairs that represent the object to be solved 
and the corresponding solution in this research. Therefore, knowledge coverage is defined as: the 
ratio of the number of objects that can be solved by the corresponding type of knowledge to the total 
number of objects that expected to be solved. The object has many different attributes, so it is 
reasonable and desirable to have it characterized by an n-dimension vector. The vector is introduced 
to characterize object in knowledge unit. 

Let ( )( ), 1
1

t
t

g k
j m

t t t

g g g j j
g

O O f
=

=

=
=

 
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 be a finite set of objects can be solved by  type of knowledge in the 

knowledge base, where t

gO  denotes one object of the set, ,

t

g jf  represents the jth feature value of t

gO , 

tm  is the total number of features used to represent the object, and tk  is the number of objects.  

Likewise, let ( )( ),
1 1

t
t

i nj m
t t t

i i i j
j i

O O f
==

= =

 
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 
 be a finite set of objects expected to be solved by  type of 

knowledge, where t

iO  denotes one object of the set, ,

t

i jf  represents the jth feature value of t

iO , and tn  

is the total number of objects. Ordinarily, there are two kinds of features in view of characteristic value, 

i.e., feature with discrete value and feature with continuous value. Consequently, t

iO  can be 

expressed as ( ) ( )( ), ,
1 1

,
t td r c s

t t t

i i d i c
d c

O f f
= =

= =
= , where ,

t

i df  denotes the dth discrete feature value of t

iO , ,

t

i cf  

denotes the cth continuous feature value of t

iO , ir  and is  are the number of feature with discrete value 

and feature with continuous value, respectively. 

Afterwards, the analysis model for knowledge coverage can be built based on the definition of 
knowledge coverage, as shown in Figure 3. The calculation framework for knowledge coverage 
consists of two aspects: (1) Range determination. It aims at obtaining the total number of all objects 
expected to be solved. In accordance with the categorization of characteristic value, the object vector 

can be divided into three groups. ① 0ir   and =0is , Only features with discrete value are contained 

in the object vector. ② =0ir  and 0is  , Only features with continuous value are contained in the object 

vector.③ 0ir   and 0is  , both two groups of features appeared in the object vector. (2) Cover 

analysis of objects. The purpose of this step is calculating the number of valid objects included in the 
knowledge base. 

t

t
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Figure 3 – The analysis model of knowledge coverage 

3.2.1 Range determination for objects to be solved 

(1) Only features with discrete value are contained in the vector 

In this case, the calculation for the range of the solved object is carried out by establishing a 

classification model of discrete-valued features. A hierarchical tree ( ), ,T V E S=  is defined to express 

the weights associated with the features in the solved object and relationships between features. 

 1 2, , , nV v v v=  is a finite set of discrete value of features. iv  can be regarded as a node in T  and the 

root node of tree is represented by ( )root T  to distinguish other nodes. ( ) ( ) , , 1p q p qE v v e v v= =  is a 

finite set of classification relationships of features, in which ( ),p qe v v  is a Boolean variable that is used 

to represent the relationship between node 
pv  and node 

qv . ( ), 1p qe v v =  indicates that 
qv  is a direct 

child of 
pv . The set of directed child nodes belonging 

pv  is denoted by  ( ) ( ) ( , ) 1,p x p x xSub v v e v v v V= =  , 

and if ( )pSub v = , it means that 
pv  has no child node, and 

pv  is defined as the leaf node of tree T . S  

is a function: ( )S V E E →： , which assigns each node a weight to represent its degree of importance 

to its siblings, thereby satisfying the sum of the weights of all the children of one node is 1. Where, 

 ( ) ( ) ( , ) 1pq p qE e v v = = . 

At this point, a path from ( )root T  to the leaf node lv  represents a classification feature chain 

(  1,2, ,l L , ( )lSub v =  ). Where, L  is the total number of leaf nodes in T . Set ln  as the number of 

classification feature chains from ( )root T  to lv  and Let 
ij  denote the weight of each node (except the 

root node) in the i -th classification feature chain (  1,2, , li n ,  1,2, , ij m ). im  is the number of 

nodes (except the root node) in the i -th classification feature chain. Thus, by aggregating each 

feature chain’s value, an algorithm for knowledge coverage of the solved object with only discrete-
valued features is presented as belows. 

  (1) 

Where, ( )f i  is the two-valued function : ( ) 1f i =  means that the ith classification characteristic chain 

is contained in the knowledge base; ( ) 0f i =  indicates that the ith classification characteristic chain 

doesn’t exist in the knowledge base.  

(2) Only features with continuous value are contained in the vector 

Since the number of objects expected to be solved would be infinite under the circumstances, it can 

D

1 1 1

( )
il mnL

ij

l i j

Cov f i 
= = =

  
=   

   
  
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not be determined directly. The discretization of continuous-valued features is carried out to make the 
number of objects become finite. The discretization process used in this paper includes two steps: 
Firstly, according to the distribution on the value of feature, the initial range of feature is divided into 
several sub-intervals, which can be called first-level discrete; Secondly, the sub-interval is further 
discretized with equal width, that is, take a finite number at equal distance in the subinterval. Thus, 
each subinterval is reduced to a finite number of discrete values. Through the discretization of the 
above two steps, the initial continuous-valued range can be converted into a finite number of discrete 
values. Since the objects are represented by multiple features, the interrelationship between features 
needs to be considered in the discretization process. If the value of one attribute defines the value 
range of another attribute, there is an association relationship between them. If the values of two 
attributes do not have a constraint relationship with each other, they are independent of each other. 

In order to illustrate the calculation method for the total number of objects expected to be solved, a 

tree structure can be extended to build the discretization model ( ), , ,DT I W P U= , in which I  is a finite 

set of discrete intervals, 
jlI  denotes lth discrete interval of jth feature, 

jlI I ; J  is the total number of 

features,  1,2, ,j J ; 
jL is discrete interval number of jth feature,  1, 2, , jl L ; W  is the weight on 

I  where 
jlW W represents the corresponding weight of 

jlI ; P  is discrete points on I  where 
jlP P  

represents the corresponding points of 
jlI ; U  denotes a finite set of union intervals, hU  is a path from 

the root to one of leaf nodes, hU U , H  is the total number of union intervals, 
1

J

j

j

H L
=

 ,  1,2, ,h H . 

When J  features characterizing the object are independent of each other, H  takes the maximum 

value. Therefore, the total number of objects that are expected to be solved can be figured out by 
aggregating the value of discrete points in each union interval. 

According to the above definition, a discretization model of the solved object with only continuous-
valued is constructed, with taking into consideration relationship between features, as shown in Figure 
4. Assume that the solved object is identified by three continuous-valued features. Firstly, sub-

intervals are figured out through the first level discretization:  11 12 13 21 22 23 31 32 33, , , , , , , ,I I I I I I I I I I= . Where, 

31I 、 32I  and 33I  are leaf nodes, and the union intervals established from root node to leaf nodes 

include: ( )1 11 21 31U I I I− − , ( )2 12 22 31U I I I− − , …, ( )9 13 23 33U I I I− − . Secondly, assign a weight 
jlW  to the 

corresponding subinterval 
jlI . Since there is an association between the first two features, only the 

sub-intervals of the first feature are given weights. Subsequently, set a discrete spacing 
jld  for the 

subinterval 
jlI  to obtain the corresponding discrete points 

jlP . Let hN  be the value of the discrete 

point in hU , which can be calculated based on the above established model. For example, 

( ) ( )1 11 11 12 31 31N W P P W P=       . Similarly, the value of hN  can be obtained. Therefore, the total number of 

objects expected to be solved can be further figured out, namely hN . 
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Figure 4 – Discretization model 
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Let JlI  represent the set of leaf nodes, JL  is the number of leaf nodes,  1,2, , Jl L ; Let ln  be the 

number of paths (union intervals) from the root to leaf node JlI ; In addition, the weight assigned to the 

k-th sub-interval of iU  provided by the experts is ikW ,  1,2, , ik K . Where, iK  is the number of  sub-

intervals in iU . While ikP  denotes the expected discrete points of k-th sub-interval in iU , ikP   stands for 

the number of points covered in k-th sub-interval of iU . Thereby the calculation formula of knowledge 

coverage is given by: 

 

'

1 1 1C

1 1 1

J l i

J l i

L n K

ik ik

l i k

L n K

ik ik

l i k

W P

Cov

W P

= = =

= = =

  
  

  =
  

  
  

  

  
 (2) 

Where, the determination of ikP  requires further cover analysis below.  

(3) Both two groups of features appeared in the vector 

Under this circumstances, the calculation method of knowledge coverage is established by combining 
the first two calculation models. The method consists of three main steps as shown in Figure 5. Firstly, 
according to discrete-valued features of the object, a classification relation model is built to obtain the 
corresponding classification feature chains. Secondly, the discretization of continuous-valued 
features in each classification feature chain is carried out to further obtain the total number of objects 
expected to be solved. Then, the number of objects that can be covered in the knowledge base will 
be determined, by cover analysis between the objects expected to be solved and the objects that the 
knowledge base can solve. Therefore, based on Equation (1), the following formula is established to 

calculate knowledge coverage HCov  for the object containing discrete-valued features and 

continuous-valued features.  

 
H C

1 1 1

il mnL

i ij

l i j

Cov Cov 
= = =

  
=   

   
    (3) 

Where, C

iCov  represents the coverage of continuous-valued features in the classification feature chain 

and and can also be regarded as the value of a leaf node in the classification model. According to the 

result of discretization, C

iCov  can be figured out by Equation (2). 
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Figure 5 – The calculation framework for knowledge coverage 

3.2.2 Cover analysis 

For cover analysis, it is essentially a comparison between the objects that can be solved in the 
knowledge base and the objects that are expected to be solved. By setting the cover condition, it can 
identify whether the corresponding object is covered or not. The cover condition is defined by the 
distance between objects, including two aspects: one is the distance between the corresponding 
features used for comparison in the object, and the other is the distance between two objects. When 
both two kinds of distances are less than the given threshold, the cover condition is considered to be 
satisfied. The calculation method for the distance is given as following. 

Let ( , )t t

i gdis O O  denote the distance between t

iO  and t

gO . Where, t

iO  is the i -th object expected to be 

solved and t

gO  stands for the g -th object that can be solved in the knowledge base. Then, let 

, ,( , )t t

i j g jdis f f  represent the distance on the j th feature between t

iO  and t

gO . The descriptions of the 

object are often represented by multiple attributes, and the formats of attribute values are various. In 
reality, the formats of attribute values usually consists of two main categories: numeric and character. 

(1) For numerical features, Manhattan distance is employed in this paper to measure them. The 
measurement will distort the results when the features have different sizes for their domains of 
definition. Therefore, the Max–Min function is employed to normalize the distance calculation. Finally, 
the dissimilarity can be calculated from distance, represented as: 

 
, ,

, ,( , )

t t

i j g jt t

i j g j

j j

f f
dis f f

Max Min

−
=

−
 (4) 

Where, 
jMax  and 

jMin  are the maximum and minimum values of the feature j , respectively. Since 

the discrete spacing of each feature is different, it is necessary to set cover conditions for each feature: 

, ,

t t

i j g j jlf f d−   and ( , )t t

i gdis O O  . Where, 
jld  is the corresponding discrete spacing of 

jlI  and   is the 

corresponding threshold. When the above conditions are met, it indicates that object t

gO  covers object 

t

iO . 
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(2) For character features, since the feature values are the kind of enumeration values, there are no 
quantitative relationships among the feature values. In other words, the specific value of the difference 

cannot be measured. In this case, the feature similarities between ,

t

i jf  and ,

t

g jf  can be evaluated by 

judging whether the feature values are equivalent. Then the calculation formula of , ,( , )t t

i j g jdis f f  is given 

by: 

 
, ,

, ,

, ,

1
( , )=

0

t t

i j g jt t

i j g j t t

i j g j

f f
dis f f

f f





， ≠

， ＝
 (5) 

Dissimilarity between t

iO  and t

gO  can be transferred from transformation indicators using a combiner 

after values of the indicators of two objects on each feature have been calculated. In this research, 
the combiner is implemented as follows: 

 , ,

1

1
( , ) ( , )

m
t t t t

i g i j g j

j

dis O O dis f f
m =

=   (6) 

Obviously, the greater the distance is, the more dissimilar t

iO  and t

gO  will be. 

3.3 Measurement for using effect 

The forming quality of parts largely depends on the accuracy of forming. The resulting part is allowed 
to have a certain range of deviation compared with the designed part. The smaller the deviation value, 
the higher the accuracy is achieved. Therefore, the deviation value is used as an evaluation index of 
using effect supported by the process knowledge system, and different levels of deviation standards 
are established. The forming quality can be comprehensively evaluated by counting the percentage 
of parts that can be formed under various deviation criteria. The established equation is shown below. 

 
1 1

n m

i ij ij

i j

SR W G R
= =

=    (7) 

Where, SR  denotes the score of using effect; iW  represents the weight of the ith index; 
ijG  denotes 

the deviation grade score of the ith index; 
ijR  stands for the percentage value of parts in the jth 

deviation grade; n  is the number of quality indices; m  is the number of the deviation grade. 

As shown in Figure 6, the process of quality measurement consists of four steps.  Weight 
determination: let iQI  denote the ith measurement index of quality, 1,2, ,i n= . The weight of iQI is 

often obtained from experts.  Grade classification: the deviation grade score model of the ith index 
is established based on the allowance error.  Distribution determination: in accordance with the 
deviation grade score model, the percentage value of parts distributed in each grade need to be 
determined specifically.  Calculation: the final score could be calculated using equation (7). 
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Figure 6 – Evaluation process for quality assessment indicators 

4. Capability maturity model for manufacturing process knowledge 

4.1 Definition of knowledge capability maturity level 

The mature process of manufacturing knowledge is as follows: verification environment gradually 

gets close to the actual production environment, the types of parts that can be solved gradually 

expand and the effect of parts gradually close to the precise. Taking verification environment, 

knowledge coverage, and using effect as three dimensions, the capability maturity model of 

manufacturing process knowledge is established, which is divided into nine grades, as shown in 

Table 2. The model provides us with a method to describe the knowledge evolution process in a 

more comprehensive way. 

Table 2 Definition for process knowledge capability maturity 

Level Definition 

KCM1  Rationale study 

KCM2  Feasibility research 

KCM3  Laboratory environment verification 

 Percent of pass ≥60%，SR≥0.26 

KCM4  Multiple validation in the laboratory 

environment 

 Percent of pass ≥70%，SR≥0.36 

KCM5  Factory environment verification  

 Knowledge coverage ≥40% 

 Percent of pass ≥75%，SR ≥0.45 

KCM6  Multiple validation in the factory 

environment 

 Knowledge coverage ≥60% 

 Percent of pass ≥80%，SR≥0.55 

KCM7 
 The procedure is stable in real 
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production 

 Knowledge coverage ≥70% 

 Percent of pass≥85%，SR ≥0.65 

KCM8  Standardization of procedure in real 

production 

 Knowledge coverage ≥80% 

 Percent of pass≥90%，SR≥0.75 

KCM9  Continually improve in production 

 Knowledge coverage ≥90% 

 Percent of pass ≥95%，SR≥0.80 

In addition, by using the averaged weighted score, the overall evaluation score of knowledge 

capability maturity can be obtained as follows: 

 kc i j ke a rS ve kc uew w w= • • •+ +  (8) 

Where, 
ive , 

jkc , and 
kue  refer to the verification environment, knowledge coverage and using effect, 

respectively, and 
ew , 

aw  and 
rw  are their weights, as different situations may emphasize different 

aspects. 

At this point, the current maturity status of knowledge in the knowledge base can be determined 

through the following two steps, as shown in Figure 7. Firstly, according to the index evaluation 

method established above, each index value can be figured out respectively. Then, compared with 

the criteria for knowledge capability maturity level in 0, the current maturity level of knowledge in the 

knowledge base can be determined. 

…

H C

1 1 1

il mnL

i ij

l i j

Cov Cov 
= = =

  
=   

   
  

1 1
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i ij ij

i j
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Figure 7 –The measurement process of knowledge capability maturity 

4.2 Transition of knowledge capability maturity level 

To further improve knowledge capability, companies need to make appropriate strategies in line with 

the current state, such as set priorities for the implementation of tasks to be solved. Consequently, 

a new concept knowledge maturity transition machine is proposed and defined to represent the 

knowledge state in the development. A quintuple 1, , , ,i iQ K kcm kcm + is employed to construct the 

knowledge maturity transition machine.  

Q  is a finite set of knowledge maturity level,  1 2 9, , ,Q kcm kcm kcm= . 

K  is a finite set of knowledge required to improve the knowledge maturity level, including two 

subsets: knowledge improved, namely the existing knowledge needs further verification or 

optimization; knowledge imported, namely the knowledge that needs to be acquired from the outside. 

ikcm  is the initial knowledge maturity level, which is an element of Q , ( ), ,i i i ikcm ve kc ue= . 

1ikcm +  is the next knowledge maturity level to arrive, which is an element of Q , ( )1 1 1 1, ,i i i ikcm ve kc ue+ + + += .  
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In addition, let ( )' ' ' '= , ,i i i ikcm ve kc ue  be the current state of knowledge maturity. For quantification, the 

percentage of the accomplished gap to the supposed gap can be calculated by: 
' ' '

1 1 1

100%i i i i i i
e c r

i i i i i i

ve ve kc kc ue ue
w w w

ve ve kc kc ue ue+ + +

 − − −
 = + +  

− − − 
. Obviously, if '

ikcm  is nearer to 1ikcm + , then   has a 

higher value.  

In fact, the aim of measurement is to serve as a means for comparison. Therefore, the knowledge 

maturity transition machine adopts the idea of comparison, and regards knowledge activities as a 

sequence that starts from the initial knowledge maturity level and finally reaches the final knowledge 

maturity level. 

5. Case study 

Taking springback compensation knowledge of frame-rib parts as an example, the assessment 

process of knowledge capability maturity would be illustrated in detail as below. Springback 

compensation knowledge of frame-rib parts, that is, springback angle can be obtained by 

comprehensively considering factors such as material, geometric parameters and so on. Here, the 

object solved by this type of knowledge is mainly characterized by several features of material grade, 

flange type, material thickness, bending radius and bending angle. Among them, material grade and 

flange type are discrete-valued features, while the remaining material thickness, bending radius and 

bending angle are continuous-valued features. 

According to the calculation framework of knowledge capability maturity in Fig.7, it is necessary to 

figure out three evaluation indexs’ values of springback compensation knowledge of frame-rib parts 

firstly. 

(1) For verification environment, this type of knowledge has been applied in actual production. 

Therefore, according to the definition in Table 1, the verification environment of this kind of 

knowledge has reached level 7, with a corresponding score of 0.8.  

(2) Since the solved object has both discrete-valued features and continuous-valued features, the 

knowledge coverage can be obtained according to the calculation framework in Fig.5. Firstly, the 

classification relationship could be established according to the two features of material grade and 

flange type. Since the material grade includes dozens of 2024-O, 7075-O, 2B06-O, etc., this paper 

only takes the most commonly used 2024-O frame rib parts as an example. For flange type, there 

are two types: co-directional flange and opposite directional flange. Thus, the classification feature 

chains established within discrete-valued features are shown in Fig.8. Where, the weight value of 

each feature is obtained according to the statistics of the actual number of frame-rib parts in a certain 

type of aircraft. 

Co-directional flange

Frame-rib parts

0.2

0.8

2024-O

Opposite directional 

flange
 

Figure 8 –Classification feature chains of 2024-O frame-rib parts 

Secondly, the discretization for features with continuous value would be executed taking the 

relationship of attributes into account. The calculation process is described by taking the 

classification feature chain "2024-O & Co-directional flange" as an example. Since material thickness 

determines the interval of the specific bending radius, material thickness is associated with bending 

radius. Besides, there is no restriction between material thickness and bending angle. Also bending 

radius and bending angel are independent each other. Through the two-stage discretization process, 

the results are shown in Table 3. 
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Table 3 Discretization for features with continuous value 

Material thickness Bending radius 

Weight  

Bending angel 
Weigh

t 

Union 
interva

l 
discrete 
interval 

spac
ing 

point
s 

discrete 
interval 

spaci
ng 

poin
ts 

discrete 
interval 

spa
cing 

point
s 

[0.4,0.8] 0.1 5 [0.8,5.6] 0.8 7 0.05 

[ 60 , 65 ] 5  2 0.025 1U  

[ 70 , 75 ] 5  2 0.05 2U  

[ 80 ,100 ] 5  5 0.85 3U  

[105 ,110 ] 5  2 0.05 4U  

[115 ,120 ] 5  2 0.025 5U  

[0.9,2.2] 0.3 5 [2.4,8.0] 0.8 8 0.90 

[ 60 , 65 ] 5  2 0.025 6U  

[ 70 , 75 ] 5  2 0.05 7U  

[ 80 ,100 ] 5  5 0.85 8U  

[105 ,110 ] 5  2 0.05 9U  

[115 ,120 ] 5  2 0.025 10U  

[2.3,3.2] 0.4 4 [4.8,10.4] 0.8 8 0.05 

[ 60 , 65 ] 5  2 0.025 11U  

[ 70 , 75 ] 5  2 0.05 12U  

[ 80 ,100 ] 5  5 0.85 13U  

[105 ,110 ] 5  2 0.05 14U  

[115 ,120 ] 5  2 0.025 15U  

Afterwards, cover analysis of object should be carried out through the distance calculation. Let 
jld  

denote the discrete space of the discrete interval 
jlI . According to the condition: , ,

t t

i j g j jlf f d−  , the 

unsuitable objects would be screened out to reduce the calculation time. As shown in Table 4, only 
1

1O , 1

2O  and 1

3O  three objects in the knowledge base need to calculate the distance with 1

1O  further, for 

these three objects satisfy the screening conditions: 1

,2 210.6 gf d−  , 1

,3 311.6 gf d−   and 1

,4 4395 gf d−  . 

Where, 21d  represents the spacing of the first discrete interval of material thickness, 21=0.1d ; 31d  

stands for the spacing of the first discrete interval of bending radius, 31=0.8d ; 43d  denotes the spacing 

of the third discrete interval of bending angle, 43=5d . The object distance between 1

1O  and 1

1O  could 

be calculated using equation (6), that is 1 1

1 1

95 920.6 0.55 1.6 1.01
( , ) 0.043

3 3.2 0.4 10.4 0.8 120 60
dis O O

 −− −
 = + + =
 − − −
 

. In like 

manner, the computation results of 1 1

1 2( , ) 0.01dis O O =  and 1 1

1 3( , ) 0.049dis O O =  could be obtained by 

equation (6). Let   be the threshold, and set that 31 43211 1
0.017

4 3 3.2 0.4 10.4 0.8 120 60

d dd


 
=  + + = 

− − − 
. 

Since 1 1

1 2( , )dis O O  , 1

2O  is regarded as the object covering the target 1

1O . The covering situation of 

rest knowledge unit is obtained as shown in Figure 9. Where, 1U , 2U , , 15U  correspond to each 

union interval in Table 3. 

Table 4 The distance needs to be calculated respectively 

Features of part 

VS 

The objects satisfying screening conditions 

 Thickness Radius Angel Thickness Radius Angel  

1

1O  0.6 1.6 95° 

0.55 1.0 92° 
1

1O  

0.6 1.6 93° 
1

2O  

0.65 2.2 91° 
1

3O  
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Figure 9 –Covering situation of each union interval 

While reN  denotes the number of valid objects included in the knowledge base, exN  represents the 

total number of all objects expected to be solved. They can be calculated using equation (2) as 

following: 

( )

( )

'

1 1 1

0.05 0.025 36 0.05 0.05 36 0.05 0.85 90 0.05 0.05 36 0.05 0.025 36

0.90 0.025 60 0.90 0.05 60 0.90 0.85 150 0.90 0.05 60 0.90 0.025 60

0.05 0.025 36 0.05 0.0

J l iL n K

re ik ik

l i k

N W P
= = =

  
=   

  

=   +   +   +   +  

+   +   +   +   +  

+   + 

  

( )5 36 0.05 0.85 90 0.05 0.05 36 0.05 0.025 36

131.04

 +   +   +  

=

 

( )

( )

1 1 1

0.05 0.025 70 0.05 0.05 70 0.05 0.85 175 0.05 0.05 70 0.05 0.025 70

0.90 0.025 80 0.90 0.05 80 0.90 0.85 200 0.90 0.05 80 0.90 0.025 80

0.05 0.025 64 0.05 0.0

J l iL n K

ex ik ik

l i k

N W P
= = =

  
=   

  

=   +   +   +   +  

+   +   +   +   +  

+   + 

  

( )5 64 0.05 0.85 160 0.05 0.05 64 0.05 0.025 64

179.0425

 +   +   +  

=

 

Obviously, the coverage of flange springback compensation knowledge in rubber pad forming for 

frame rib parts using 2024-O type material could be computed by C

ex

reN
Cov

N
=  and the result is 73.19%. 

According to the above process, the coverage of another classification feature chain can be obtained, 

and the results are shown in Table 5.  

Table 5 Coverage of each classification feature chain for 2024-O frame-rib parts 

Material grade Flange type Weight Coverage( C

iCov ) 

2024-O 
co-directional flange 0.8 73.19% 

opposite directional flange 0.2 69.52% 
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Then, according to equation (3), the coverage of springback compensation knowledge for 2024-O 

frame rib parts can be obtained as below. 

H C

1 1 1

=73.19% 0.8 69.52% 0.2=72.46%
l in mL

i ij

l i j

Cov Cov 
= = =

  
=  +   

   
    

(3) The evaluation of using effect is mainly carried out by two quality evaluation indexes of bending 

angle deviation and shape deviation. Let   denote bending angle deviation and d  represent 

shape deviation. The tolerances for forming quality requirements are 1.0  and 0.5 mm respectively. 

With tolerances as the basic reference, the corresponding deviation grades and corresponding 

scoring standards are established, as shown in Table 6. 

Table 6 The scoring standards of   and d  

Grade   d  
ijG  

1 1.0   0.5d   0 

2 0.9 1.0    0.4 0.5d    0.6 

3 0.8 0.9    0.3 0.4d    0.7 

4 0.6 0.8    0.2 0.3d    0.8 

5 0.5 0.6    0.1 0.2d    0.9 

6 0.5   0.1d   1 

According to the established deviation grade standards, the actual distribution of the formed parts in 

  and d  indexes in the knowledge base is statistically analyzed, and the results are shown in 

Table 7. 

Table 7 The distribution of parts at each grade 

 Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 

1 jP  10% 10% 40% 20% 10% 10% 

2 jP  10% 10% 50% 20% 10% 0 

At the same time, in line with expert experience, the weights of the two indicators for the forming 

quality are determined: the weight for bending angle deviation 1 0.6W = , and the weight for shape 

deviation 2 0.4W = . Then, the using effect score of formed parts supported by the knowledge system 

of springback compensation can be obtained based on equation (7). 
2 6

1 1

0.6 (0 10% 0.6 10% 0.7 40% 0.8 20% 0.9 10% 1 10%)

0.4 (0 10% 0.6 10% 0.7 50% 0.8 20% 0.9 10% 1 0%)

0.678

i ij ij

i j

SR W G P
= =

=  

=   +  +  +  +  + 

+   +  +  +  +  + 

=



 

According to the analysis of the above case, the current knowledge maturity level belongs to the 

KML7. Obviously, the initial and next knowledge maturity vector can be obtained based on the 

definition of knowledge maturity model: ( )7 0.8,70%,0.65kcm = , ( )8= 0.9,80%,0.75kcm . Since the 

measurement result of current state is ( )
7

' 0.8,72.46%,0.678kcm = ,   could be calculated by: 

' ' '

7 7 7 7 7 7

8 7 8 7 8 7

100%

0.8 0.8 72.46% 70% 0.678 0.65
0.3 0.4 0.3 100%

0.9 0.8 80% 70% 0.75 0.65

18.24%

e c r

ke ke kc kc kr kr
W W W

ke ke kc kc kr kr

 − − −
 = + +  

− − − 

− − − 
=  +  +   

− − − 

=

 

In the real application, using   to describe the current state in the way to the next target can help 

decision makers know the progress clearly. Then, K  can reflect the rest gap that needs to be 
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completed from current level to the next level of maturity. With the coverage indicator, it can clarify 

the direction of knowledge imported in K , that is, what knowledge needs to be added. Based on 

verification environment and using effect, it can determine the direction of knoweldge improved in 

K . 

6. Conclusions 

Our research aims to propose a comprehensive evaluation method to quantitatively assess 
knowledge capability based on maturity model. This paper begins by analyzing the characteristic and 
capability of manufacturing process knowledge and proposes several new basic notions such as 
knowledge coverage, and so on. After that, three evaluation indexes of verification environment, 
knowledge coverage and using effect have been chosen to measure knowledge capability. Likewise, 
the specific evaluation method of each evaluation index is constructed. Then they are formalized and 
integrated into a structured and explicit approach to characterize knowledge capability maturity model. 
One of the uses of knowledge capability maturity model is in the area of decision making and 
assessment of the current state of knowledge in the base. Decision makers can verify the quality of 
development of their knowledge base in order to move forward to the next stage. By identifying the 
gap between the current state and the target state, it will be beneficial to develop the best 
improvement strategy. Through the assessment of knowledge coverage, it can be clear which 
knowledge needs to be added and prioritized. With the evaluation of verification environment and 
using effect, it is possible to clarify which existing knowledge is in urgent need of improvement. The 
measurement method proposed in this paper will be a useful solution for satisfying the practical 
requirements. The effectiveness of the method is illustrated by taking the springback compensation 
knowledge of frame rib in rubber forming. 
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